Algorithm for High Dimensional Principal Component Analysis

Alexander Ilin and Tapani Raiko

June 3, 2010

This document provides an algorithm that is efficient when the dimensionality of the data d is high compared to the number of principal components c needed, that is $c \ll d$.

The basic model equation in PCA is $\mathbf{y}_j \approx \mathbf{W}\mathbf{x}_j + \mathbf{m}$, where column vectors \mathbf{y}_j are the data cases, \mathbf{W} is the $d \times c$ matrix that maps the principal components \mathbf{x}_j to the data, and \mathbf{m} is the bias vector. We also use the matrix notation $\mathbf{Y} = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_n]$ and $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]$.

The inputs of the algorithm are the data matrix \mathbf{Y} and the number of components c. The outputs are the matrix \mathbf{W} , the principal components \mathbf{X} and the bias vector \mathbf{m} ,.

Step 1: Find and remove bias by:

$$\mathbf{m} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{y}_j$$
$$\mathbf{y}_j \leftarrow \mathbf{y}_j - \mathbf{m} \ \forall j$$

Step 2: Initialize **W** to a random $d \times c$ matrix. Step 3: Alternate between the updates until convergence:

$$\begin{split} \mathbf{X} &\leftarrow (\mathbf{W}^{\mathrm{T}}\mathbf{W})^{-1}\mathbf{W}^{\mathrm{T}}\mathbf{Y} \\ \mathbf{W} &\leftarrow \mathbf{Y}\mathbf{X}^{\mathrm{T}}(\mathbf{X}\mathbf{X}^{\mathrm{T}})^{-1} \end{split}$$

Step 4: Compute eigen-decompositions of the left sides:

$$\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathrm{T}} = \mathbf{U} \mathbf{D}_{x} \mathbf{U}^{\mathrm{T}}$$
$$\mathbf{D}_{x}^{1/2} \mathbf{U}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \mathbf{W} \mathbf{U} \mathbf{D}_{x}^{1/2} = \mathbf{V} \mathbf{D}_{w} \mathbf{V}^{\mathrm{T}}$$

Step 5: Postprocessing of the solution:

$$\mathbf{W} \leftarrow \mathbf{WUD}_x^{1/2}\mathbf{V}$$

 $\mathbf{X} \leftarrow \mathbf{V}^{\mathrm{T}}\mathbf{D}_x^{-1/2}\mathbf{U}^{\mathrm{T}}\mathbf{X}$

This algorithm was presented in [1], please give a citation if you find this useful. The paper and provided Matlab package also includes extensions such as variational Bayesian treatment of missing values.

References

[1] A. Ilin and T. Raiko. Practical approaches to principal component analysis in the presence of missing values. *Journal of Machine Learning Research*, 2010. To appear.