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Sampling Real Matrices with Given Margins

Markus Ojala
63323T



Contents
1 Introduction 2

2 Using random sample sets 2
2.1 Testing significance . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Maintaining margins . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Evaluating structuredness 5
3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Hierarchical clustering . . . . . . . . . . . . . . . . . . . 6

4 Markov chains 6
4.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 7
4.3 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Problem definition 8
5.1 Problem variants . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Measuring the error . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Sampling matrices with given margins 10
6.1 Generation via swap randomization . . . . . . . . . . . . . . . . 10

6.1.1 Epsilon approach . . . . . . . . . . . . . . . . . . . . . . 11
6.1.2 Discretized approach . . . . . . . . . . . . . . . . . . . . 12
6.1.3 Uniform sampling . . . . . . . . . . . . . . . . . . . . . 13
6.1.4 Metropolis approach . . . . . . . . . . . . . . . . . . . . 14

6.2 Generation via transformation of values . . . . . . . . . . . . . . 16
6.2.1 General Metropolis approach . . . . . . . . . . . . . . . . 16
6.2.2 Local search approach . . . . . . . . . . . . . . . . . . . 17

7 Empirical results 18
7.1 Convergence and performance . . . . . . . . . . . . . . . . . . . 18
7.2 Error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Conclusions and future work 24

9 Acknowledgments 24

1



1 Introduction
One of the most important problem in data mining is how to test the significance
of a result. In this special assignment, we study methods for assessing the results
of data mining algorithms which measure the structure of real valued matrices.

Traditional statistical data analysis is suitable for testing the significance of
individual findings, but testing, for example, the significance of a clustering is
difficult. One solution to this is to compare the data mining results on random
samples to the original result. The problem is how we can generate proper ran-
dom samples. In the case of assessing the structure of a real valued matrix, we
would like the randomized matrices to share some statistics with the original ma-
trix. Therefore, we have decided to conserve the sums and variances of rows and
columns, which explain the most of the variation in the matrix. We call these the
margins of the matrix.

The problem has been studied extensively in the cases of 0–1 matrices and
contingency tables where only the sums of rows and columns are fixed [3, 6]. In
these, the significance testing is based on random samples which are produced
by Markov chain approach using swaps or addition masks as transitions. There
exist also more traditional permutation tests and methods preserving only row or
column margins [7]. Our approach is based on the 0–1 analysis in [6] whose basic
ideas we extend into the case of real valued matrices.

The report is organized as follows. In Section 2 we present the usage of ran-
dom sample sets for significance testing and motivate the importance of margins.
In Section 3 we discuss classical data mining algorithms for measuring the struc-
turedness of a matrix. Markov chains and their properties are introduced in Sec-
tion 4. After that, in Section 5 we discuss the aspects of the problem in more
detail and give an error measure for a randomized matrix. The Section 6 contains
descriptions of six different methods for sampling random matrices. Finally, in
Section 7 we conduct experiments for comparing the methods, and in Section 8
we give some concluding remarks.

2 Using random sample sets
In this section we motivate the usefulness of random sample sets of matrices where
row and column sums and variances are kept almost constant. First, methods for
assessing statistical significance of data mining results are discussed. After that
we give an illustrative example of the effect and importance of margins.
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2.1 Testing significance
Let D0 be our original m-by-n real data matrix. We want to test the significance
of data mining results on D0 using random sample set. Assume that the results of
the data mining algorithm A we are using can be described by one real number,
i.e., the algorithm A is a function A : Rm×n → R. For instance, it can be a mea-
sure of structuredness of D0 obtained by clustering error. Methods for evaluating
structuredness are discussed more in detail in the next section.

Let D = {D1, D2, . . . , Dk} be a random sample set of m-by-n real matrices
with some properties similar to the original data D0. Ideally in our case, D will
be sampled uniformly and independently from all the matrices having almost the
same row and column sums and variances as the original matrix D0. Let Xt =
A(Dt) be the result of the algorithm A on the matrix Dt.

The idea of significance testing is now to compare the original result X0 to the
results Xt on the random samples Dt ∈ D . If X0 differs substantially from the
results on random samples then we can conclude that the data mining result on
D0 is significant and does not just depend on the margins. The converse that the
result depends mainly on the margins could be interesting as well, but assessing it
would need other methods.

A classical measure for the significance of a result is p-value, which is the
probability of obtaining a result as extreme as the given one assuming it was pro-
duced by chance alone. It can be approximated by the empirical p-value which is
in our case

min (|{t | Xt ≤ X0}|, |{t | Xt ≥ X0}|) + 1

k + 1
. (1)

This is the two-sided version of the test. If the empirical p-value is small, e.g., less
than 1%, we can conclude that X0 = A(D0) is significant with p = 0.01. [5]

The dissimilarity of the result X0 can be evaluated as well by Z-score, which
measures the normalized deviation from the average value. Let µ̂ be the empirical
mean and σ̂2 the empirical variance of A(D), D ∈ D . Then the Z-score is

Z =
X0 − µ̂

σ̂
. (2)

If the Z-score differs substantially from zero, the result X0 is significant.

2.2 Maintaining margins
Randomization is a generally used technique for testing significance. The problem
is what kind of randomness we want and how we can generate it. As stated earlier,
most of the current randomization methods for real matrices are based on only
swapping columns and rows or preserving only, for example, column margins.
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Data D2

Figure 1: Examples of two real data matrices.

These methods are suitable for significance testing in various real applications,
but they do have limitations. We consider an example where maintaining both
row and column sums and variances can be useful in interpreting data mining
results.

Two real data matrices D1 and D2 are presented in Figure 1. They share
the first and the second column, and the correlation between these columns is
high, 0.92. However, in the matrix D1 values in each row are close to each other,
whereas in the matrix D2 the third, fourth and fifth columns contain just indepen-
dent random numbers. If the significance test would consider only the first two
columns it couldn’t separate the data matrices. It seems plausible that the high
correlation between the first and the second column in the data matrix D1 is only
due to the margins and not due to some interesting structure, as it might be the
case with the matrix D2.

To test this observation, we generated random sample sets D1 and D2, us-
ing method discussed later (SeekOptimalValue), with 10 000 independent random
samples in each such that the row and column sums and variances of the samples
differed at most couple percents from the corresponding original margins of the
matrices D1 and D2. When we calculated the correlations between the first and
second column in the random samples, we found that in the sample set D1 the
minimum correlation is 0.40, maximum is 1.00, average is 0.83 and standard de-
viation is 0.10, whereas the corresponding values in the sample set D2 are -0.97,
0.98, -0.03 and 0.39, respectively. In the sample set D1 there were 1910 samples
with higher correlation than in the original data D1 giving an empirical p-value
of 0.1911. In the sample set D2 there were 16 samples with higher correlation
giving an empirical p-value of 0.0017. Thus we may conclude that the similarity
between the first and second column in the matrix D2 is likely not to depend on
the margins.

As we noticed the structure of the whole data matrix can have a remarkable
effect on the significance of the data mining results. Thus taking the margins into
account can in some applications be crucial. Whether to maintain the margins in

4



significance testing or not has to be always considered carefully.

3 Evaluating structuredness
Since we are trying to omit the effect of row and column margins of a matrix,
we are interested in data mining algorithms that measure the structuredness of
the matrix. In the following, we discuss two classical data mining algorithms
for measuring the structuredness: k-means clustering and hierarchical clustering.
Only hierarchical clustering will be used in experiments. There exist also various
other data mining algorithms and methods where the framework is applicable,
e.g., singular values, correlations and so on.

3.1 Clustering
Assume that X is a set of points inRd. Clustering of X means that X is partitioned
into subsets, called clusters, such that points in a same cluster are somehow sim-
ilar. Similarity between the points can be measured, e.g., by Euclidian distance.
In the case of a real matrix, either rows or columns can be used as data points.
The quality of the clustering gives a measure for the structuredness of the matrix.
There exists also so called biclustering algorithms where rows and columns are
clustered simultaneously [10].

Two different clustering methods are introduced: k-means and hierarchical
clustering. K-means iteratively updates the clustering by moving points between
the clusters whereas hierarchical clustering combines current clusters to make new
ones. For more information about clustering algorithms see [2, 8].

3.1.1 K-means

K-means is a classical clustering algorithm [9]. It tries to find centers µi ∈ Rd for
clusters Ci such that the error function

E =
k∑

i=1

∑
x∈Ci

|x− µi|2 (3)

is minimized, where k is a predefined number of clusters. Usually only a local
optimum is found. Quality can be improved by repeating the algorithm several
times and keeping the best clustering found. Clustering error (3) can be used as a
feature of clustering structure.

The algorithm starts by initializing the centers µi randomly. Then the next two
steps are repeated until the process has converged:
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1. Associate each point x ∈ X with the cluster Ci whose center µi is nearest.

2. Update the centers µi to be the new average of the points x associated with
the corresponding cluster Ci.

3.1.2 Hierarchical clustering

An agglomerative hierarchical clustering algorithm builds a hierarchy of clusters.
The algorithm starts by associating a new cluster with each point x ∈ X . At
each step the two clusters which are nearest to each other are sought and they
are combined together. Different types of closeness measures can be used, e.g.,
minimum, mean, median or maximum distance between the clusters. The process
forms a binary tree where nodes corresponds to clusters and edges to combination
relations. For each node in the tree a height can be given according to the distance
of its two subcluster parts. The formed tree is called a dendrogram.

A clustering can be obtained by cutting the tree at some height. Then similar
measure as in K-means in Equation (3) can be used as a feature of clustering
structure. Another measure could be the sum of the heights of the nodes of the
dendrogram. By this way, the number of clusters doesn’t have to be considered.

4 Markov chains
In this section, we introduce a stochastic concept Markov Chain and discuss algo-
rithms for sampling from probability distributions. [1, 4]

4.1 Definitions and properties
A Markov chain is a discrete-time stochastic process where the next state de-
pends only on the current state. More formally, a sequence of random variables
X1, X2, . . . is called a Markov chain if it fulfills the Markov property

p(Xn+1 = x | Xn = xn, . . . , X1 = x1) = p(Xn+1 = x | Xn = xn). (4)

Usually we are only interested in time-homogeneous Markov chains where the
transition probabilities do not depend on time, i.e.,

p(Xn+1 = x | Xn = y) = p(Xn = x | Xn−1 = y) (5)

for all n. In case of finite state space S we use the transition probability matrix P
whose element Pij is the probability of moving from state i to state j. A Markov
chain is said to be connected (or irreducible) if every state is reachable in finite
number of steps from every other states. A connected chain is called aperiodic
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(or acyclic) if for all two states i and j there exist a time nij such that P
(n)
ij > 0

for all n ≥ nij , where P
(n)
ij is the probability to be in state j after n steps when

starting from state i. The stationary distribution of a time-homogeneous Markov
chain is the distribution where the process converges. The probability vector π of
the stationary distribution fulfills

πT = πT P. (6)

The definitions can easily be generalized also to the case of continuous state space.
An important special case is a reversible Markov chain for which all the states

i, j ∈ S fulfill Pij = Pji, that is, P = P T . For stationary distributions of re-
versible Markov chains we have the following theorem:

Theorem 1. The stationary distribution of a connected, aperiodic, reversible
Markov chain is a uniform distribution.

Proof. Connectedness and aperiodicity of the Markov chain guarantees that the
process converges and all states have a positive final probability. As the transition
matrix P contains probabilities, P1 = 1, where 1 is a vector of ones. Since the
chain is reversible, P = P T , and we get

1T P = 1T , (7)

thus the stationary distribution is uniform.

4.2 Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) is a general concept for methods for sam-
pling from probability distributions. MCMC is based on constructing a Markov
chain with the desired distribution as its stationary distribution. The states of the
Markov chain are then used as a sample set from the desired distribution.

One of the most important properties of the MCMC method is the mixing time
(or burn-in time). It describes the number of steps after which the state distribution
of the Markov chain has approximately reached the stationary distribution. Only
samples obtained after the mixing time of the chain should be accepted as random
samples from the stationary distribution.

The mixing time is usually hard to evaluate theoretically. In practice, we can
use some distance measure to approximate the mixing time, i.e., when the distance
between the starting state and the current state has converged, we can assume that
the distribution has converged. Often it is just enough to be sure that the chain is
functionally mixed which means that the distribution of the values of some relevant
function of the samples has converged.
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4.3 Metropolis-Hastings
Metropolis-Hastings algorithm is one of the most used MCMC methods. It’s a
rejection sampling algorithm which uses proposal density Q(y|x) that gives the
proposal probability of the new state y given the current state x. It’s assumed that
sampling from the proposal density Q(·|x) is easy, whereas the desired probability
P (x) can be calculated up to a constant factor.

At each step a new proposal y is drawn from the distribution Q(·|x). It’s
accepted as the new state if u sampled randomly from uniform distribution U(0, 1)
fulfills

u <
P (y)Q(x|y)

P (x)Q(y|x)
, (8)

otherwise the chain stays in the current state x. If the chain is connected and
aperiodic, the stationary distribution is equal to P .

The proposal distribution Q has a huge impact on the mixing time. It should be
as global as possible while allowing a high acceptance rate in Equation (8). The
optimal acceptance rate under some reasonable assumptions is around 25% [4].
However, the best case would be if Q(·|x) equalled P for all x. Then the accep-
tance rate would be 100%. Often symmetric proposal distribution is used, i.e.,
Q(y|x) = Q(x|y). This is the original version of the method by Metropolis [11].

5 Problem definition
In this section, we first formulate variants of the problem, and then we define some
error measures for evaluating the quality of random matrices.

5.1 Problem variants
In introduction, we formulated the problem as randomly sampling real matrices
with given row and column sums and variances. As we are interested in real
matrices we cannot conserve the margins exactly. This raises questions like: How
large an error can we tolerate? How should we compare the magnitude of errors
in rows with errors in columns or errors in sums with errors in variances? What is
“random” in our case? Should we try to conserve something else as well?

Answers to these questions depend on the application. The methods developed
and explained later will all have some advantages and drawbacks. The method
to be used has to be selected according to what we consider important in the
application.

The combined error quantity we are measuring should give equal importance
to all error types. This can be obtained by scaling them appropriately. Instead
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of preserving sums and variances, we can preserve sums and square sums, since
variance can be expressed with these. In this way, we get an easier expression for
the error. In addition to preserving sums and square sums, we might as well be
interested in preserving higher moments, i.e., higher power sums.

In many applications the distribution of the values of the data matrix is impor-
tant. We would like our random matrix to contain values similar to the original
matrix. An easy solution to this is to keep the original values of the matrix, and
only to permute them randomly. For some applications this might not be random
enough. Another solution is to restrict the values in some specific interval, e.g., in
[0, 1], if the values of the original matrix vary in this interval.

By random we mean that the sample matrices should be independently drawn
from a fixed distribution which depends on the method. All matrices with the same
error should have equal probability for outcome, whereas less erroneous matrices
should be more probable than erroneous ones. The methods to be introduced
emphasize these three aspects differently since accomplishing all of the objectives
is troublesome.

5.2 Measuring the error
Let A be the original m-by-n real matrix whose margins we want to maintain. Let
Â be a randomized m-by-n real matrix whose margins we would like to be close
to the corresponding margins of A. Let ri be the sum of the values in the ith row
and cj the sum of the values in the jth column of the matrix A. Let Ri and Cj be
the corresponding sums of squares of the values in row i and column j, that is,

ri =
n∑

j=1

Aij, cj =
m∑

i=1

Aij, Ri =
n∑

j=1

A2
ij, Cj =

m∑
i=1

A2
ij. (9)

Let r̂i, ĉj , R̂i and Ĉj be the corresponding values of the randomized matrix Â.
Now, let Eri

, Ecj
, ERi

, ECj
be the row sum, column sum, row square sum and

column square sum errors correspondingly, i.e.,

Eri
= |ri− r̂i|, Ecj

= |cj − ĉj|, ERi
= |Ri− R̂i|, ECj

= |Cj − Ĉj|. (10)

Now we are ready to form a general error function which combines all the
four types of error and which can be varied by weights. Let wr and ws be row and
square weights, correspondingly. Let p1 and p2 be powers for sums and square
sums. The general error function reads

E(A, Â) = wr

m∑
i=1

(
Ep1

ri
+ wsE

p2

Ri

)
+

n∑
j=1

(
Ep1

cj
+ wsE

p2

Cj

)
. (11)

9



c1 c2
...

...
r1 . . . a . . . b . . ....

...
r2 . . . b′ . . . a′ . . ....

...

⇐⇒

c1 c2
...

...
r1 . . . b′ . . . a . . ....

...
r2 . . . a′ . . . b . . ....

...

Figure 2: An example of a swap rotation.

This measures the quality of the random matrix Â compared to the original ma-
trix A. The row and square weights wr and ws and powers p1 and p2 can be used
to affect the importance of each error type. In our experiments, we use param-
eter values wr = m/n, ws = 1 and p1 = p2 = 2, which give equal amount of
importance to each of the row and column sum and square sum errors.

6 Sampling matrices with given margins
Next, we introduce various algorithms for solving the problem of sampling ran-
dom matrices with given margins. There are mainly two types of methods: some
preserve the original values of the matrix and change the matrix only by swapping
the elements, while the others change the values of the matrix elements directly.
In the former case, the distribution of values in a randomized matrix is clearly the
same as in the original matrix, while this is not the case in the latter algorithms.
All the methods form a Markov process since the next state depends only on the
current state. A comparison of performance of all methods is presented in the
experiments.

6.1 Generation via swap randomization
All methods presented in this subsection are based on a simple swap operation
shown in Figure 2. At each step we choose randomly four elements a, b, a′ and b′

from the current matrix such that they are at the intersection points of two rows
r1, r2 and two columns c1, c2. The new matrix is produced by rotating those four
elements as shown in Figure 2, while keeping the other elements of the original
matrix untouched. This is repeated until the matrix has mixed.

The difference in the methods is mainly what restrictions these four elements
have and what is the starting matrix for the process. If a and a′ would be equal
as well as b and b′ then the swap rotation wouldn’t change the row and column
sums and variances and neither any power sums. This is the basic idea behind the
methods based on swaps.
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In addition, there exist three other types of swaps which we could use: rota-
tion counterclockwise and swaps of those four elements between rows or between
columns. Generally, these could be used randomly by turns. Nevertheless, we
are only using the swap rotation depicted in Figure 2, because the “counterclock-
wise” rotation can actually be realized with “clockwise” rotation by selecting rows
or columns in different order, the rotation preserves one original value in each row
and column which is not the case with row or column swaps, and there are more
possible states with rotation than with row or column swaps.

6.1.1 Epsilon approach

Next, we present the most basic algorithm based on the idea of swaps. We start
from the original matrix A and repeat the swap rotation step. We accept the rota-
tion of four elements a, b, a′ and b′ if

|a− a′| < ε and |b− b′| < ε, (12)

where ε > 0 is a parameter of the algorithm. Thus a swap maintains the row and
column sums and variances approximately when ε is small. A pseudocode of the
method is shown in Algorithm 1.

Algorithm 1 SwapEpsilon
Input: Matrix A, number of attempts k, closeness threshold ε > 0

1: for i← 1, k do
2: Pick r1 and c1 randomly
3: Pick r2 and c2 randomly with |Ar1c1 − Ar2c2| < ε
4: if r1 6= r2 and c1 6= c2 and |Ar1c2 − Ar2c1| < ε then
5: A← Swap(A, r1, r2, c1, c2 )
6: end if
7: end for
8: return A

The auxiliary method Swap does the rotation of the four elements at the inter-
section points of rows r1, r2 and columns c1, c2 as was shown in Figure 2. The
rows and columns r1, r2, c1 and c2 could all be selected at the same time, after
which the condition (12) could be checked. By selecting them in steps, as is done
in the Algorithm 1, we can make the acceptance rate higher. The picking of row
r2 and column c2 in line 3 can be done in constant time if precalculation of the
candidates for each element is done beforehand.

The precalculation can be done efficiently by sorting the values of the matrix
and calculating the starting and ending indeces of the intervals of neighbours for
each element from the sorted array of values. In addition, we need to keep track
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on where each element is located in the matrix. The precalculation can be done in
time O(L log(L)) and the auxiliary structures needs space O(L), where L = mn
is the number of elements in the matrix.

The acceptance rate in line 4 can be approximated from below for a random
matrix. Let d be the length of the range of the values in the matrix. The worst
case is if the values are uniformly distributed in the range. The probability that
the distance between the elements Ar1c2 and Ar2c1 is less than ε is then around 2ε

d

which is thus a lower bound for the acceptance probability.
The SwapEpsilon algorithm has a simple idea how to conserve the margins.

Between two successive steps the margins won’t change more than O(ε) and ac-
tually the expectation values for the margins are the previous values. But since the
process has to be repeated several times, at least comparable to O(L), the error
can become huge. The parameter ε has a direct impact on the error, but decreasing
it also decreases the acceptance rate and prevents the matrix from mixing well.

6.1.2 Discretized approach

The problem with the epsilon approach of section 6.1.1 is that the error grows as
steps are taken. Another simple approach is to discretize the whole matrix into
a predefined number N of classes before starting the swapping. This means that
all the values of the matrix are replaced with the closest of the N representative
values for the classes. After that we can insist a and a′ as well as b and b′ to be
equal in the swap. The pseudocode of this approach is presented in Algorithm 2.

Algorithm 2 SwapDiscretized
Input: Matrix A, number of attempts k, number of classes N

1: A← Discretize(A, N )
2: for i← 1, k do
3: Pick r1 and c1 randomly
4: Pick r2 and c2 randomly with Ar1c1 = Ar2c2

5: if r1 6= r2 and c1 6= c2 and Ar1c2 = Ar2c1 then
6: A← Swap(A, r1, r2, c1, c2 )
7: end if
8: end for
9: return A

The only error is made in the discretizing process which is done in the aux-
iliary method Discretize. It means that the sums and variances as well as all the
other power sums of rows and columns remain the same after the discretizing pro-
cess. The discretizing itself can be done in various ways. The simplest way is
to divide the range [d0, d1] of the values in the matrix into smaller, equal sized,
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1 2 3
2 3 1
3 1 2

6↪→
1 2 3
3 1 2
2 3 1

Figure 3: A counterexample of connectedness.

distinct intervals [d0, d0 + d), [d0 + d, d0 + 2d), . . ., [d0 + (N − 1)d, d0 + Nd],
where d = d1−d0

N
. The discretized values would then be the mid-points of the

intervals. Slightly smaller error is obtained when the discretized values are the
average of the values in the same interval class. This discretizing function is used
in experiments in Section 7.

The lower bound of the acceptance rate of SwapDiscretized is similar to the
lower bound of the acceptance rate of the algorithm SwapEpsilon. Let ni be the
number of elements in class i, thus

∑N
i=1 ni = L. If Ar1c2 belongs to class i then

the probability of acceptance is ni−1
L−1

≈ ni

L
for a random matrix. Using Cheby-

shev’s sum inequality or Cauchy-Schwarz inequality we obtain the following ap-
proximate lower bound for the acceptance probability:

N∑
i=1

(ni

L

)2

≥ N

(∑N
i=1

ni

L

N

)2

=
1

N
. (13)

The algorithm cannot attain all permutations of values with the same distribu-
tion of classes in each row and column than in the original matrix. Consider the
counterexample shown in Figure 3 where the two matrices have the same number
of ones, twos and threes in each row and column but in neither of them there exist
four elements which could be swapped. Thus they cannot be transformed to each
other. The given counterexample can be generalized directly to all matrices with
either odd number of rows or columns.

Nevertheless, the SwapDiscretized algorithm is a simple method for maintain-
ing the margins although it might not randomize the matrix enough. As in the
case of epsilon, the selection of parameter N is a compromise between mixing
and error.

6.1.3 Uniform sampling

We haven’t yet considered the stationary distributions of the previous two meth-
ods. In the discretized case, it is easy to require that all possible resulting matrices
should have equal probability for outcome since they share the same amount of
error. With the algorithm SwapEpsilon it is harder to formulate the requirement
since the method can produce samples with small and large error, and we do prefer
the less erroneous ones.
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But indeed, for both algorithms it can be proven that the stationary distri-
butions are uniform, although in the case of SwapEpsilon the matrices from the
stationary distribution are mainly rubbish since the error increases with time —
we have to stop the process before the matrix has totally mixed. In the discussion
of algorithm SwapDiscretized, we noticed that all the permutations of a matrix
with the same margins are generally not connected by swap rotations. Thus the
algorithms cannot sample uniformly among all appropriate permutations, but they
do sample uniformly among all reachable, appropriate permutations.

Let S be the set of all the possible outcomes of algorithm SwapDiscretized
with a given starting matrix A. The state space S is then, naturally, connected.
The underlying Markov chain is aperiodic since all states are reachable and have
a positive probability of staying in itself (e.g., choose r2 = r1 and c2 = c1). The
chain is also reversible since the probability of selecting rows and columns ri

1, ri
2,

ci
1 and ci

2 at step i is the same as selecting rows ri+1
1 = ri

1, ri+1
2 = ri

2 and columns
ci+1
1 = ci

2, ci+1
2 = ci

1 at step i+1 which will undo the swap rotation. Notice that if
we had forced the process to move to another state at every step, the reversibility
would not hold. Thus, due to Theorem 1 the stationary distribution is uniform.
The same applies for method SwapEpsilon.

Notice that we do not need to require that all the states attainable with one
swap from the current state would have equal probability — the only thing we
require is that the probabilities of moving back and forth between two states are
the same. Nevertheless, the probabilities can have a huge impact on the mixing
time of the process. Thus, selecting some appropriate weighting for the states
could speed up the process dramatically.

6.1.4 Metropolis approach

Both of the previous approaches had a primitive error handling method. Next, we
develop a more error tolerant method based on Metropolis algorithm. The idea is
to generate samples A from probability distribution

P (A) = C exp(−wE(A0, A)), (14)

where A0 is the original matrix, w > 0 is an error scaling constant, C is a normal-
izing constant and E(A0, A) is the error of sample A as defined in Equation (11).
The proposal distribution Q is a uniform distribution among all the matrices at-
tainable with one swap rotation from the current matrix. A direct implementation
of the Metropolis approach is presented in Algorithm 3.

The method starts from the original matrix. However, there is no need for that.
Let SwapMetropolisRandom be the method obtained by replacing the line 1 by
line
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Algorithm 3 SwapMetropolis
Input: Matrix A0, number of attempts k, error scaling constant w > 0

1: A← A0

2: for i← 1, k do
3: Pick r1 6= r2 and c1 6= c2 randomly
4: Â← Swap(A, r1, r2, c1, c2)
5: u← Uniform(0,1)
6: if u < exp(−w(E(A0, Â)− E(A0, A))) then
7: A← Â
8: end if
9: end for

10: return A

1: A← RandomPermutation(A0),
where the auxiliary method RandomPermutation gives a matrix with the elements
of A0 permuted randomly. In both of these methods we allow error but we can
control its magnitude. Additionally, the parameter w can be used for changing the
accuracy of the method versus the randomness and convergence rate. Note that all
swaps that would decrease the error are accepted.

The error difference in line 4 can be calculated in constant time if we keep
track on row and column sums and square sums, respectively. The new matrix
will differ only in rows r1, r2 and columns c1, c2 thus the difference of the errors
will contain only few terms.

The SwapMetropolisRandom method is highly related to a simulated anneal-
ing approach where the aim would be to find a matrix with a minimal error. Later
in Section 6.2.2, we present a method based on local search for finding extremely
accurate random matrices but where we are not able to evaluate the distribution
of resulting random matrices. Conversely, the good features of the Metropolis
approaches are the clear theoretical properties of the stationary distributions.

There is still one notable property of the final error. In Equation (14) we
have only put a restriction for one resulting matrix. But since there exist a lot
more matrices with notable error than matrices with almost zero error, the final
distribution of the error of resulting matrices is not like (14) — the error will be
concentrated more away from the zero. More precisely, the distribution of the
final error is

p(E(A0, A) = x) = C exp(−x)q(x), (15)

where q(x) is the distribution of error x of matrices with the original values per-
muted randomly. Deeper theoretical study of the distribution of final error and
error of random permutation is left to further work.
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c1 c2
...

...
r1 . . .+α. . .−α. . ....

...
r2 . . .−α. . .+α. . ....

...

Figure 4: The addition in GeneralMetropolis

6.2 Generation via transformation of values
All the methods presented earlier were based on a simple swap operation which
kept the values unchanged, but permuted them appropriately. Next, we inspect
two methods which change the values directly without any swapping. Now, fea-
sible methods are much harder to develop, since there exists more possible output
matrices than with the previous swap based algorithms.

6.2.1 General Metropolis approach

The Metropolis algorithm can be used also in other ways than was presented in
section 6.1.4. We use the same probability function P (A) for samples A as in
Equation (14) but now the samples A can be any real matrices. A new matrix is
formed from the current one by selecting rows r1, r2 and columns c1, c2 randomly
and adding the mask presented in Figure 4 to the four intersection elements where
α is some random value. The proposal distribution is again symmetric; thus we
are really using just Metropolis. The method is presented in Algorithm 4.

Algorithm 4 GeneralMetropolis
Input: Matrix A0, number of attempts k, error scale w > 0, random scale s > 0

1: A← A0

2: for i← 1, k do
3: Pick r1 6= r2 and c1 6= c2 randomly
4: α← Uniform(−s,s)
5: Â← AddQuartet(A, α, r1, r2, c1, c2)
6: u← Uniform(0,1)
7: if u < exp(−w(E(A0, Â)− E(A0, A))) then
8: A← Â
9: end if

10: end for
11: return A

The auxiliary method AddQuartet does the addition of the mask presented in

16



Figure 4. The parameter random scale s is used to affect the range of random val-
ues α which are selected from uniform distribution in [−s, s]. Other distributions,
e.g., normal distribution, could be used as well for drawing α.

The method has the good property that it doesn’t change the sums of rows
and columns at all due to the form of the addition mask, but it will change the
variances. Thus, in the beginning of the process, it cannot randomize the matrix
without making error to the variances of rows and columns. As the error scale w
is kept the same during the process, we have to accept quite large error in order to
allow enough transformations in the beginning, but then the final outcomes will
also contain remarkable amount of error. Another way would be to use two error
scales w1 and w2, w1 ¿ w2, the first one in the beginning and the second one
in the end of the process. In this way, we would allow the matrix first to get
randomized and then to correct the error in variances. More detailed study of this
approach is left to further work.

6.2.2 Local search approach

The next method is an extremely harsh way for minimizing the error. It is based
on a local search where we minimize the error function by changing one value of
the matrix at a time. To keep the values reasonable we assume that the values can
vary in a range [a, b]. At each step we select an element from the current matrix
A in random row r and column c. The new matrix is formed by selecting the
matrix Â from the neighbourhood

N(A, r, c, [a, b]) = {Â ∈ Rm×n | Ârc ∈ [a, b] and Âij = Aij otherwise}, (16)

which minimizes the error function E(A0, Â). The simple method is presented in
Algorithm 5.

Algorithm 5 SeekOptimalValue
Input: Matrix A0, number of attempts k, range [a, b]

1: A← Uniform(a,b)m×n

2: for i← 1, k do
3: Pick r and c randomly
4: A← arg min{E(A0, Â) | Â ∈ N(A, r, c, [a, b])}
5: end for
6: return A

If we use the default parameter values for the error function then it is a fourth
degree polynomial and the minimizer in line 4 can be calculated accurately by
differentiating. The minimizer is either a or b or one of the real zeros of the third
degree derivative polynomial.
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Compared to the other methods developed SeekOptimalValue always accepts
the new state, and the error decreases all the time during the process. The method
is likely to find an extremely accurate matrix, but it is hard to say what the station-
ary distribution will be. However, the resulting matrix is likely to contain a couple
of a:s and b:s which can be an unwanted side effect.

7 Empirical results
We perform various experiments to compare the properties of the six introduced
methods: SwapEpsilon, SwapDiscretized, SwapMetropolis, SwapMetropolisRan-
dom, GeneralMetropolis and SeekOptimalValue. We evaluate their convergence
speed and quality as well as their error rate.

In the experiments we use mainly a publicly available gene expression data1

studied in [12]. The data consist of gene expression measurements of 1375 genes
(rows) in 60 human cancer cell lines (columns), thus the matrix contains L =
82 500 elements. About 2% of the values in the matrix are missing. They were
replaced by the average values of the corresponding rows. Finally, the matrix was
linearly scaled to the range [0, 1]. A significance test for the hierarchical clustering
of the cancer cell lines is performed to assess the results in [12].

7.1 Convergence and performance
As all of our methods contain various parameters it is hard to compare their prop-
erties objectively. Thus we have just selected some reasonable values for the pa-
rameters so that the results are comparable with each other. For SwapDiscretized
we selected N = 30 classes. To make the acceptance rate of SwapEpsilon to be
similar as with SwapDiscretized we selected ε = 1

2N
. For methods SwapMetropo-

lis and SwapMetropolisRandom we used value w = 1 for the error scaling constant
where as with GeneralMetropolis we used values w = 10 and s = 0.1. In method
SeekOptimalValue we let the values vary in the natural range [0, 1].

We use Frobenius distance as a measure of convergence. If A is the original
matrix and Â is the randomized matrix then the Frobenius distance is

‖A− Â‖2F =
m∑

i=1

n∑
j=1

(Aij − Âij)
2. (17)

Notice that it doesn’t measure the error in the margins but it measures the dissim-
ilarity between the two matrices.

1Dataset downloaded June 1, 2007, from http://discover.nci.nih.gov/datasetsNature2000.jsp
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Figure 5: Convergence: Frobenius distance between the original and randomized
matrix as a function of attempts.
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Figure 6: Proportion of elements in a randomized matrix whose values differ less
than epsilon from the values in the corresponding locations of the original matrix.
RandomPermutation is a matrix with the original values permuted randomly.
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Method Time (s) Acc. rate
SwapEpsilon 3.8 0.11
SwapDiscretized 2.8 0.11
SwapMetropolis 8.9 0.41
SwapMetropolisRandom 9.3 0.41
GeneralMetropolis 6.2 0.57
SeekOptimalValue 7.6 1.00

Table 1: Running times and acceptance rates with 30L attempts.

In Figure 5 we present the Frobenius distance as a function of attempts. For
each method we generated 16 samples with different number of attempts varying
in the range [0, 100L]. Only one sample was used for each number of attempts
since the variation between different runs were minimal. Notice that all samples
were independently produced by starting from the original matrix and keeping
only the last matrix of the Markov chain. In the figure, x-axis is bounded to 35L
since all methods had converged before that in O(L) steps. The constant factor de-
pends on the method and the parameters used. Especially with SwapEpsilon and
SwapDiscretized the parameters have a direct impact on the convergence speed.
We observe that all methods converge to around the same Frobenius distance, i.e.,
they randomize the matrices somehow equally well. This is actually partly due to
the parameter selection. Due to the different kind of approaches the Frobenius dis-
tance decreases with SeekOptimalValue and SwapMetropolisRandom since they
start from a random matrix. As a consequence the resulting matrix is in some
sense closer to the original matrix than a totally random matrix would be.

In Figure 6 we present the number of the elements of the randomized ma-
trix which are close to the elements of the original matrix in the same locations.
The randomized matrices are produced with 30L attempts. If the result matrix is
randomized well, the curve of the corresponding method in Figure 6 should be
close to the curve of random permutation. Thus, it seems that all methods have
been able to forget the original matrix, excluding its margins. The high concen-
tration of the values in the gene expression data matrix explains the shape of the
RandomPermutation curve.

In Table 1 we give the running times and acceptance rates of the different
methods with 30L attempts. The tests were done using modest C++ implemen-
tations integrated with Matlab on a 2.8GHz Pentium 4 machine with 512MB of
memory. We notice that all the methods performed relatively fast. Since the ac-
ceptance rates of SwapEpsilon and SwapDiscretized are small they are slightly
faster than the other methods. However, in the case of the other methods notably
less than 30L attempts would likely be sufficient.
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7.2 Error rate
In Figure 7 the progress of the total error is presented. The error is calculated
by Equation (11) with default parameter values. We notice that the error with
SwapDiscretized stays the same as it should, whereas with SwapEpsilon it con-
tinues increasing. Both methods SwapMetropolis and SwapMetropolisRandom
converge to the same error rate so we can say that the starting state really doesn’t
seem to matter. The method SeekOptimalValue obtains an extremely small error
and the error would have still decreased with the time. To get some concrete idea
of the amount of error we consider a sample produced by SwapMetropolisRan-
dom with 30L steps. In this sample the maximum errors of row sums, column
sums, row square sums and column square sums are 1.76, 0.51, 0.74 and 0.42 cor-
respondingly whereas the average row sum, columns sum, row square sum and
column square sum are 34.68, 794.64, 20.77 and 475.91 correspondingly. Thus
the errors are actually relatively small and they could be still decreased by tuning
the parameters.

In Figure 8 we present the error distribution of the randomized matrices pro-
duced by SwapMetropolisRandom when the original matrix was a small 5-by-5
random real matrix. There is also presented the error distribution of random per-
mutations. The theoretical curve is calculated by Equation (15). The matrix was
chosen to be small so that the histograms would overlap and the theory could be
tested. Notice that the error of randomized matrix is concentrated away from zero
and the theory curve fits the error of randomized matrix well.

7.3 Clustering
The gene expression data we are using was studied in detail in [12]. The 60 human
cancer cell lines (columns of the data matrix) contained a clear clustering struc-
ture, which was a remarkable result. In the following we study the significance of
this result by the introduced methods.

In Figure 9, dendrograms of average-linkage hierarchical clustering of the
original data matrix and a randomized data matrix are presented. The random-
ized sample was produced by SwapMetropolisRandom with 30L attempts. The
original data contains a clear clustering whereas the randomized data contains no
structure. Similar results were obtained with all the other methods as well.

To test the significance more carefully we generated 10 000 samples with each
of the methods using 30L attempts, parameters being the same as explained in
section 7.1. To measure the structure of a sample we summed the Euclidean dis-
tances of the hierarchical clustering together to obtain a single number expressing
the clustering error. In Table 2 statistics of clustering errors of the 10 000 samples
generated are presented for each method. The corresponding clustering error of
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Figure 7: Total error as a function of attempts.
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Figure 9: Dendrograms of hierarchical clustering of the 60 human cancer cell lines
of the original data and the same data randomized by SwapMetropolisRandom.
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Method Min Mean (Std) p-value Z-score
SwapEpsilon 257.39 259.11 (0.41) 0.0001 -116.88
SwapDiscretized 254.41 255.94 (0.40) 0.0001 -110.75
SwapMetropolis 271.09 272.40 (0.31) 0.0001 -193.49
SwapMetropolisRandom 271.37 272.67 (0.32) 0.0001 -192.71
GeneralMetropolis 281.39 282.92 (0.42) 0.0001 -170.09
SeekOptimalValue 257.22 258.85 (0.41) 0.0001 -115.56

Table 2: Clustering errors of randomized matrices

the original gene expression data was 221.54. The p-values and Z-scores were
calculated using Equations (1) and (2). We note that none of the generated sam-
ples were more structured than the original data and the difference is huge as is
seen from the Z-scores and minimum values. Thus the original gene expression
data contains a significant clustering structure which is not just due to the margins.
Actually the row and column sums and square sums of the original data are close
to each other thus the result is believable.

8 Conclusions and future work
We have introduced six different methods for sampling random, real valued matri-
ces with given margins, compared their properties and performance, and discussed
how they can be used in assessing results of data mining algorithms. The six
methods, SwapEpsilon, SwapDiscretized, SwapMetropolis, SwapMetropolisRan-
dom, GeneralMetropolis, and SeekOptimalValue, have different advantages and
disadvantages. The main differences are in the error rate, uniformity, value distri-
bution, and convergence speed. The method to use has to be chosen according to
the application.

We conducted the experiments using only one real world data matrix, where
the results were clear, but more study on suitable applications is needed. The
approaches we used for randomizing real matrices were promising. However, the
methods should be analyzed in more detail and new ones should be developed.
The effect of the error measure should be considered as well.
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