Algorithm for High Dimensional Principal Component Analysis

Alexander Ilin and Tapani Raiko

June 3, 2010

This document provides an algorithm that is efficient when the dimensionality of the data d is high compared to the number of principal components c needed, that is $c \ll d$.

The basic model equation in PCA is $\mathbf{y}_{j} \approx \mathbf{W} \mathbf{x}_{j}+\mathbf{m}$, where column vectors \mathbf{y}_{j} are the data cases, \mathbf{W} is the $d \times c$ matrix that maps the principal components \mathbf{x}_{j} to the data, and \mathbf{m} is the bias vector. We also use the matrix notation $\mathbf{Y}=\left[\begin{array}{llll}\mathbf{y}_{1} & \mathbf{y}_{2} & \ldots & \mathbf{y}_{n}\end{array}\right]$ and $\mathbf{X}=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}\end{array}\right]$.

The inputs of the algorithm are the data matrix \mathbf{Y} and the number of components c. The outputs are the matrix \mathbf{W}, the principal components \mathbf{X} and the bias vector \mathbf{m},.

Step 1: Find and remove bias by:

$$
\begin{aligned}
& \mathbf{m}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{y}_{j} \\
& \mathbf{y}_{j} \leftarrow \mathbf{y}_{j}-\mathbf{m} \quad \forall j
\end{aligned}
$$

Step 2: Initialize \mathbf{W} to a random $d \times c$ matrix.
Step 3: Alternate between the updates until convergence:

$$
\begin{aligned}
\mathbf{X} & \leftarrow\left(\mathbf{W}^{\mathrm{T}} \mathbf{W}\right)^{-1} \mathbf{W}^{\mathrm{T}} \mathbf{Y} \\
\mathbf{W} & \leftarrow \mathbf{Y} \mathbf{X}^{\mathrm{T}}\left(\mathbf{X} \mathbf{X}^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

Step 4: Compute eigen-decompositions of the left sides:

$$
\begin{aligned}
\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathrm{T}} & =\mathbf{U} \mathbf{D}_{x} \mathbf{U}^{\mathrm{T}} \\
\mathbf{D}_{x}^{1 / 2} \mathbf{U}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \mathbf{W} \mathbf{U} \mathbf{D}_{x}^{1 / 2} & =\mathbf{V D}_{w} \mathbf{V}^{\mathrm{T}}
\end{aligned}
$$

Step 5: Postprocessing of the solution:

$$
\begin{aligned}
\mathbf{W} & \leftarrow \mathbf{W U D}_{x}^{1 / 2} \mathbf{V} \\
\mathbf{X} & \leftarrow \mathbf{V}^{\mathrm{T}} \mathbf{D}_{x}^{-1 / 2} \mathbf{U}^{\mathrm{T}} \mathbf{X}
\end{aligned}
$$

This algorithm was presented in [1], please give a citation if you find this useful. The paper and provided Matlab package also includes extensions such as variational Bayesian treatment of missing values.

References

[1] A. Ilin and T. Raiko. Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research, 2010. To appear.

