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DISCOVERING COMMUNITIES

Given a graph G and a set of vertices S, find
a good community around S

Graphs rarely have clear community struc-
ture

Discovering communities becomes ill-

defined problem:
Should we select

= a small and tight community
= or larger and sparser community?

We could either

m introduce a score that balances between
size and tightness
= or discover multiple communities

NESTED COMMUNITIES

Given a graph G = (V, E), number of com-
munities K, and a set of nodes S, find a se-
quence of communities

S:VQ;V1C---;VK:VSUChthat

—

= V; is more dense than V; 4
s quality score ¢(Vy, ..., Vi) is optimized

DENSITY
E; = edges ot V;

= replace each non-edge with an edge with
a weight of 0

outer edges F; = E; \ E;,_4
density:

d(F) = 7 3w

ecF;

QUALITY SCORE

FIXING ORDER
Split the problem into 2 subproblems:

1. given a graph with ordered nodes, find a
sequence of communities respecting the
order:

if v, € V;, thenv;_1 €V,

2. find a good order

There are orders corresponding to the opti-
mal solution

T'HEOREM: Finding optimal communities
given the order is a monotonic segmentation
problem

MONOTONIC SEGMENTATION

Input: a sequence of real-numbers
Ti,...,rNn with weights mq,...,my

Output: partition of the sequence into K seg-
ments such that

= quality score

¢(C1,...,Ck) = Z > omy |y —

is minimized
= C; has a higher average than C; ;.
Can be solved by a classic dynamic program

= quadratic time, linear space
= linear time approximations exist

Monotonicity can be enforced with prepro-
cessing using PAV algorithm

COMMUNITIES AS SEGMENTS

Express community detection as segmenta-
tion problem by setting
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SELECTING ORDER

= degree of each node
= personalized page rank
= dense subgraph algorithm

1 W« V;

2 while W # S do

3 w — arg mingcyy degy, (x);
4 delete w from W;

WEIGHTING EDGES

Compute p(v) = personalized pagerank.

3 options:

_rv) . pw)
deg(v)  deg(w)

ws(e) = p(v) + p(w)

wm(e) = min(p(v), p(w))

W, (€e)

ALTERNATIVE APPROACHES

Any subcommunity of V; is more dense than
any subcommunity of V; 4

THEOREM: Let X and Y such that
Vici CY CV, C X CV,y
then

d(E(Vi) \ E(Y)) > d(E(X) \ E(V;))

ATTEMPT 1: Add dense communities first

1 W« S;

2 while W # V do

3 C' < densest community
containing W,

4 add C to W;

ATTEMPT 2: Delete sparse communities first

K
Q(V()v"-vVK):ZZ‘w(e)_ﬂiﬁv 1 1—1 1 W<V,
i=1 ecF; Tp = Zw((v@-,vj))and m; =1 — 1 2 while W # S do
, , : j=1 3 (' < sparsest community in W s.t.
where 1; is the centroid, p; = d(F3;). NS =0
Then 4 | remove C from W;
(Vo, .-, Vi) = q(Ch,...,Ck) + const Finding C' is NP-hard
EXPERIMENTS
Karate (33, 34 as seeds): Polblogs w, performance ¢(V) /q(H)
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