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Abstract

The present work compares three different methods for
training acoustic models in a Finnish large vocabulary speech
recognition system. The models are trained using the maximum
likelihood (ML), maximum a posteriori (MAP), and variational
Bayesian (VB) principle. The results show that when the model
complexity is properly chosen, all three methods give similar
performance. As the model complexity increases, the perfor-
mance of ML based system starts to degrade whereas no over-
fitting is observed using MAP and VB based models. MAP
gives slightly better recognition accuracy over VB but it cannot
be used for model selection without auxiliary data. The advan-
tage of VB is that it can be used for selecting a well performing
model structure using only training data.

1. Introduction

Most speech recognition systems are based on hidden Markov
models (HMMs) where the state observation probabilities are
modeled by mixture densities. The present work focuses on
the estimation of the parameters of Gaussian mixture mod-
els (GMMs) of HMM states. Three methods are compared
and their effect to speech recognition accuracy is investigated.
The methods are based on maximum likelihood (ML) princi-
ple, maximum a posteriori (MAP) principle, and variational
Bayesian (VB) approach. The asymptotic behavior of all three
methods is the same, i.e. they will give the same solution in the
limit of infinite amount of training data. Their main difference
is how they deal with insufficient amount of training data.

The main interest in practice is to get robust parameter es-
timates when little or limited amount training data is available.
Another interest is to have a tool for selecting the proper model
structure, e.g. the optimal number of Gaussians in the mixture
model or determining the model complexity for shared-statetri-
phone HMMs. Neither ML nor MAP provides any principled
way to do the model selection, but the methods based on varia-
tional Bayesian approach can be used for this.

In this study, ML, MAP, and VB based Gaussian mixture
model solutions are experimentally compared on the basis of
recognition accuracy using a Finnish large vocabulary speech
recognition system. The acoustic models of the recognizer are
based on triphone HMMs. Several recognizers are trained with
varying complexity. Triphone models are clustered using the
decision trees with different sizes and the effect of varying the
number of Gaussians in the mixture models is investigated.

2. On parameter estimation
Basic ML solution without any regularization has the problem
of overfitting the model parameters to the training data. This
happens if the model is too complex, i.e. has too many free
parameters compared to the amount of training data. In practice
some smoothing is done, e.g. a floor value is set for variance
estimations in order to avoid singular solutions and smoothen
peaky mixture models. Also several parameters can be tied so
that the effective number of the free parameters is reduced.But
it is not trivial to determine the proper smoothing and amount of
parameter tying. In practice, one is forced to divide the original
training data into two sets, one used for training the parameters
and the other for validating the trained model.

In MAP estimation, prior distributions are defined for the
parameters which helps avoiding the overfitting. But MAP is
based on the single point of the posterior distribution of model
parameters. A different approach is to use Bayesian modeling
where the entire posterior distribution is considered [1].The
unknown parameters are integrated out instead of selectingthe
values based on their point densities. The integration process
is called marginalization. Marginalization prevents overfitting
and enables to do the model comparison based on the model
evidence. The evidence in Bayesian modeling is the marginal
likelihood of the data, not the single point value of the density
function like in ML and MAP.

Since in practice the real posterior distribution is not avail-
able, one must use some kind of approximation for it. One ap-
proach is to use Laplace method, where a single Gaussian is fit-
ted to the posterior distribution around the MAP solution. But
a more advanced method is to use variational Bayesian (VB)
approach [2]. The term variational means that the exact func-
tional form of the posterior approximation is not fixed but the
best possible approximation is sought using the calculus ofvari-
ations. The constraint in [2] is that the posterior approximation
must be written in the factorized form.

There is still another type of method for getting the poste-
rior distribution. If samples are taken from the real posterior
distribution no approximations are made. But the drawback is
that the computation time can be long and in practice it is very
difficult to know when the method has been converged so that
all relevant parts of the posterior distribution have been sam-
pled. Therefore VB seems to be the most practical approach
for applying the Bayesian modeling to the speech recognition
systems which typically have large number of parameters.

It should be noted that there exist also several other opti-
mization criteria for training the models than the three methods
used in the present study. The fundamental dichotomy between



the training methods can be made between the maximum like-
lihood and discriminative training approaches. Since the main
goal in speech recognition is to do classification from the acous-
tic feature vector stream into word sequence and maximum
likelihood based methods are optimal in classification onlyif
the model is correct and the amount of training data is infinite
(which in speech recognition unfortunately is never the case),
the discriminative methods should be a better choice. But even
though the discriminatively trained models are better in prin-
ciple, in practice they also have problems since they are even
more sensitive to overfitting than ML based models. The ques-
tion about parameter smoothing and proper model complexity
selection is thus an important issue regardless of the parame-
ter optimization criterion. In the current work the focus was on
ML, MAP, and VB methods.

3. Recognition system
The recognition system used in the current study is based on
triphone HMMs where states are modeled by Gaussian mixture
densities. The building blocks of the trigram language model
are 20.000 morpheme-like subword units which have been au-
tomatically extracted from a large text corpus using unsuper-
vised learning [3, 4]. Recognition output is obtained by time-
synchronous stack decoding.

Acoustic data was obtained from a professional female
speaker reading a Finnish book in a quiet environment. Train-
ing data consisted of 10 hours speech, 10 minutes development
data were used for setting the language model weight and the
final test data set was 40 minutes.

Speech was sampled at 16 kHz rate. Feature vectors were
24-dimensional, 12 static MFCC features concatenated by 12
delta features. They were computed at 10 ms intervals from
25 ms time windows using HTK software [5]. Feature vectors
were scaled component wise to zero-mean and unit-variance us-
ing the sample mean and sample variance of the training data.

3.1. Evaluating recognition accuracy

Finnish is agglutinative, compounding language which means
that words can be constructed by concatenation. Many prepo-
sitions of English language are used as corresponding word
suffixes in Finnish. As an example, an English word se-
quencealso in my home would be written as one Finnish word
kodi+ssa+ni+kin. For this reason measuring the recognition
accuracy based on the full-word accuracy might be misleading.
For example, if the wordmy were recognized incorrectly in the
English word sequence, the error rate would be 25%, but if the
corresponding Finnish subwordni were wrong, the recognition
output being e.g.kodi+ssa+mme+kin, the error rate would be
100%. Therefore, a better describing measure of recognition
accuracy for Finnish language is to use letter error rate [3]. In
the above example this would be 3/12 = 25%.

4. Experiments
4.1. Data segmentation

In order to segment the acoustic data into triphone units, acous-
tic models were first trained using HTK tools following the
guidelines in the HTK manual [5]. First monophone HMMs
were trained, a three-state HMM for each phone using a single
Gaussian for each state. Triphone models were constructed by
copying the monophone models into triphone models and then
clustering the states of the resulting models using the decision

tree approach. Two cycles of Baum-Welch re-estimation were
performed between each step. The questions for the decision
tree were designed using knowledge about Finnish phonetics.

Two decision trees were constructed with different thresh-
old values for stopping the node splitting. The first tree where
the tying parameters in the HTK’s HHEd command script were
RO=100.0 andTB=350.0 resulted in 2748 shared states. An-
other tree with the parametersRO=10.0, TB=35.0 resulted
in 7247 shared states. The HTK based models were then used
for segmenting the training data into triphone-state specific seg-
ments. This fixed data segmentation was used in the follow-
ing experiments where different parameter estimation methods
where compared for constructing the Gaussian mixture models
of the HMM states. Transition probabilities between the states
were also kept fixed.

4.2. Mixture model initialization

Mixture models were trained separately for each HMM state us-
ing the fixed data segmentation. The same initializations were
used for ML, MAP, and VB algorithms. The initial Gaussian
means were obtained from the vector quantization process. Ini-
tial code vectors were randomly picked from the appropriate
data segments and the batch-mode Self-Organizing Map (SOM)
[6] based initialization was performed for each state specific
codebook. Batch-SOM is like k-means algorithm where the
training data is smoothly shared between the code vectors by
means of the neighborhood function. During the codebook
training, the width of the Gaussian-shaped neighborhood func-
tion was smoothly decreased to zero so that in the end of the
codebook training the algorithm behaved like k-means algo-
rithm. The use of the neighborhood in the SOM training has
the effect to help the k-means algorithm to escape from possi-
bly bad initialization and local minima.

4.3. Mixture model training

The Gaussian mixture model withK mixture components is:

p(y) =
K∑

s=1

ωsN (y|µµµs,ΣΣΣs) (1)

wherey is the data vector,ωs denotes the mixture weight,µµµs

mean of Gaussian andΣΣΣs the covariance matrix. Diagonal co-
variance matrices were used.

Each shared state specific mixture model was trained using
those feature vectors which were mapped to it in the previous
HTK based segmentation. So instead of Baum-Welch training,
Viterbi-type training was now used with fixed segment borders.
Training of each GMM was iterated till the relative change in
the cost function was below10−5 or the maximum number of
training cycles (ten) was exceeded. For notational simplicity,
the update formulas are presented for one mixture model with-
out any state indices,N denotes the number of feature vectors
mapped to it andd is the dimension of the feature vector.

The ML updates, based on expectation maximization (EM)
algorithm, are:
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The MAP estimates are [7]:
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whereλ0,ρρρ0, β0, ν0, andΦΦΦ0 are the prior parameters. Param-
eters{ωs,µµµs,ΣΣΣs} have the following conjugate priors: mix-
ture weights are jointly Dirichlet,{ωs} ∼ D(λ0), the means
conditioned on the inverse covariance matrices are Normal,
µµµs|ΣΣΣ

−1
s ∼ N (ρρρ0, 1

β0ΣΣΣs), and the inverse covariance matrices
are Wishart. In the present work where diagonal covariance
matrices were used, the diagonal elements have Gamma priors,
p(ΣΣΣ−1

s ) =
∏d

i=1 G(ν0,Φ0
i ). The following values were used:

λ0 = 1, β0 = 1, ν0 = 1. The priors of the Gaussian means for
triphone state GMMs were defined so thatρρρ0 andΦΦΦ0 were the
mean and the covariance matrix of the segmented training data
based on the three-state monophone HMM. Monophone models
were thus used as priors for triphone models.

In the VB method, the same priors were used as in the MAP
estimation. The update algorithm [2] is similar to the MAP esti-
mation, but instead of maximizing the auxiliary function ofEM
algorithm by seeking the values of parameters based on the sin-
gle points of the likelihood function, the unknown parameters
are integrated out over the variational posterior approximation.

The parameter posterior is computed in two stages, first the
parameters{ωs,µµµs,ΣΣΣs} are updated:

ω̄s =
1

N
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whereN̄s = Nω̄s, andγn
s is the responsibility of mixture com-

ponents for generating the observationyn. This expression is
slightly more complicated than (3) and the details can be found
in [2, 8]. The posterior parameter updates are:

λs = N̄s + λ0 , ρρρs = (N̄sµ̄µµs + β0ρρρ0)/(N̄s + β0) ,

βs = N̄s + β0 , νs = N̄s + ν0 ,

ΦΦΦs = N̄sΣ̄ΣΣs+N̄sβ
0(µ̄µµs−ρρρ0)(µ̄µµs−ρρρ0)T/(N̄s+β0)+ΦΦΦ0 .(6)

The predictive density based on the final values of the pos-
terior parameters is obtained by integrating out the parameters.
The result is a mixture of Student-t distributions [2]. Thiswas
used for computing the VB state likelihoods in the recognition
experiments.

5. Results
The number of the components in the Gaussian mixture densi-
ties were varied and its effect to the recognition accuracy was
investigated using ML, MAP, and VB based estimation meth-
ods. The results in Table 1 are for development set which was
used for tuning the language model weights separately for each

Table 1:Recognition results for 10-minute development set (603
words, 5380 letters). Language model weights were tuned to
minimize the letter error rate. Two underlined rows are for
the VB system with unequal number of mixture components per
GMM based on the VB cost function.

Letter Error Rate Word Error Rate
#Gaussians ML MAP VB ML MAP VB

2748× 1 4.8 4.8 5.0 25.0 25.2 26.4
2 4.1 4.1 4.1 23.4 22.7 23.1
5 3.2 3.4 3.3 19.2 20.6 20.2

10 3.3 3.3 3.4 19.9 20.2 20.3
15 3.1 3.1 3.2 19.4 19.4 18.7
20 3.0 3.1 3.1 18.1 19.1 18.7

ave 10.4 3.2 19.1
7247× 1 5.1 5.1 5.2 26.9 25.2 25.9

2 4.2 4.1 4.3 24.7 23.4 23.9
5 4.3 3.7 4.1 24.9 20.9 21.6

10 5.1 3.1 4.1 29.0 18.1 22.1
15 5.8 3.1 3.8 32.7 19.1 21.4

ave 4.9 4.1 22.2

Table 2:Recognition results for 40-minute test set (2621 words,
23200 letters) using 2748- and 7247-GMM systems. VB systems
had unequal number of Gaussians per GMM, on average 10.4
and 4.9.

Letter Error Rate Word Error Rate
#Gaussians ML MAP VB ML MAP VB
2748× 10 3.4 3.5 3.3 20.3 21.71 19.7
7247× 5 5.1 3.9 4.6 28.7 23.2 23.3

recognition system. The number of the shared states is the re-
sult of the decision tree based clustering and a Gaussian mix-
ture model was trained for each shared state. When the number
of the models is 2748 there is no overfitting observed in ML
models even when 20 Gaussians per state is used and all three
methods perform equally well.

In the second system with 7247 models when sufficiently
small number of Gaussians per mixture was used, all methods
performed again equally well. But after increasing the mixture
model size to 10, ML starts to overfit. MAP continues to in-
crease the recognition accuracy whereas the performance ofVB
based models seems to saturate. Since same priors are used for
MAP and VB the main difference lies in the averaging. Based
on [2], the predictive density for VB based GMM is the mixture
of Student-t distributions. When the amount of training data is
large, Student-t distribution is close to Gaussian, but thediffer-
ences are most noticeable using small amount of training data.
VB based models may give better likelihood to data, but here
MAP based models succeeded to discriminate the data better.

Two rows in Table 1 are for VB based system where un-
equal number of Gaussians were used for mixture models. The
number was determined by the VB cost function, see details
in [2, 8]. Because of the embedded penalization for complex
models, VB cost function can be used for selecting the best
number of Gaussians. This does not necessarily minimize the
recognition error, since the objective of VB is to approximate
the marginal likelihood of data. Nevertheless, it can be seen
that good results were obtained. The average number of Gaus-
sians per mixture model was 10.4 when 2748 GMMs were used



and 4.9 when 7247 GMMs were used. Another way to set un-
equal number of components to mixture models would be to
train GMMs with initially large number of components and then
after training prune weakly used components from each model.
In MAP and VB, those components should have values close to
priors.

Results for test data are in Table 2. The number of Gaus-
sians per state was determined to be 10 and 5 for the two sys-
tems with 2748 and 7247 GMMS. In the smaller system all
methods performed equally well, but in the larger system MAP
gave the best letter error rate VB being the second best.

5.1. VB based state clustering

The two recognizers with 2748 and 7247 states were based on
the state clustering using HTK’s decision tree algorithm. The
tree node splitting was based on the increase of the likelihood
of the data. Since the likelihood will increase as the model com-
plexity increases, there must be a manually selected threshold
for stopping the tree growing. This threshold clearly affects per-
formance of the ML based models as can be seen when compar-
ing the results in Table 1.

Here it was experimented how the decision tree can be con-
structed without manually setting the stopping criteria [9, 10].
Since VB framework enables to compute the lower bound of the
marginal likelihood of the training data (model evidence),this
measure can be used for determining the proper tree structure.
For each node, the difference between marginal likelihoodsbe-
fore and after candidate node splitting is computed and if the
result is positive, the splitting is done. The lower bound ofthe
marginal likelihood can be interpreted as a penalized likelihood
and the system has therefore embedded complexity control.

The VB state clustering did not improve the recognition ac-
curacy obtained by HTK clustering but gave similar results.The
number of the nodes in the VB decision tree was 6368. Using
one Gaussian per state the letter error rate was 5.1% for devel-
opment set, this is the average of the VB letter error rates of
2748×1 and 7247×1 Gaussian systems in Table 1.

Although the recognition accuracy was the same as when
using HTK based state clustering, the benefit of the VB method
is that it does not require any manually set threshold for stop-
ping the node splitting in the construction of the decision tree.

6. Discussion
The main interest in the present work was to compare MAP
against VB. ML based models were used more like a baseline
system. In the previous works where VB has been applied to
speech recognition [9, 10, 11], no comparison to MAP based
models have been made. It was a bit surprising to observe that
the MAP based models gave better recognition accuracy than
VB based models when large number of GMMs was used.

The attractive property of VB method is that its cost func-
tion has embedded complexity penalization and it can therefore
be used for model selection. But the cost function is the lower
bound for the marginal likelihood and in speech recognitionthe
aim is to do classification. The discrimination of phone classes
is more important than maximization of the likelihood. There-
fore it would be extremely interesting to try to apply VB frame-
work also to discriminative training.

Another interesting topic would be to determine the opti-
mal prior strengths for MAP and VB. In the present work rel-
atively weak priors were used. The comparison between MAP
and VB was fair, since the same initializations of the GMMs and

equal priors were used for both methods, but the performance
of both methods could be improved by different choice of prior
strengths.

7. Conclusions
In this work, ML, MAP, and VB based acoustic models were
compared in the large vocabulary speech recognition task.
Acoustic models were triphone HMMs with decision tree based
state clustering. Gaussian mixture model was trained for each
state and the number of the mixture components was varied. All
three methods gave similar recognition accuracies when suffi-
ciently small number of GMMs were used. When the number
of the GMMs increased and the number of the mixture com-
ponents increased, differences between the methods could be
observed. The performance of the ML based models started
to degrade whereas MAP and VB based models did not suffer
from the overfitting. VB based models performed better than
ML based models, but MAP based models gave the best recog-
nition accuracy.
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