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ABSTRACT

Methods for noise robust speech recognition are often eval-
uated in small vocabulary speech recognition tasks. In this
work, we use missing feature reconstruction for noise com-
pensation in large vocabulary continuous speech recognition
task with speech data recorded in noisy environments such
as cafeterias. In addition, we combine missing feature re-
construction with constrained maximum likelihood linear re-
gression (CMLLR) acoustic model adaptation and propose a
new method for finding noise corrupted speech components
for the missing feature approach. Using missing feature re-
construction on noisy speech is found to improve the speech
recognition performance significantly. The relative error re-
duction 36 % compared to the baseline is comparable to error
reductions introduced with acoustic model adaptation, and
results further improve when reconstruction and adaptation
are used in parallel.

1. INTRODUCTION

Large vocabulary continuous speech recognition has reached
reasonable performance levels in controlled environments,
but real environments with changing and unpredictable noise
conditions remain still a challenge even with the current
noise compensation methods. It is noteworthy that methods
designed to improve statistical robustness in general rather
than compensate for noise are often superior in performance.
Such methods include e.g. acoustic model adaptation with
constrained maximum likelihood linear regression (CMLLR)
[1].

In this work, the noise robustness issue is addressed with
the missing feature methods as proposed in [2][3]. Apply-
ing missing feature methods for noise compensation in au-
tomatic speech recognition is based on the observation that
additive noise affects some spectrotemporal regions in the
speech signal more than others. Thus, while the noise cor-
rupted parts are unreliable and should not be conventionally
used in speech recognition, the less affected speech compo-
nents are somewhat reliable and (i) may be utilised in the
usual manner in speech recognition and (ii) provide infor-
mation about the unreliable (missing) components. Motiva-
tion for the missing feature approach originally comes from
the human speech perception and auditory scene analysis
(ASA) [4][5].

The missing feature methods have performed well under
various noise conditions and several different methods have
been proposed for handling the unreliable spectrotemporal
components [2][3][5]. The methods have mostly been tested
with a limited vocabulary, and are yet to become popular
in large vocabulary continuous speech recognition (LVCSR)

systems. For earlier results on missing feature techniques
in LVCSR task, see for example [6], where missing feature
reconstruction is used with projected spectral features and
evaluated on AURORA 4 database that contains speech with
artificially added real-world noises. In this work, we use
Finnish large vocabulary speech data recorded in noisy en-
vironments such as parks and cafeterias. For noise compen-
sation, we use cluster-based missing feature reconstruction
method proposed in [3], which we combine with CMLLR
acoustic model adaptation. Reconstruction and adaptation
are used in series, with adaptation following reconstruction
in the same system, and in parallel, using linear weighting
on the system outputs in log-likelihood level as proposed in
[7]. According to our knowledge, no results have been pub-
lished before where a missing feature method would have
been used together with acoustic model adaptation.

The performance of any missing feature method depends
heavily on the accuracy of the spectrographic mask that par-
titions the speech signal into the reliable and unreliable re-
gions. We propose a new method for detecting the unreliable
speech components. In this method, a noise estimate is cal-
culated from speech pauses detected using a Gaussian mix-
ture based speech/non-speech classifier. The noise estimate
is compared to the noisy speech signal to find the unreliable,
noise dominated regions. This method is more suitable for
on-line applications and changing noise conditions than the
commonly used approach where the noise estimate is calcu-
lated from a fixed number of frames at the beginning of each
audio file, e.g. [2]. Other mask estimation methods suited for
on-line applications have been proposed in e.g. [3][6][8].

2. METHODS

2.1 Baseline system

Our large vocabulary continuous speech recognition system
uses a morph-based growing n-gram language model [9]
which is trained on book and newspaper data. The text data
contains 145 million words. Since all words and word forms
can be represented with the unsupervised morphs, the decod-
ing vocabulary is in practise unlimited [10]. The decoder
used is a time-synchronous beam-pruned Viterbi token-pass
system [11]. The acoustic models are state-clustered hid-
den Markov triphone models constructed with a decision-
tree method [12]. Each state is modelled with 16 Gaussians,
and the states are also associated with gamma probability
functions to model the state durations [13]. Speech is repre-
sented with 12 MFCC and a log energy feature. Features are
used with their first and second order differentials, and they
are treated with cepstral mean subtraction (CMS) and max-
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Figure 1: (a) Logarithmic mel spectrogram for an utter-
ance recorded under public place noise conditions and (b)
a spectrographic mask that divides the spectrogram to reli-
able (black) and unreliable (white) regions. (c) An estimate
for the clean spectrogram constructed with the cluster-based
missing feature reconstruction method [3].

imum likelihood linear transformation (MLLT) [14] learned
in training. The training of the acoustic models is described
in Section 3.

2.2 Missing feature reconstruction

2.2.1 Noise mask estimation

In most real world acoustic environments, it is reasonable
to assume that the most notable noise components originate
from sources that are uncorrelated with speech. Uncorrelated
noise corrupts speech additively in power spectral domain.
Thus, in logarithmic mel spectral domain, when speech dom-
inates over noise, the time-frequency components Y (τ, i) of
noisy speech signal may be considered as reliable estimates
of the clean speech values X(τ, i) that would have been ob-
served if there had not been any noise. The components in
the noise dominated regions are, on the other hand, unreli-
able, and provide only an upper bound for the true values.
Labels that divide the data to reliable and unreliable parts
are referred to as the spectrographic mask. Partition to re-
liable and unreliable time-frequency regions is illustrated in
Figure 1.

In this work, we propose a new on-line method for spec-
trographic mask estimation. The method is based on speech
pause detection. In this method, the spectrographic mask is
constructed based on local signal-to-noise ratio (SNR) esti-
mates. The estimates are derived from noise estimates calcu-
lated during speech pauses which are detected using a Gaus-
sian mixture based speech/non-speech classifier. The non-
speech frames N(τ) i.e. the frames Y (τ) that have been clas-
sified as non-speech are collected and temporally smoothed
to produce the noise estimate. For non-speech frames, the
noise estimate is calculated as

Nave(τ, i) = ∑
k

h(k)N(τ − k, i), (1)

where τ indicates the time-frame and i the frequency chan-
nel. The temporal smoothing window is h(k) = β (40−|k|),
k = −10 . . .40, where β is constant chosen so that the win-
dow gain is 1. This yields a weighted moving average where
the current time instant is given maximal weight while past
and future are linearly (in log domain) attenuated. The shape
of the window is experimentally chosen. For speech frames,
the last noise estimate Nave(τ) calculated before the speech
onset is used. Time-frequency components are taken to be
unreliable if their observed value Y (τ, i) does not exceed
the estimated noise power Nave(τ, i) with minimum of θ dB,
where θ is manually optimised SNR threshold. In this work,
the threshold is optimised with far recorded parameter opti-
misation data (see Section 3 for dataset description) and the
threshold θ = 3 dB.

2.2.2 Speech pause detection

The speech/non-speech classifier used in this work is a hid-
den Markov model (HMM) classifier where speech and non-
speech are modelled as single states with 24 Gaussian com-
ponents. Insertion penalties are used in decoding to exclude
short speech or non-speech segments. The classifier uses the
same features as the speech recognition system described in
Section 2.1. The classifier training data contains over 5 hours
of television news data from the Finnish Broadcasting Com-
pany (YLE). It has precise hand-annotated time marks for
speech and other audio. Since the classifier is used for noise
mask estimation, it is crucial that it does not misclassify any
speech segments as non-speech. To avoid this, the speech
model probabilities are multiplied by two.

2.2.3 Cluster-based reconstruction

The missing feature methods used in automatic speech recog-
nition are commonly divided in two categories, classifier
modification and data imputation approaches. Bounded
marginalisation, for example, has been found efficient when
tested with a limited vocabulary (e.g. in a connected digit
recognition task), but as a classifier-modification method it
limits the speech recogniser to use spectral features [2]. In
HMM-based speech recognition systems, cepstral features
are preferred [15]. In data imputation methods, the unreliable
components are replaced with estimates that correspond to
clean speech so that the reconstructed spectral features may
be further processed as usual and the recogniser needs not
be modified. This is especially important in large vocabulary
continuous speech recognition where the state-of-the-art sys-
tems typically use various normalisation methods and feature
transformations.

In this work, we use data imputation with the cluster-
based feature reconstruction method proposed in [3]. Here,
the log spectral feature vectors Y (τ) are assumed indepen-
dent and identically distributed, and the unreliable spectral
components in Y (τ) are reconstructed based on their statis-
tical relation to the other components in the same vector.
The clean log spectral features X(τ) are assumed to originate
from a Gaussian distribution, but not necessarily all from the
same one; the feature distribution model is estimated from
clean training data so that the data is divided to clusters, and
each cluster is modelled with a Gaussian distribution. For a
description on how the unreliable features are reconstructed
with the distribution model, see [3].

The feature distribution model used in this work is a 5-



component GMM trained with 96 minutes of clean speech
extracted from the SPEECON training set described in Sec-
tion 3. Using the whole training set did not improve the re-
construction results in preliminary tests conducted with our
parameter optimisation dataset. The clusters and distribu-
tion parameters were jointly estimated using the expectation-
maximisation (EM) algorithm from the GMMBAYES Mat-
lab Toolbox [16].

2.3 Adaptation and reconstruction combined

Regression based model adaptation methods are a common
choice for speaker as well as environmental adaptation when
hidden Markov model (HMM) based acoustic models with
states modelled as Gaussian mixture distributions are used.
Variation in environmental conditions affects the feature dis-
tribution, so with a new speaker or in a new environment,
the distribution becomes mismatched with the acoustic mod-
els unless the models are adapted. Now, although the con-
strained maximum likelihood linear regression (CMLLR) is
essentially a model adaptation method, it can be formulated
as a linear transformation on features [1]. The transforma-
tion parameters are estimated from adaptation data so that
the transformed models maximise the likelihood of the data.

In this work, since the noise corrupted features are recon-
structed to appear as equivalent to the clean speech features,
CMLLR transformations can be estimated based on the re-
constructed features and applied to the features in the usual
manner. This will be referred to as using the methods in se-
ries. The methods are also used in parallel, embedded in
separate systems that use the same acoustic models and re-
ceive the same input. The system outputs are combined using
linear weighting as proposed in [7]. Acoustic model outputs
are the feature log-likelihoods P(O|S), where O = {o(τ)} is
the feature representation for the input speech and S = {s}
denotes the states in the HMM-based acoustic model. The
combined output log-likelihoods are calculated as

P = α P(Ô|S)+(1−α)P(Õ|S) (2)

where Ô are the adapted features and Õ the reconstructed
features, and α ∈ [0,1] is the weight that determines whether
the system with adaptation or the system with reconstruction
should be emphasised in the log-likelihood calculation. In
this work, the weight parameter is manually optimised us-
ing far recorded parameter optimisation data (see Section 3
for dataset description) and α = 0.7. The log-likelihoods are
sent to the decoder where they are combined with language
model probabilities to produce the final hypothesis (speech
recognition result).

3. DATA

The acoustic models are trained with data selected from the
Finnish SPEECON database [17]. The training dataset con-
tains 26 hours of clean speech recorded with a close-talk mi-
crophone. The data is collected from 208 speakers with both
male and female speakers. Among utterances are words, sen-
tences and free speech.

Parameter optimisation and evaluation data are also from
the SPEECON database. The 72-minute parameter optimi-
sation set has speech from 23 speakers, and the 101-minute
evaluation set has been collected from 32 speakers. The eval-
uation set does not share speakers with the parameter opti-
misation set or the acoustic model training data. In addition,

105 sentences selected from the parameter optimisation set
were hand-annotated for evaluating the speech/non-speech
classifier performance. The utterances used for parameter
optimisation and evaluation are all read sentences recorded in
public places both indoors and outdoors where speech, foot-
steps, unspecified clatter etc. appears in the background. The
sentences are excerpts from Internet texts and occupy a large
(unlimited) vocabulary.

The proposed methods are tested under two different con-
ditions: we use data recorded with the close-talk microphone
and data recorded from 0.5 m–1 m distance. The recordings
have been made simultaneously so they have the same speech
contents. SNR values estimated with the recording platform
are on average 24 dB in the close-talk data and around 9 dB in
the far recorded data. The close-talk data almost corresponds
to clean speech, whereas in the far recorded data, both en-
vironmental noise and reverberation (in some environments)
affect the speech signal and decrease speech recognition per-
formance. The data is recorded in sessions with one speaker
in certain environment. Each session is around 3 minutes.
When CMLLR is applied, the transformations are estimated
based on the sessions, and the system is adapted to both the
speaker and the environment. In this work, we use offline
adaptation with all available data first used as adaptation data
and then recognised.

Since Finnish speech data is used, speech recognition
performance is measured primarily with the letter error rate
(LER). For other languages, the word error rate (WER) is
more common, but it is not well applicable to Finnish where
words are long. Finnish words are often concatenations of
several morphemes and correspond to more than one English
words like the word ’kahvin+juoja+lle+kin’ which translates
to ’also for a coffee drinker’. In this work, both error rates
are reported, but system comparisons are based on the letter
error rates alone.

4. RESULTS

4.1 Speech/non-speech classifier

To evaluate the speech/non-speech classifier, we compared
the classification results to hand-annotated speech and non-
speech regions. The frame classification accuracy was 93 %
for the close-talk data and 92 % for the far recorded data.
In addition, we tested how speech/non-speech classification
affects the speech recognition performance when the classifi-
cation results are used for spectrographic mask estimation for
the cluster-based missing feature reconstruction. The spec-
trographic mask estimates were constructed either based on
automatically classified or manually set speech/non-speech
segments. SNR threshold θ was optimised for both segmen-
tations with the far recorded data, and in this experiment, the
threshold θ = 3 dB for manually segmented data and θ= 5 dB
for automatically segmented data. The difference in thresh-
old values suggests that the speech/non-speech classifier has
a tendency to label noise as speech rather than opposite. The
speech recognition results are given in Table 1.

4.2 Missing feature reconstruction

Speech recognition performance under environmental noise
is evaluated with (a) the baseline system and when
(b) cluster-based missing feature reconstruction or (c) acous-
tic model adaptation with the constrained maximum likeli-
hood linear regression (CMLLR) or (d)–(e) both reconstruc-



Table 1: Speech recognition results over the 105-utterance
speech/non-speech classifier evaluation data when the speech
and non-speech boundaries for spectrographic mask estima-
tion are automatically detected with the classifier or manually
set. The close-talk data is almost clean speech with average
SNR 24 dB and the far recorded data is noisy speech with
average SNR 9 dB.

Close Close Far Far

WER LER WER LER

Autom. segmentation 14.4 4.0 64.6 37.1

Manual segmentation 14.4 4.1 61.7 34.6

Table 2: Speech recognition results over the full evaluation
dataset when missing feature reconstruction and constrained
maximum likelihood linear regression (CMLLR) are used
in a large vocabulary continuous speech recognition system.
The close-talk data is almost clean speech with average SNR
24 dB and the far recorded data is noisy speech with aver-
age SNR 9 dB. The best results obtained with the data are
underlined.

Close Close Far Far

WER LER WER LER

(a) Baseline 13.4 3.4 62.0 37.2

(b) Reconstr. 13.3 3.3 47.0 23.8

(c) CMLLR 11.6 2.7 43.9 22.9

(d) Reconstr. → CMLLR 12.3 2.9 45.0 23.2

(e) Reconstr. + CMLLR 11.9 2.8 41.9 22.2

tion and adaptation are used for noise compensation. The re-
construction and adaptation are tested (d) in series and (e) in
parallel as described in Section 2.3. The results are given in
Table 2.

Missing feature reconstruction (b) does not significantly
improve the speech recognition performance on the close-
talk data, but with the far recorded data, the relative error
reduction from missing feature reconstruction is 36 % com-
pared to the baseline (a). The percentage of unreliable (miss-
ing) components in the frames classified as speech is on aver-
age 43 % among the utterances recorded with the close-talk
microphone, and on average 63 % among the corresponding
far recorded utterances. Speaker and environmental adapta-
tion with CMLLR (c) improves the speech recognition re-
sults from the baseline (a) so that the relative error reduc-
tion is 21 % with the close-talk data and 38 % with the far
recorded data. Thus, with the far recorded data, missing fea-
ture reconstruction (b) results in performance comparable to
the CMLLR performance (c). The difference between the re-
sults (b) and (c) on the far recorded data is not statistically
significant according to Wilcoxon signed rank test (see Ta-
ble 3). With the close-talk data that almost corresponds to
clean speech, speaker adaptation (c) improves the results sig-
nificantly more than missing feature reconstruction (b).

Table 3: Test statistics from pairwise system comparisons.
Systems are compared based on the letter error rate, and us-
ing the Wilcoxon signed rank test. The difference between
two systems is statistically significant (p < 0.05) if the test
statistic |Z| > 1.98. Test statistics suggesting statistical sig-
nificance are underlined. The systems compared are (a) base-
line, (b) reconstruction, (c) CMLLR, and (d) reconstruction
and CMLLR in series and (e) reconstruction and CMLLR
in parallel. See Table 2 for the system average performance
rates.

Close-talk data

(a) (b) (c) (d)

(b) 0.24

(c) -4.38 -3.98

(d) -2.75 -2.71 -1.27

(e) -4.38 -3.77 -1.57 -0.95

Far recorded data

(a) (b) (c) (d)

(b) -4.94

(c) -4.94 -1.33

(d) -4.94 -1.10 -0.42

(e) -4.94 -2.42 -2.37 -1.89

Adaptation improves the results on close-talk data also
when applied together—either in series or in parallel—with
missing feature reconstruction, but with the far recorded data,
using reconstruction and adaptation in series (d) does not im-
prove the results significantly compared to the results (b).
Using reconstruction and adaptation in parallel does, and the
relative error reduction is 40 % compared to the baseline (a).
The difference in results (c) and (e) in close-talk data is not
statistically significant.

5. CONCLUSIONS AND DISCUSSION

In this work, we used cluster-based missing feature recon-
struction [3] in a LVCSR system trained with clean speech.
We tested the method with noisy speech data recorded in
real public environments, and used it with constrained maxi-
mum likelihood linear regression (CMLLR) [1]. In addition,
we presented a new method for finding the noise corrupted
speech signal components. The results indicate that miss-
ing feature reconstruction can significantly improve noise ro-
bustness under changing and unpredictable noise conditions.
With the far recorded noisy speech data, the improvements
from cluster-based missing feature reconstruction were com-
parable to the improvements from CMLLR speaker and en-
vironmental adaptation. With the close-talk data that almost
corresponds to clean speech, the improvements were minor
and not statistically significant.

CMLLR and the other methods from the linear trans-
formation family are amongst the most popular and effi-
cient methods for improving robustness in automatic speech



recognition. They have but one constraint: the methods need
to be provided with enough (minimum 1000–1500 frames)
adaptation data from the target speaker or environment in
order for the estimated transformations to be reliable [18].
Since 2–3 utterances are sufficient, adaptation data is seldom
a problem in continuous speech recognition tasks, unless that
is, the data has not been organised in sessions (e.g. broadcast
news, meeting room recordings). In such case, methods like
missing feature reconstruction that do not need adaptation
data have a clear advantage.

Missing feature methods do not use any information
about the current speaker, and cannot compensate for speaker
variation. LVCSR systems usually need some speaker com-
pensation method in order to reach good performance, so
missing feature reconstruction needs to be combined with
e.g. CMLLR. In the reported experiments, CMLLR did
not improve the speech recognition performance when the
transformations were estimated from reconstructed features.
When the methods were used in parallel, the results were
marginally better than the results obtained with the methods
used in series. With the parallel system, the relative error
reduction was 40 % compared to the baseline. The parallel
system results could be further improved if, for example, an
adaptive weight α = α(τ) was used. The parallel approach,
however, requires more computation than using the methods
in series because state probabilities need to be calculated for
two feature streams.

What should be determined now, is why CMLLR did not
improve the speech recognition results when applied on the
reconstructed features. It is possible that under noisy condi-
tions, CMLLR focuses on modelling the environmental noise
rather than the speaker, and effectively becomes a noise com-
pensation method. This should, however, mostly affect the
parallel system performance. When CMLLR is applied on
cleaned speech i.e. after reconstruction, it should again com-
pensate for speaker variation, but it is possible that (i) be-
cause the same speaker-independent model is used to recon-
struct all features, missing feature reconstruction may have
resulted in removing or smoothing speaker-specific char-
acteristics, or (ii) missing feature reconstruction may have
caused unusual variation in the features, in which case adap-
tation has sought to compensate for this rather than speaker
variation.

If missing feature reconstruction degrades speaker adap-
tation performance as suggested above, adaptation and re-
construction should be applied in a different order: adapta-
tion before reconstruction. The reversal is not straightfor-
ward as missing feature reconstruction operates on spectral
features while adaptation is used only after cepstral and the
other feature transformations. Note that speaker normalisa-
tion methods applied in time or spectral domain come natu-
rally before missing feature reconstruction, so there should
be no similar problems in combining missing feature recon-
struction and speaker normalisation.
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