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Abstract

Network sparsification aims to reduce the number of edges of
a network while maintaining its structural properties: short-
est paths, cuts, spectral measures, or network modularity.
Sparsification has multiple applications, such as, speeding
up graph-mining algorithms, graph visualization, as well as
identifying the important network edges.

In this paper, we consider a novel formulation of the
network-sparsification problem. In addition to the network,
we also consider as input a set of communities. The goal is to
sparsify the network so as to preserve the network structure
with respect to the given communities. We introduce two
variants of the community-aware sparsification problem,
leading to sparsifiers that satisfy different connectedness
community properties. From the technical point of view,
we prove hardness results and devise effective approximation
algorithms. Our experimental results on a large collection
of datasets demonstrate the effectiveness of our algorithms.

1 Introduction

Large graphs, or networks, arise in many applications,
e.g., social networks, information networks, and biolog-
ical networks. Real-world networks are usually sparse,
meaning that the actual number of edges in the network
m is much smaller than O(n?), where n is the number
of network nodes. Nonetheless, in practice, it is com-
mon to work with networks whose average degree is in
the order of hundreds or thousands, leading to many
computational and data-analysis challenges.

Sparsification is a fundamental operation that aims
to reduce the number of edges of a network while
maintaining its structural properties. Sparsification has
numerous applications, such as, graph summarization
and visualization, speeding up graph algorithms, and
identification of important edges. A number of different
sparsification methods have been proposed, depending
on the network property that one aims to preserve.
Typical properties include paths and connectivity [721],
cuts [1,/9], and spectral properties [2,/6,[19].

Existing work on network sparsification ignores the
fact that the observed network is the result of different
latent factors. For instance, imagine a Facebook user
who posts a high-school photo, which leads to a dis-
cussion thread among old high-school friends. In this
case, the participation of users in a discussion group is
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a result of an underlying community. In general, the
network structure reflects a number of underlying (and
potentially overlapping) communities. Thus, if it is this
community structure that guides the network-formation
process, then the community structure should also be
taken into consideration in network sparsification.

Motivated by this view, we consider the following
problem: Given a network and a set of potentially
overlapping communities, sparsify the network so as
to preserve its structural properties with respect to the
giwen communities. Our goal is to find a small set of
edges that best summarize, or explain, a given commu-
nity structure in the network.

Our setting has many interesting applications. For
example, consider a social network where users discuss
various topics. Each topic defines a community of peo-
ple interested in the topic. Given a set of topics, we
want to find a sparse network that best explains the
respective communities. Similar problems arise in col-
laboration networks, where communities are defined by
collaboration themes, consumer networks where com-
munities are defined by products, etc. Finding an opti-
mal sparse network with respect to a set of communities
is a means of understanding the interplay between net-
work structure and content-induced communities.

We formalize the above intuition by defining the
NETSPARSE problem: given an undirected graph G =
(V,E) and a set of communities ¢ = {C1,...,C¢} over
V', we ask to find a sparsified graph G’ = (V',E’) with
V' =U;=1,. ¢C; and E' C E, so as to minimize |E’| and
guarantee that every graph G’[C;], induced by the nodes
in the community Cj, satisfies a certain connectedness
requirement.

Different connectedness requirements give rise to
different variants of the NETSPARSE problem. We con-
sider three such requirements: (i) connectivity, (ii) den-
sity and (i91) star containment. While connectivity has
been addressed by previous work [4], we are the first
to introduce and study the other two properties, which
define the SPARSEDENS and SPARSESTARS problems,
respectively. In the SPARSEDENS problem the require-



ment is that each induced graph G’[C;] has a minimum
density requirement. In the SPARSESTARS problem the
requirement is that G'[C;] contains a star as a subgraph.
We establish the computational complexity of the two
problems, SPARSEDENS and SPARSESTARS, and present
approximation algorithms for solving them.

An interesting special case arises when the input to
our problem consists only of the collection of communi-
ties and there is no network G = (V,E). In this case,
we can consider that G is the complete graph (clique)
and the NETSPARSE becomes a network design problem,
where the goal is to construct a network that satisfies
the connectedness requirement among the nodes in the
different communities.

The list of our contributions is the following.

e We introduce the novel problem of sparsifying a
network while preserving the structure of a given
set of communities.

e We formulate different variants of this network-
aware sparsification task, by considering preserving
connectedness properties within communities.

For the proposed formulations we present complex-
ity results and efficient approximation algorithms.

e We present experimental results on a large collec-
tion of real datasets, demonstrating that our algo-
rithms effectively sparsify the underlying network
while maintaining the required community struc-
ture and other key properties of the original graph.

We note that our implementation and datasets will
be publicly available. Proofs, other results, and addi-
tional experiments are in the supplementary material.

2 General problem definition

Our input consists of an underlying undirected graph
G = (V,E) having |V| = n vertices and |[E| = m
edges. As a special case, the underlying network G can
be empty, i.e., there is no underlying network at all.
We treat this case equivalently to the case in which the
underlying network is the complete graph (clique).

Additionally, we consider as input a collection of £
sets C = {C,...,Cp} over V, ie., C; C V. We think of
the sets C and we refer to them as network communities.
We assume that the sets in C may be overlapping.

Our objective is to find a sparsifier of the network
G that maintains certain connectedness properties with
respect to the given communities C. A sparsifier of G
is a subgraph G’ = (V' E’), where the number of edges
|E'| is significantly smaller than |E|. The vertices V’
spanned by G’ are the vertices that appear in at least
one community Cj, i.e., V' = Uf_,C;. Without loss of
generality we assume that UleCi =V,soV' =V.

Connectedness properties: To formally define the
sparsification problem, we need to specify what it
means for the sparse network to satisfy a connectedness
property with respect to the set of communities C.

We provide the following formalization: given a
graph G = (V,E) and S C V, we use E(S) to denote
the edges of E that have both endpoints in S, and
G(S) = (S,E(9)) is the subgraph of G induced by S.
We are interested in whether a graph G = (V| E) satisfies
a certain property p for a given set of communities
C = {Cy,...,C¢} where C; C V. We say that G
satisfies property p with respect to a community C; if
the induced subgraph G(C;) satisfies property p. We
write I,(G,C;) = 1 to denote the fact that G(C;)
satisfies property p, and I,(G,C;) = 0 otherwise.

We consider three graph properties: (i) connectiv-
ity, denoted by ¢; (i7) density, denoted by d; and (#i7)
star containment, denoted by s. The corresponding in-
dicator functions are denoted by I, Ig>q,, and I.

The connectivity property requires that each set C;
induces a connected subgraph. The density property re-
quires that each set C; induces a subgraph of density at
least «v;. The density property is motivated by the com-
mon perception that communities are usually densely
connected. The star-containment property requires that
each set C; induces a graph that contains a star. The
intuition is that star-shaped communities have small di-
ameter and also have a community “leader,” which cor-
responds to the center of the graph.

Problem definition: We can now define the general
problem that we study in this paper.

PROBLEM 1. (NETSPARSE) Consider a network G =
(V,E), and let p be a graph property. Given a set of £
communities C = {C1,...,C¢}, we want to find a sparse
network G’ = (V, E') so that (i) E' C E; (ii) G’ satisfies
property p for all communities C; € C; and (#it) the total
number of edges (or total edge weight, if defined) on the
sparse network |E'| is minimized.

One question is whether a feasible solution for
problem NETSPARSE exists. This can be easily checked
by testing if property p is satisfied for each C; in the
original network G. If this is true, then a feasible
solution exists — the original network G is such a
solution. Furthermore, if property p is not satisfied
for a community C; in the original network, then this
community can be dropped, and a feasible solution
exists for all the communities for which the property
is satisfied in the original network.

One should also note that the problem complexity
and the algorithms for solving Problem [I]depend on the
property p. This is illustrated in the next paragraph, as
well as in the next two sections.



Connectivity. Angluin et al. [4] study the NETSPARSE
problem for the connectivity property. They show that
it is an NP-hard problem and provide an algorithm with
logarithmic approximation guarantee.

3 Sparsification with density constraints

We assume that each community C; € C is associated
with a density requirement oy, where 0 < o; < 1. This
is the target density for community C; in the sparse
network. As a special case all communities may have
the same target density, i.e., ; = a. We say that a
network G’ = (V,FE’) satisfies the density property with
respect to a community C; and density threshold «;, if
|E'(Cy)| > ai(‘%‘), that is, the density of the subgraph
induced by C; in G’ is at least o;. We denote this by
Ii>a, (G',C;) = 1; otherwise we set Iy>q,(G',C;) = 0.

The SPARSEDENS problem is defined as the special
case of Problem where p is the density property.
Before presenting our algorithm for the SPARSEDENS
problem, we first establish its complexity.

ProrosIiTION 3.1. The SPARSEDENS problem is NP-
hard.

We now present DGreedy, a greedy algorithm for the
SPARSEDENS problem. Given an instance of SPARSE-
DENS, i.e., a network G = (V,E), a set of £ communities
C;, and corresponding densities «;, the algorithm pro-
vides an O(log ¢)-approximation guarantee.

To analyze DGreedy, we consider a potential func-
tion ®, defined over subsets of edges of E. For an edge
set H C F, a community C;, and density constraint a;,
the potential ® is defined as

(3.1) ®(H,C;) :min{O, |H(C))| — {a’('gi'ﬂ }

where, [-] denotes the ceiling function. Note that

‘I)(H,Ci) <0 if HdZ(xi(G(Cin)aCi) = 0,
O(H,C;) =0 if Ij>4,(G(C;,H),C;) =1.

and

In other words, ® is negative if the edges H do not
satisfy the density constraint on C;, and becomes zero
as soon as the density constraint is satisfied.

We also define the total potential of a set of edges
H with respect to the input communities C as

O(H)= > O(HC).

C;eC

(3.2)

The choices of DGreedy are guided by the potential
function ®. The algorithm starts with £/ = () and
at each iteration it selects an edge e € E \ E’ that
maximizes the potential difference

B(E' U {e}) — B(E).

The algorithm terminates when it reaches to a set FE
with ®(F) = 0, indicating that the density constraint is
satisfied for all input sets C; € C. It can be shown that
DGreedy provides an approximation guarantee.

PROPOSITION 3.2. DGreedy is an O(log{)-approzima-
tion algorithm for the SPARSEDENS problem.

We obtain Proposition[3.2] by using the classic result
of Wolsey |20] on maximizing motonote and submodular
functions. The key is to show that the potential function
® is monotone and submodular.

ProOPOSITION 3.3. The potential function ® is mono-
tone and submodular.

Running-time analysis. Let L = Zle |C;| and
m = |E|. Consider an m x L table T so that T[e,i] = 1 if
e € E(C;) and T'e,i] = 0 otherwise. It is easy to see that
DGreedy can be implemented with a constant number
of passes for each non-zero entry of 7', giving a running
time of O(L+m/{). If we use a sparse implementation for
T, the overall running time becomes O(L + |T|), where

|T| is the number of non-zero entries of T

Adding connectivity constraints. Note that solu-
tions to the SPARSEDENS problem may be sparse net-
works in which communities C; are dense but discon-
nected. For certain applications we may want do intro-
duce an additional connectivity constraint, so that all
subgraphs G(C;,E(C;)) are connected.

Combining the two constraints of density and con-
nectivity can be handled by a simple adaptation of the
greedy algorithm. In particular we can use a new po-
tential that is the sum of the density potential in Equa-
tion and a potential for connected components.
This new potential is still monotone and submodular,
thus, a modified greedy will return a solution that sat-
isfies both density and connectivity constraints and pro-
vides an O(log ¢)-approximation guarantee.

4 Sparsification with star constraints

In the second instantiation of the NETSPARSE problem,
the goal is to find a sparse network G’ so that each input
community C; € C contains a star, meaning that for
every community C; subgraph G(C;,E(C;)) has a star
spanning subgraph. The motivation is that a star has
small diameter, as well as a central vertex that can act as
a community leader. Thus, star-shaped groups have low
communication cost and good coordination properties.

We define the SPARSESTARS problem as the special
case of Problem[I]by taking p to be the star-containment
property. We can again show that SPARSESTARS is a
computationally hard problem.



PROPOSITION 4.1. The SPARSESTARS problem is NP-
hard.

Unfortunately, SPARSESTARS is not amenable to
the same approach we used for SPARSEDENS, hence,
we use a completely different set of algorithmic tech-
niques. Our algorithm, called DS28 (for “directed stars
to stars”), is based on solving a directed version of
SPARSESTARS, which is formally defined as follows.

PROBLEM 2. (SPARSEDISTARS) Consider a directed
network N = (V,A), and a set of { communities C =
{C1,...,Ci}. We want to find a sparse directed net-
work N' = (V, A") with A’ C A, such that, the number of
edges |A'| is minimized and for each community C; € C
there is a central vertex ¢; € C; with (¢; — x) € A’ for
all z € C; \ {ei}-

In Problem the original network N and the
sparsifier N’ are both directed. Note, however, that
SPARSEDISTARS can be also defined with an undirected
network G as input: just create a directed version of G,
by considering each edge in both directions. Thus we
can consider that SPARSESTARS and SPARSEDISTARS
take the same input. In this case, it is easy to verify the
following observation.

OBSERVATION 1. If G* = (V,E*) is the optimal solu-
tion for SPARSESTARS, and N* = (V,D*) is the optimal
solution for SPARSEDISTARS, for the same input, then

|B*| < |D*| < 2|E").

As with SPARSESTARS, the SPARSEDISTARS prob-
lem is NP-hard.! Our approach is to solve SPARSEDI-
STARS and use the directed sparsifier N’ = (V,D’) to ob-
tain a solution for SPARSESTARS. Observation 1] guar-
antees that the solution we obtain for SPARSESTARS in
this way is not far from the optimal. In the next para-
graph, we describe how to obtain an approximation al-
gorithm for the SPARSEDISTARS problem.

Solving SparseDiStars. First, we observe that
SPARSEDISTARS can be viewed as a HYPEREDGE-
MATCHING problem, which is defined as follows: we
are given a set of elements X, a collection of hyper-
edges H = {Hy,...H:}, H; C X, and a score function
c:H — R. We seek to find a set of disjoint hyperedges
Z C H maximizing the total score . 7 c(H;).

The mapping from SPARSEDISTARS to HYPER-
EDGEMATCHING is done as follows: We set X to C.
Given a subset H C C, let us define I(H) and U(H)

TThe proof of Proposition can be modified slightly to show
NP-hardness for SPARSEDISTARS.

to be the intersection and union of members in H,
respectively. Let us construct a set of hyperedges as

H={H|HCCand|(H) # 0},
and assign scores

c(H)=1—|H|+ Y [ilveCieH} -1
veU(H)

Note that if represented naively, the resulting hyper-
graph can be of exponential size. However, this prob-
lem can be avoided easily by an implicit representation
of the hypergraph. We can now show that the optimal
solution to the transformed instance of HYPEREDGE-
MATCHING can be used to obtain an optimal solution
to SPARSEDISTARS.

PROPOSITION 4.2. Let T be the optimal solution for the
HYPEREDGEMATCHING problem instance. Let Dz be
the union of directed stars, each star having a center
in I(H) and directed edges towards vertices in U(H)
for every H € T. If D* is the optimal solution to the
SPARSEDISTARS problem, then

ID*| = D] = Y (ICi| = 1) = ) e(H).

C;eC Hel

Consider a greedy algorithm, HGreedy, which con-
structs a solution to HYPEREDGEMATCHING by iter-
atively adding hyperedges to J so that it maximizes
> m,cq ¢(H;), while keeping J disjoint. As shown in the
supplementary material, HGreedy is a k-factor approxi-
mation algorithm for the HYPEREDGEMATCHING prob-
lem. The proof is based on the concept of k-extensible
systems [16].

PROPOSITION 4.3. Let J be the resulting set of hyper-
edges given by the HGreedy algorithm, and let T be the
optimal solution for HYPEREDGEMATCHING. Then,

Z cH) <k Z c¢(H), where k= ?ea%\H|
HeT Heg

Propositions [£:2] and [£.3] imply the following.

COROLLARY 4.1. Let D* be the optimal solution of the

SPARSEDISTARS problem. Let J be the greedy solution

to the corresponding HYPEREDGEMATCHING problem,

and let Dy be the corresponding edges (obtained as

described in Proposition . Then,

k—10+ 1\D*\, where C = Z (IC;] = 1)
k k e

|IDg| <

and k is the mazimum number of sets in C that have a
non-empty intersection.



Algorithm 1: The DS2S algorithm for SPARSE-
STARS.
Input: Gy = (V,Ey) and C = {C4,...,C¢}
Output: Graph G = (V,E) such that E(C;)

contains a star, for all ¢ € 1,... /.
J = HGreedy(C);
Dy = H2D(J);
E =D2E(Dy);

return G = (V,E);

Putting the pieces together. The pseudo-code of
DS2S is shown in Algorithm In the first step, the
algorithm invokes HGreedy and obtains a solution to
the HYPEREDGEMATCHING problem. This solution
is then translated into a solution to the SPARSEDI-
STARS problem (function H2D). Finally, the solution
to SPARSEDISTARS is translated into a solution to the
SPARSESTARS by transforming each directed edge in
Dy into an undirected edge and removing duplicates
(function D2E). We have the following result.

PROPOSITION 4.4. Let E* be the optimal solution of the
SPARSESTARS problem. Let E be the output of the DS2S
algorithm. Then,

k-1, 2, .
TC + E\E [, where C = CZGC(|C§| -1)

|E| <

and k is the maximum number of sets in C that have a
non-empty intersection.

Running time. The running time of the DS2S algo-
rithm is dominated by HGreedy. The other two steps
(lines 2 and 3 in Algorithm [1)) require linear time with
respect to |V|. HGreedy can be implemented with a
priority queue. In each step we need to extract the
maximum-weight hyperedge, and update all intersecting
hyperedges by removing any common sets. The number
of maximal hyperedges in H is at most |V| (one for each
vertex v), and assuming that the maximum number of
intersecting hyperedges is bounded by ¢, the total run-
ning time of the algorithm is O(|V|¢log |[V| + £ |Cil).

5 Experimental evaluation

In this section we discuss the empirical performance of
our methods. Our experimental study is guided by the
following questions.

Q1. How do our algorithms compare against compet-
itive sparsification baselines that also aim at pre-
serving the community structure?

Q2. How well is the structure of the sparsified network

preserved compared to the structure of the original
network?

Q3. What are specific case studies that support the
motivation of our problem formulation?

We note that the implementation of the algorithms and
all datasets used will be made publicly available.

Datasets. We use 13 datasets (D1-D13); each dataset
consists of a network G = (V,FE) and a set of commu-
nities C. We describe these datasets below, while their
basic characteristics are shown in Table [Il

e KDD and ICDM are subgraphs of the DBLP co-
authorship network. Edges represent co-authorships
between authors. Communities are formed by keywords
that appear in paper abstracts.

e FB-circles and FB-features are Facebook ego-networks
available at the SNAP repository.?2 In FB-circles the
communities are social-circles of users. In FB-features
communities are formed by user profile features.

e lastFM-artists and lastFM-tags are friendship net-
works of last.fm users.? A community in lastFM-artists
and lastFM-tags is formed by users who listen to the
same artist and genre, respectively.

e DB-bookmarks and DB-tags are friendship networks
of Delicious users. A community in DB-bookmarks and
DB-tags is formed by users who use the same bookmark
and keyword, respectively.

Additionally, we use SNAP datasets with ground-
truth communities. To have more focused groups, we
only keep communities with size less than 10. To avoid
having disjoint communities, we start from a small
number of seed communities and iteratively add other
communities that intersect at least one of the already
selected. We stop when the number of vertices reaches
10 K. In this way we construct the following datasets:

e Amazon: Edges in this network represent pairs of fre-
quently co-purchased products. Communities represent
product categories as provided by Amazon.

e DBLP: This is also a co-authorship network. Com-
munities are defined by publication venues.

e Youtube: This is a social network of Youtube users.
Communities consist of user groups created by users.

For the case studies we use the following datasets.
e Cocktails:® Vertices represent drink ingredients and
communities correspond to ingredients appearing in
cocktail recipes. The Cocktails dataset does not have a
ground-truth network.
e Birds: This dataset consists of group sightings of
Parus Magjor (great tit) [8]. The dataset also contains
gender, age, and immigrant status of individual birds.

anap.stanford.edu/data/egonets—Facebook.html

3grouplens.org/datasets/hetrec-2011/
4

5

www.delicious.com
www-kd.iai.uni-bonn.de/InVis


snap.stanford.edu/data/egonets-Facebook.html
grouplens.org/datasets/hetrec-2011/
www.delicious.com
www-kd.iai.uni-bonn.de/InVis

Table 1: Network characteristics. |V|: number of nodes; |E|: number of edges in the underlying network; | Fy:
the number of edges induced by communities; C: the number of connected components; ¢: number of sets
(communities); avg(cy): average density of the ground-truth subgraphs induced by the communities; Smin, Save:
minimum and average set size; tmax, tave: Maximum and average participation of a vertex to a set.

Dataset V| |E| |Eo| C 14 avg(ao) Smin Savg tmax tave
Amazon (D1) 10001 25129 17735 7 11390 0.769 2 3.52 20 4.01
DBLP (D2) 10001 27687 22264 1 1767 0.581 6 7.46 10 1.31
Youtube (D3) 10002 72215 15445 1 5323 0.698 2 4.02 82 2.14
KDD (D4) 2891 11208 5521 58 8103 0.178 2 31.16 1288 137.00
ICDM (D5) 3140 10689 5079 112 8623 0.183 2 32.46 1339 139.10
FB-circles (D6) 4039 88234 55896 1 191 0.640 2 23.15 44 1.53
FB-features (D7) 4039 88234 84789 1 1245 0.557 2 29.78 37 9.21
lastFM-artists (D8) 1892 12717 5253 20 7968 0.047 2 8.29 1147 36.73
lastFM-tags (D9) 1892 12717 7390 20 2064 0.053 2 13.60 50 15.43
DB-bookmarks (D10) 1861 7664 1213 62 8337 0.069 2 3.34 58 15.32
DB-tags (D11) 1861 7664 6293 62 14539 0.032 2 13.79 658 107.60
Birds (D12) 1052 44812 44812 1 49578 1.0 2 6.03 938 284.30
Cocktails (D13) 334 3619 3619 1 1600 1.0 2 3.73 427 17.89
Experimental setup. All datasets consist of a graph 1o .
G = (V,E) and a set of communities C = {C1,...,C¢}. 0.9 —
The output of our algorithms is a sparsified graph . + =3
G* = (V,E*). Clearly, any reasonable sparsification 0.7 - - 'i
algorithm would include in E* only edges that belong 05 _ E
in at least one of the graphs G[C;] = (C;, E[Cy]). Ac- =3 —
cordingly, we define Ey to be the set of edges belonging 03 - T
in at least one such subgraph: Ey = U;—1._ ¢F[C;]. o1

SPARSEDENS requires a density threshold «; for *
each community C; € C. We set this parameter pro- DGreedy, 0.5 DGreedy, 0.7 DGreedy, 0.9 ps2s
portional to the density D; of G[Ci]. We experiment Figure 1: Amount of sparsification shown as distri-

with «; = e D;, for e = 0.5, 0.7, and 0.9.

SPARSESTARS aims to find a star in every commu-
nity G[C;]. If no star is contained in G[C;] then the
community C; is discarded.

Baseline. We compare our algorithms with a spar-
sification method, proposed by Satuluri et al. [18] to
enhance community detection, and shown in a recent
study by Lindner et al. [14] to outperform its competi-
tors and to preserve well network cohesion. The algo-
rithm, which we denote by LS, considers local similar-
ity of vertex neighborhoods. The reader should keep
in mind that LS is not optimized for the problems we
define in this paper, and in fact, it does not use the
communities C as input. Nonetheless we present LS in
our evaluation, as it is a state-of-the-art sparsification
method that aims to preserve community structure.

Amount of sparsification. Starting with input net-
work Gy = (V,Ep) and communities C we compute
a sparsified network G*, for datasets DI-D11. We
solve the SPARSESTARS problem using the DS2S and the
SPARSEDENS problem using the DGreedy algorithm for

bution of the values p = |E*|/|Ep| over the different
datasets for each problem setting.

the three different values of € we consider. We quantify
the amount of sparsification by the ratio p = |E*|/|Eo|,
which takes values from 0 to 1, and the smaller the
value of p the larger the amount of quantification. Box-
plots with the distribution of the values of p for the
four different cases (SPARSESTARS, and SPARSEDENS
with € = 0.5,0.7,0.9) are shown in Figure

The LS baseline takes as parameter the number of
edges in the sparsified network. Thus, for each problem
instance we ensure that the sparsified network obtained
by LS have the same number of edges (up to a 0.05
error margin controlled by LS) as the sparsified networks
obtained by our methods in the corresponding instances.

Properties of sparsified networks. We start by con-
sidering our first two evaluation questions Q1 and Q2.
For this, we compare our methods with a competitive
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Figure 2: Relative degree § within communities, on the sparsified graphs G* produced by DGreedy and baseline LS
for datasets D1-D11. Measure 0 is defined as average degree within community in the sparsified graph divided by
average degree within community in the input graph. Larger values of § correspond to better preserved community
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Figure 3: Relative paths length A, on the sparsified graphs G* produced by DGreedy and baseline LS for datasets
D1-D11. Measure A is defined as harmonic mean of within communities shortest-path lengths in the input graph
divided by corresponding harmonic mean in the sparsified graph. Again, larger values of A correspond to better

preserved community sets.

baseline (LS), and we quantify the amount structure
preservation in the sparsified network.

Recall that for an input network Gy = (V,Ep) and
communities C we compute a sparsified network G*, for
datasets DI-D11. We compare the networks G* and
Gy by computing the average degree and the average
shortest-path length within the communities C.5 The
goal is to test whether within-communities statistics in
the sparsified network are close to those in the original
network. The results for average degree and average
shortest path are shown in Figures[2]and [3] respectively.
The leftmost panel in each figure shows the results for
the the SPARSESTARS problem, while the other three
panels show the results for the SPARSEDENS problem,
for the three different values of € we consider.

As expected, in the sparsified network, average de-
grees decrease and short-path lengths increase. For
SPARSEDENS, as € increases, both average distance and
average shortest-path length in the sparsified network
come closer to their counterparts in the input network.

8The average shortest-path length is estimated using the
harmonic mean, which is robust to disconnected components.

For the SPARSESTARS problem the LS baseline is com-
petitive and in most cases it produces networks whose
statistics are close to the ones of the networks produced
by DS2S. However, for the SPARSESTARS problem, the
LS baseline does not do a particularly good job in pre-
serving community structure.

Overall this experiment reinforces our understand-
ing that while sparsification is effective with respect to
reducing the number of edges, the properties of the com-
munities in the sparsified network resemble respective
properties in the input network.

Running time. For all reported datasets the total
running time of DS2S is under 1 second, while DGreedy
completes in under 5 minutes. The experiments are
conducted on a machine with Intel Xeon 3.30GHz and
15.6GiB of memory.

Case studies. To address evaluation question Q3 we
conduct two case studies, one presented here and one in
the supplementary material. In both cases there is no
underlying network, so they can be considered instances
of the network design problem.



Table 2: Top-10 star centers, discovered by DS2S algo-
rithm on Cocktails dataset. The centers are ordered by
the discovered order, with the number of sets a center

covers in parentheses.

vodka (202)
orange j. (118)
pineapple j. (86)

gin (86)
amaretto (85)
light rum (58)

bailey’s (78)
tequila (81)

kahlua (58)
blue curacao (50)

Cocktails case study. In this case the input communities
are defined by the ingredients of each cocktail recipe.
We first run the DS2S algorithm on the input sets, and
we obtain network G* with 1593 edges, that is, around
44% of the edges of G, giving an average degree of
9.5. The first ten star centers, in the order selected
by the DS2S algorithm are shown in Table 2] The
table also shows the number of cocktails that each
ingredient serves as a star. We see that the algorithm
selects popular ingredients that form the basis for many
cocktails. A snippet of the reconstructed network is
shown in Figure [4]

In order to compare the outputs of DS2S (G7) and
DGreedy, we ran the latter with density parameter o =
0.65. For this value of o we get G% having 1420 edges,
so that we can have a more meaningful comparison of
G7 and G5. In Figure [5| we depict the degree of each
vertex in the two reconstructed networks, G and G35, as
a function of their degree in the underlying network G.
From the figure, we observe that some of the unusually
high-degree vertices in G maintain their high degree
in G7; these are probably the vertices that the DS2S
algorithm decides that they serve as star centers. On
the other hand, there are other high-degree vertices in
G that lose their high-degree status in G7; these are the
vertices that the DS2S algorithm did not use as star
centers. On the other hand, the DGreedy algorithm
sparsifies the feasibility network much more uniformly
and vertices maintain their relative degree in G5.

6 Related work

To the best of our knowledge, we are the first to
introduce and study the SPARSEDENS and SPARSE-
STARS problems. As a result, the problem definitions,
technical results, and algorithms presented in this paper
are novel. However, our problems are clearly related to
network sparsification and network design problems.

Network sparsification: Existing work on network
sparsification aims to simplify the input network —
by removing edges — such that the remaining net-
work maintains some of the properties of the original
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Figure 4: A snippet of the discovered network for the
Cocktails dataset.
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Figure 5: Vertex degree of reconstructed networks as a
function of the vertex degree in the base network in the
Cocktails dataset.

network. Such properties include shortest paths and
connectivity [7}/21], cuts [1},/9], source-to-sink flow [17],
spectral properties [2,[6/19], modularity [5], as well as
information-propagation pathways [15]. Other work fo-
cuses on sparsification that improves network visualiza-
tion [14]. The main difference of our paper and existing
work is that we consider sparsifying the network while
maintaining the structure of a given set of communities.
Such community-aware sparsification raises new compu-
tational challenges that are distinct from the computa-
tional problems studied in the past.

Network design problems: At a high level, network-
design problems consider a set of constraints and ask to
construct a minimum-cost network that satisfies those
constraints [3.|4,11H13]. As in our case, cost is usually
formulated in terms of the number of edges, or total
edge weight. Many different constraints have been con-
sidered in the literature: reachability, connectivity, cuts,
flows, etc. Among the existing work in network design,
the most related to our paper is the work by Angluin et
al. [4] and by Korach and Stern [12,[13]. Using the no-
tation introduced in Section [2] Angluin et al. essentially



solve the NETSPARSE problem with the I. property.
Our results on the SPARSEDENS problem and its vari-
ant on connected SPARSEDENS are largely inspired by
the work of Angluin et al. On the other hand, for the
SPARSESTARS problem we need to introduce completely
new techniques, as the submodularity property is not
applicable in this case. Korach and Stern [12,[13] study
the following problem: given a collection of sets, con-
struct a minimum-weight tree so that each given set de-
fines a star in this tree. Clearly, this problem is related
to the SPARSESTARS problem considered here, however,
the tree requirement create a very significant differen-
tiation: the problem studied by Korach and Stern is
polynomially-time solvable, while SPARSESTARS is NP-
hard. In terms of real-world applications, while tree
structures are well motivated in certain cases (e.g., over-
lay networks), they are not natural in many other (e.g.,
social networks).

7 Concluding remarks

In this paper, we have introduced NETSPARSE, a new
formulation of network sparsifcation, where the input
consists not only of a network but also of a set of commu-
nities. The goal in NETSPARSE is twofold: () sparsify
the input network as much as possible, and (i7) guaran-
tee some connectedness property for the subgraphs in-
duced by the input communities on the sparsifiers. We
studied two connectedness properties and showed that
the corresponding instances of NETSPARSE is NP-hard.
We then designed effective approximation algorithms for
both problems. Our experiments with real datasets ob-
tained from diverse domains, verified the effectiveness
of the proposed algorithms, in terms of the number of
edges they removed. They also demonstrated that the
obtained sparsified networks provide interesting insights
about the structure of the original network with respect
to the input communities.
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S1.

Proof. [Proof of Proposition We consider the deci-
sion version of SPARSEDENS. The problem is obviously
in NP. To prove the hardness we provide a reduction
from from the HITTINGSET problem. An instance of
HITTINGSET consists of a universe of items U, a collec-
tion of sets C; C U, and a positive integer c¢. The task
is to decide whether there exists a “hitting set” X C U,
of cardinality at most ¢, such that C; N X # 0, for every
i.

Proofs

Consider an instance of the HITTINGSET problem.
We will show how to obtain a solution for this instance,
using SPARSEDENS. We proceed as follows. First we
create a graph Gy = (V,Ey), such that |V| = |U| + 1:
for every item u € U we create a vertex =, € V, in
addition we add one special vertex s € V. The graph is
fully connected, |Fy| = ("2/‘).

Now for every set C; in the instance of HITTINGSET
we create a set of vertices S; for our problem such that
S; ={stU{xy | ue C;}. Wealsoset a; =a = (lgl)il.
Note that « is so low that to satisfy the constraint
I4>0(G,S;) it is sufficient to have E(S;) > 1.

Let G = (V,E) be a solution for SPARSEDENS, if
one exists. We can safely assume that each edge in F is
adjacent to s. To see this, assume that e = (z,z,) € E
and modify F by adding (., s), if not already in E, and
deleting e. By doing this swap, we do not violate any
constraint since any S; that contains e will also contain
(24, s) and having one edge is enough to satisfy the
constraint. Moreover, we do not increase the number
of edges in F.

Using this construction, we can see that the adja-
cent vertices in F/, excluding s, correspond to the hitting
set; that is, there exists a solution to the HITTINGSET
problem of cardinality at most ¢ if and only if there
exists a solution to SPARSEDENS that uses at most ¢
edges. O

It is interesting to observe that our proof implies
that the SPARSEDENS problem is NP-hard even if the
feasibility network G is fully-connected.

Proof. [Proof of Proposition Showing that @ is
monotone is quite straightforward, so we focus on
submodularity. We need to show that for any set of
edges X CY C Ejp and any edge e ¢ YV it is

(Y U{e}) — B(Y) < (X U {e}) — B(X).

Since ® is a summation of terms, as per Equation ,
it is sufficient to show that each individual term is
submodular. Thus, we need to show that for any S; € S,
XCYCEypandeg¢VYitis

B(Y U{e),Si) — B(Y,S:) < B(X U{e},Si) — B(X,S)).

To show the latter inequality, first observe that for any
Si,Z C Ey and e ¢ Z the difference ®(Z U {e},S;) —
®(Z,5;) is either 0 or 1. Now fix S;, X CY C Ey, and
e Y;if ®(X U{e},S;) — P(X,S;) =0, either the set of
edges X satisfy the density constraint on S;, or e is not
incident in a pair of vertices in S;. In the latter case,
(Y U {e},S;) — ©(V.,S;) = 0, as well. In the former
case, if X satisfies the density constraint, since X C Y,
then the set of edges Y should also satisfy the density
constraint, and thus ®(Y U {e},S;) — ®(¥,5;) =0. O

Proof. [Proof of Proposition We consider the de-
cision version of the SPARSESTARS problem. Clearly
the problem is in NP. To prove the completeness we
will obtain a reduction from the 3D-MATCHING prob-
lem, the 3-dimensional complete matching problem [10].
An instance of 3D-MATCHING consists of three disjoint
finite sets X, Y, and Z, having the same size, and a col-
lection of m sets C = {C4,...,C,,} containing exactly
one item from X, Y, and Z, so that |C;| = 3. The goal
is to decide whether there exists a subset of C where
each set is disjoint and all elements in X, Y, and Z are
covered.

Assume an instance of 3D-MATCHING. For each C;
create four vertices p;, u;, v;, and w;. Set the network
Go = (V, Ep) to be a fully connected graph over all those
vertices. Define P = {p;}, the set of p;’s. For each z €
X, create a set S, = {p;,u;,v; | x € C;}. Similarly, for
each y € Y, create a set Sy = {p;, u;, w; | y € C;} and,
for each z € Z, create a set S, = {p;,v;,w; | z € C;}.
Let S consist of all these sets.

Let G = (V,E) be the optimal solution to the
SPARSESTARS problem; such a solution will consist of
induced subgraphs G; = (5;,E(95;)) that contain a star.
Let p be the function mapping each S; to a vertex
that acts as a center of the star defined by G;. Let
O = {u(S;); S; € S} be the set of these center vertices in
the optimal solution. We can safely assume that O C P;
even if in the optimal solution there exists an S; with
E(S;) not intersecting with any other E(S;), p; can be



picked as the center of this star. For each o € O, define
NO = {Sv, esS ‘ ,UJ(Sz) = O}.

The number of edges |E| in the optimal graph
G = (V,E) is equal to } g 5(|Si] —1) — D, where D is
the number the edges that are counted in more than one
star. To account for this double counting we proceed as
follows: if N, contains two sets, then there is one edge
adjacent to o that is counted twice. If N, contains three
sets, then there are three edges adjacent to o that are
counted twice. This leads to

Bl =Y (IS = 1) = > (Tyw, =2 + 30ar, =31 »

S; €S 0o€0

where I is the indicator function with Ij4; = 1 if the
statement A is true, and 0 otherwise.

To express the number of edges solely with a sum
over the sets, we define a function f as f(1) = 0,
f(2) =1/2 and f(3) = 1. Then

1Bl =Y (18] = 1= f([Nusy

S, €S

)

Let @ C C be the set 3-dimensional edges corre-
sponding to the set of selected star centers O. Set
t =73 g.es (S| —2). Then |E| <t if and only if every
N, contains 3 sets, which is equivalent to Q containing
disjoint sets that cover X and Y and Z. (|

Proof. [Proof of Observation [I] The first part of the
inequality follows from the fact that any solution (V,D)
for SPARSEDISTARS can be translated to a solution for
SPARSESTARS by simply ignoring the edge directions
and removing duplicates, if needed. The second part of
the inequality follows from the fact that any solution
(V,E) for SPARSESTARS can be translated to a feasible
solution for SPARSEDISTARS, with at most two times as
many edges, by creating two copies each edge (z,y) in
E: one for (z — y) and one for (y — x). O

To prove Proposition we will use the following
lemma, which we state without the proof.

LEMMA 7.1. Let H € ‘H be a hyper-edge and let T be a
star with the center x in |(H) connecting to every vertex
in U(H) \ {z}. The number of edges in T is equal to

> (CI=1) —e(H).

CeH

Now we are ready to prove Proposition [£.2]

Proof. [Proof of Proposition Let us first prove
|D*| < |Dz|. By definition, H contains all sets C; as
singleton groups. Therefore, each set C; is included

in some H € Z. Hence, Dz is a feasible solution for
SPARSEDISTARS and therefore |D*| < |Dz|.

We will now prove the other direction. By defi-
nition, D* is a union of stars {7;}, where each T; =
(Ci, A;). Define a family P by grouping each C; sharing
the same star center. Note that P is a disjoint subset
of H, consequently, it is a feasible solution for HYPER-
EDGEMATCHING. Lemma [7.I] implies that

D= > ICI—1—c(H)

HeP CeH

= > (Cl=1)= Y e(H)
cec HeP

> (01=1) = e(H),
cec Hez

where the first equality follows from the fact that the
joined trees are edge-disjoint.
Lemma [7.1] implies that

1Dz < Y7 Y [Cl-1=c(H) = ) (IC|=1)=_ c(H),

HeZICeH cecC HeT

where the last equality follows since each set C; is
included in some H € 7. O

Proof. [Proof of Proposition The set of feasible
solutions of the HYPEREDGEMATCHING problem forms
a k-extensible system [16]. As shown by Mestre [16],
the greedy algorithm provides a k-factor approximation
to the problem of finding a solution with the maximum
weight in a k-extensible system. 0

Proof. [Proof of Proposition For the solution of the
DS2S problem we know that |E| < |Dz|. This is because
we can obtain F from Dy by ignoring edge directions,
and possibly removing edges, if needed. From the
latter inequality, Observation [I] and Corollary [{.1] the
statement follows. d

S2.

Our problem definition can be extended for weighted
graphs G = (V,E,d), where V and FE are the sets of
nodes and edges in the network. In this case, we assume
that edges are weighted by a distance function d :
E — R;. Small distances indicate strong connections
and large distances indicate weak connections. The
distance of an edge e € E is denoted by d(e), while
the total distance of a set of edges E/ C E is defined
as d(E") =} cp d(e). Given such a weighted network,
we can extend the definition of the NETSPARSE problem
as follows:

Extension to weighted networks

PROBLEM 3. (WEIGHTEDNETSPARSE) Consider an
underlying network G = (V,E,d) , where d represent



edge distances, and let p be a graph property. Given
a set of £ communities C = {C4,...,C}, we want to
construct a sparse network G’ = (V, E’), such that, (i)
E' C E; (ii) 1,(G',C;) = 1, for all C; € C; and (iii)
the sum of distances of edges in the sparse network,
d(E') = Y cp d(e), is minimized.

As before, depending on whether p is the connec-
tivity, the density or the star-containment property, we
get the corresponding weighted versions of the SPARSE-
CONN, SPARSEDENS and SPARSESTARS problems re-
spectively. The greedy algorithms developed for the
SPARSECONN and SPARSEDENS problems can be also
used for their weighted counterparts. In particular, in
the greedy step of the algorithm the next edge is chosen
S0 as to maximize the potential difference

(B U{e}) — ®(E")
d(e) '

However, the algorithm we give for SPARSESTARS is
only applicable to unweighted networks; developing a
new algorithm for the weighted case is left as future
work.

S3.

We present a second case study where the input com-
munities are group sightings of birds. We run the DS28

Birds case study

algorithm on the input sets, and we obtain a sparsified
network with 809 star centers and 21 077 edges, that is,
around 47 % of the edges of input network. The dataset
also contains gender (male/female/unknown), age (ju-
venile/adult), and immigration status of each individ-
ual bird. We studied whether some characteristics are
favoured when selecting centers. Here, we found out
that juveniles are preferred as centers, as well as, male
residents, see Figure [6]
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Figure 6: Proportion of juveniles and male residents in
top-k selected star centers in Birds as a function of k.
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