FAST SEQUENCE SEGMENTATION USING

LOG-LINEARMODELS

NIKOLAJ. TATTIQAALTO.FI

Aalto University, Helsinki Institute of Information Technology

SEGMENTATION

Given sequence s, and a number K divide s
into K cohesive segments

—4

DYNAMIC PROGRAM

If score is additive, optimal solution can be
found by dynamic program

1 foreachk =2,..., K do

2 foreach:=1,..., N do

3 foreachj =1,...,7do

4 C' <+ opt(k—1,5—1)and

(4,7);

5 if sc(C') < sc(O) then
O+ C;

6 -

7 - opt(k,i) < O;

O(K N) space and O(K N?) time

SPEED-UP

Do not visit every j,
instead keep list of candidates P

Whenever possible, trim P

1 foreachk=2,..., K do

2 P <« (;

3 foreach:=1,..., N do

4 add 7 into P;

5 foreach j € P do

6 compute segmentation;
7 if j is quaranteed to be

suboptimal then remove j;
8 p

9 - opt(k,i) < C;

EXPERIMENTS

0.08

erformance ratio
oo
(@) (@)
1AN (@)

F)Q
=
X

0
sequence Tength

0.06 200
@
B
S

0.04
8 Q
c &
! =100
5 Q
= =
©0.02 b

pert
S

1 5
number of segmen%s

500
150 400

' Q
| Ss00

Q

: =
. ~—200
100
0 0 0

WO

2 OO J 1 000 . 3 000 4 000
n ex mndaex

SUFFICIENT CONDITION
Segment s|1,¢] with K = 3 segments

= [7,1] is a candidate for the last segment
= 1,y —1],|y,7 — 1] is the optimal
2-segmentation for s|1,7 — 1]

]

AbKad y
TS

5 100 150 200 250

a

—4

Define:

left(j, i) =

a4 =]Igligz(average of s[j, z])

a, b|, where

b= Jrgxaicz(average of s|j, x|)

and right(k,j — 1) = |c, d|, where

c = min (average of s|z,j — 1])
y<x<y

d = max (average of s|z,j — 1])
y<xr<y

y is the starting index of the last segment in
k-segmentation for s|1,j — 1]

THEOREM: If left(y,1) and right(k — 1,5 — 1)
overlap, then j cannot be the starting in-
dex for the last segment of optimal k-
segmentation for s|1, i]

If the theorem holds for 7, it also holds for
i > i

= keep intervals for every j in P.

= delete j from P as soon overlap occurs.

40
30
20

10

2 OO 2 OO
mn EX mn ex

performance ratio = total number of score comparisons, normalized between 0 and 1

lifetime = how many iterations index is in P

' HELSINKI
INSTITUTE FOR
. INFORMATION
TECHNOLOGY

Aalto University

COMPUTING INTERVALS

Code for updating intervals:

foreach £k =2,..., K do
P« ()

foreach: =1, ...
add ¢ into P;
foreach j € P do

compute segmentation;
compute left(7,1);

if left(7,1) and

right(k — 1,7 — 1) overlap
then remove j from P;

9 /

10 opt(k,1) < C;

11 compute right(k,1);

, N do

Q@ 1 &N Ul = W N

Left interval is easy: let © = average of s|j, i|.

left(j, 1) = [min(a, p) , max(b, 1)

Right interval is harder:

= ¢ goes into different direction
= optimal segmentation is needed

PAV ALGORITHM
Compute right interval with PAV algorithm

= online algorithm, input a stream of num-
bers, x1, ...

= at ¢th point returns the largest average

= amortized constant time, linear space

At ith point maintain a z,...,z; arranged
into blocks, each block has higher average
than previous. The last block has the high-

est average.

Update step:

1 add new point as a single block;
2 while violating monotonicity do
| merge last two blocks;

RIGHT INTERVALS
Keep blocks pav(j,) for s|j, 1|, for j € P.

When optimal last segment is known, say 7%,
compute the right interval from pav(j*,1).

Lists require quadratic space.
Can be rearrange into a tree:

Sequence s = (2,0,1,2,1,1,9,2,5,0,1)

Potential candidates P = (1, 3,8,10,11)
Blocks (start indices): Tree:
pav(1l,11) = (1,4,7))
pav(3,11) = (3,4,7) \e
pav(8,11) = (8) 7/ 8 11
pav(10,11) = (10, 11) { {
pav(11,11) = (11) 4 10

/\

1 3

