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Abstract

The objective of this paper is to present experiments and discussions
of how some neural network algorithms can help to improve phoneme
recognition using mixture density hidden Markov models
(MDHMMs). In MDHMMs, the modelling of the stochastic
observation processes associated with the states is based on the
estimation of the probability density function of the short-time
observations in each state as a mixture of Gaussian densities. The
Learning Vector Quantization (LVQ) is used to increase the
discrimination between different phoneme models both during the
initialization of the Gaussian codebooks and during the actual
MDHMM training. The Self-Organizing Map (SOM) is applied to
provide a suitably smoothed mapping of the training vectors to
accelerate the convergence of the actual training. The codebook
topology which is obtained can also be exploited in the recognition
phase to speed up the calculations to approximate the observation
probabilities. The experiments with LVQ and SOMs show reductions
both in the average phoneme recognition error rate and in the
computational load compared to the maximum likelihood training
and the Generalized Probabilistic Descent (GPD). The lowest final
error rate, however, is obtained by using several training algorithms
successively. Additional reductions from the online system of about
40% in the error rate are obtained by using the same training
methods, but with advanced and higher dimensional feature vectors.
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1. Introduction

The hidden Markov models (HMMs) (Rabiner, 1989) have been widely used for the
automatic speech recognition (ASR) since Baker (1975) and Jelinek (1976). Other
successful applications have been, for example, the handwriting recognition (Cho and
Kim, 1995) and the modelling of the protein chains (Baldi and Chauvin, 1996). The
power of the HMMs rely on the ability to combine the modelling of stationary stochastic
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processes producing observable short-time features and the temporal relationships
between these processes (Juang and Rabiner, 1991).

The traditional way to train the HMMs is by the maximum likelihood principle
(Liporace, 1982), but the best recognition results are often obtained by discriminative
training. Due to the lack of general efficient analytical formulation of the discriminative
training for HMMs, artificial neural networks (ANNs) are very often used to constitute
hybrid models combining their classification power with the time-domain modelling
capability of HMMs (e.g. Bourlard and Wellekens, 1988; Lippmann, 1989). As shown
in Niles and Silverman (1990), the HMM system itself can also be presented as an
ANN. The simple adaptive form of discriminative training, learning vector quantization
(LVQ) (Kohonen, 1986, 1990) has been successfully applied first as hybrid systems
of discrete HMMs (DHMMs) with an LVQ-trained codebook (Iwamida, Katagiri,
McDermott and Tohkura, 1990; Torkkola et al., 1991) and later also as continuous
density HMM (CDHMM) hybrids (Kurimo and Torkkola, 1992a; Katagiri and Lee,
1993), where the mixture density codebooks can be trained by LVQ. The attempts with
partly heuristic corrective training has also provided good results for both DHMMs
(Bahl, Brown, de Souza and Mercer, 1988) and CDHMMs (Mizuta and Nakajima,
1990). Via the generalized probabilistic descent (GPD) (Katagiri, Lee and Juang, 1991)
the discriminative training related to the LVQ2 (Kohonen, 1990) can be formulated in
a theoretically justified manner. The GPD is also a more general framework that can
be shown to lead to several efficient implementations (e.g. Juang and Katagiri, 1992;
Komori and Katagiri, 1992; Rainton and Sagayama, 1992).

The speech recognition project that produced this paper, started after the 1991
version of the Finnish phonetic typewriter (Kohonen, 1991; Torkkola et al., 1991) that
successfully integrated the DHMMs to the codebooks trained by LVQ. The current
paper combines the LVQ3 algorithm (Kohonen, 1990) with the segmental training by
Viterbi decoding (Rabiner, Wilpon and Juang, 1986) and the latest mixture density
HMM (MDHMM) versions (Hwang et al., 1994; Kurimo, 1994b; Peinado, Segura,
Rubio and Benitez, 1994). In addition to the traditional maximum likelihood (ML)
training, the training method is compared to the LVQ2 based corrective tuning (Kurimo,
1994a) and the segmental GPD (Chou, Juang and Lee, 1992). The idea of integration
of the local acoustic context (Mäntysalo, Torkkola and Kohonen, 1992) and differential
features to the standard short-time cepstrum is also tested as a way to improve the
model performance and extend the current online system to exploit the improving
hardware facilities. This test is also used to verify the applicability of the suggested
training method and the initialization by self-organizing maps (SOMs) for different
and higher-dimensional feature vectors.

This paper is organized so that Section 2 introduces the framework of the MDHMMs
and summarizes the training methods related to the segmental LVQ3 training, which
is then presented in Section 3. The phoneme recognition tests are given in Section 4
and the conclusions in Section 5.

2. Mixture density HMMs

2.1. The temporal model

The temporal model in the HMMs is a relatively simple structure of successive states
and a probabilistic model of their mutual transitions. The modelling of the stochastic
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observation processes associated with the states of HMMs is based on the estimation
of the probability density of the short-time observations in each state. In this work the
HMMs are applied to model the short-time cepstral features of the speech signal. The
assumption is that during the articulation of the different phonemes, there are some
states producing characteristic short-time features, which can be modelled by rather
stationary stochastic processes. The temporal relations of these states are quite simple,
because they usually follow each other in the same order so that the unidirectional,
left-to-right HMMs can approximate the signal sources with an appropriate accuracy,
if the number of allowed states is sufficient.

In the hidden Markov model (Rabiner, 1989) the sequence of short-time observations
O=(O1, O2, . . . ,OT) are used to study the states q=(q0, q1, . . . , qT) the system undergoes.
The production of observations is assumed to be stochastic and it is characterized by
a set of observation probability measures B={bi(Ot)} N

t=1, where bi(Ot)=Pr(Otqt=i ).
The HMMs are based on the basic assumptions that the observations produced by
states are assumed to be independent of each other and the time t and that the
probability of state transitions depends only on the previous state. Thus, the joint
probability of state sequence q being generated by the Markov chain and the observation
sequence O being generated by that state sequence, can be calculated by the product

Pr(O, qp, A, B)=pq0\
T

t=1

aqt−1qtbqt(Ot), (1)

where pi=Pr(q0=i ) is the probability of the initial state and A=[aij], where aij=Pr(qt=
jqt−1=i ), i, j=1, . . . , N, the state transition probability matrix. A hidden Markov
model is then defined by the triple k=(p, A, B ).

2.2. Tied mixture density models

The modelling of the production of observations in different states of the system divides
the HMMs into two categories: discrete and continuous observation density HMMs
(Rabiner, 1989). In CDHMMs the bi (Ot)’s in (1) are some parametric probability
density functions or mixtures of them. The most common parametric pdf used in this
context is the mixture Gaussian density

bi(Ot)=]
M

m=1

cimbim(Ot), i=1, . . . , N, (2)

where bim(Ot) is a K-dimensional multivariate Gaussian density with covariance matrix
Rim and mean vector lim. The constraints for the mixture weights are: cim[0!m and R
M
m=1cim=1, i=1, . . . , N. The convergence of the common Baum–Welch re-estimation
algorithm (Juang, 1985) requires only bim(Ot) to be a strictly log-concave or elliptically
symmetric covering also many other applicable parametric pdfs in addition to the
multivariate Gaussians considered in this work. However, the use of mixture Gaussians
is clearly the dominant trend in this research field.

To speed up the density computations and to reduce the number of parameters to
be estimated the covariance matrices Rim are approximated by diagonal matrices tied
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over all mixtures (Paul, 1989; Kurimo, 1994b). This also provides the possibility to
considerably increase the number of mixtures to allow better density modelling accuracy
without getting an excessive number of parameters. A related approach using weighted
Gaussian kernel functions in ANNs is called the radial basis function (RBF) network
(Broomhead and Lowe, 1988; Singer and Lippmann, 1992). The RBF networks are
usually trained by first establishing the kernel functions and only then determining the
weights.

Because the continuity of the acoustic features and the overlapping of the output
densities of different states, it seems reasonable not to estimate a totally different set
of mixture Gaussians for each state, but to use the same large Gaussian codebook for
several (or all) states and only estimate different mixture weights for each state. This
intermediate solution between the discrete and continuous HMMs is called the semi-
continuous HMM (SCHMM) (Huang and Jack, 1989). The tied Gaussians resembles
the vector quantization codebook of DHMMs, except that the densities are smoothly
overlapped rather than partitioned. In addition to the more efficient use of the mixtures,
the SCHMM also provides a more efficient model training. Like in DHMMs, the
parameter estimation can be divided into two distinct phases: first estimate the codebook
and then use that fixed codebook to estimate the other parameters. As proposed in
Kurimo (1993) the latter phase can also include the re-adjustment of the Gaussian
codebooks to achieve an optimal combination of all the parameters. By the terminology
used in this work the codebook estimation phase is called the density initialization and
the re-estimation phase is the actual training.

In this work the typing of the mixture densities is applied so that the states belonging
to the same HMM, i.e. representing the same phoneme, use a common codebook of
Gaussian densities (Kurimo, 1994b). Thus there are as many sets of Gaussians as there
are HMMs, which is a kind of intermediate for CDHMMs (different set for each state)
and SCHMMs (only one large set of Gaussians). Related approaches to phoneme-wise
tied Gaussian codebooks have been recently proposed (e.g. Digalakis and Murveit, 1994;
Hwang et al., 1994; Peinado et al., 1994; Zavaliagkos, Schwarz, McDonald and
Makhoul, 1995). In addition to the training convenience, the phoneme-wise tied
Gaussian codebooks are appealing, because the system balances between a vast number
of mixture mean vectors and covariances, like in large CDHMM systems, and an
excessive amount of mixture weights, like in large semi-continuous HMM systems.
From the CDHMM point of view, having common Gaussians for states of the same
phoneme is a tempting approximation, since the output densities of successive states
are often similar and highly overlapping. From the SCHMM point of view, the normally
large set of very small weights can be reduced, because most of the large weights for a
certain state are often nicely localized around Gaussians resembling to one phoneme
(see Kurimo, 1993).

2.3. Comments on maximum likelihood training

The traditional approach for the HMM training is to formulate the inverse estimation
problem, i.e. the selection of the model parameters so that the likelihood of the training
data being produced by the model is maximized. This maximum likelihood (ML)
estimation can be conveniently accomplished by an iterative two-step procedure called
Baum–Welch re-estimation (Baum and Petrie, 1966) to select the model k in order to
maximize Pr(Ok) for the given training sequence O. In short, the first step is to



325“Training HMMs with SOM and LVQ”

determine the state probabilities for the observation sequence and the second is to
estimate the model parameters using the observations weighted by the state probabilities.
A simplified version used in this paper as a reference model is the Viterbi training (a.k.a.
segmental K-means (Juang and Rabiner, 1990)). The maximization of the so-called
state-optimized likelihood, which approximates the above by using only the probability
of the most probable state sequence, leads to a more straightforward implementation
with less computation and numerical difficulties of low probabilities, because the Viterbi
search (Forney, 1973) can be used for the fast state segmentation and the estimation
phase is then just a simple K-means-type batch epoch. Despite the approximation, the
same convergence properties as in Baum–Welch are valid (Juang and Rabiner, 1990).

The ML training is not, however, an optimal method in terms of minimizing the
classification error rate in recognition tasks. The ML also supposes that the optimal
model can be represented as a suitable parameter combination belonging to the a priori
known model family. If the model family of the true model is unknown and incorrectly
approximated, the ML training may operate very ineffectively. If the training data is
completely labelled, i.e. the association between the data and the classes is precisely
known a priori during the training as in supervised learning, the conditional maximum
likelihood estimator (Nadas, Nahamoo and Picheny, 1988) can be used to gain robustness
of the a priori model. This estimator can be shown to lead to the maximization of the
mutual information (MMI) between the observation and class labels (Bahl, Brown, de
Souza and Mercer, 1986).

2.4. Comments on corrective training

In practical training problems, like ASR systems, it is not necessary to reach the
absolute optimum, but to get sufficiently close to it to obtain an acceptable accuracy.
The idea in corrective training methods is to try to recognize the training words as if
they were unknown and, when the result is not satisfactory, to modify the parameters
to directly minimize the original training objective, i.e. the misclassification rate.

In Bahl et al. (1988) the parameter modification rules are presented for DHMMs
and in Mizuta and Nakajima (1990) for CDHMMs. Due to the quite heuristic nature
of these parameter modifications, the convergence is uncertain, but appears to work
very well, in practice, producing significantly fewer recognition errors than ML or
MMI estimations. However, choosing the set of parameters that minimizes the error
rate on training data, do not, in general, minimize the error rate on test data. Therefore,
it is necessary to have a large training database as representative as possible for the
intended application. Corrective training methods are fast, because they do not include
any complex gradient calculations, but the speed and success of the convergence may
depend much on the selection of the constants to control the size of the adjustments.
The LVQ based corrective tuning for semi-continuous HMMs (Kurimo, 1994a), differs
from corrective training (Mizuta and Nakajima, 1990) by allowing adjustments only
for incorrectly recognized phonemes and binding the learning rate not to the difference
of the HMM path probabilities of the whole sample word, but to a gradually decreasing
function of the iteration count aiming at the stochastic convergence. A similar approach
has also been presented for training DHMMs (Galindo, 1995).

The probability differences of the HMM paths can be used to derive a smooth and
differentiable cost function for misrecognitions. By the generalized probabilistic descent
(GPD) paradigm (Katagiri et al., 1991; Komori and Katagiri, 1992) the minimization
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of the cost can be used to approximate the real error rate minimization. The objective is
to provide a framework to develop faster and more reliable minimum error classification
training algorithms. In GPD, the misclassification measure dk(O, k) of OvCk is defined
by the difference of the logarithmic classification probabilities of the correct class Ck

and the incorrect ones with the largest discriminant values. The corresponding cost
function lk(dk(O, k)) can be, for example, a sigmoid (Rainton and Sagayama, 1992).
The GPD guarantees that by adjusting the model with −eU&lk, where e is a small
positive learning rate factor and U a positive definite matrix, at least a local minimum
of classification error is achieved in a probabilistic sense (Amari, 1967).

In Komori and Katagiri (1992) the general form of the minimum error classification
rule (Katagiri et al., 1991) is heavily simplified, thus preserving the basic characteristics,
to observe that the GPD is actually a generalization of LVQ2 (Kohonen, 1990) applied
to training the reference models according to the most probable path obtained by
dynamic programming. The simplifications are obtained by using L= norm instead of
the general Lp norm (p>0), changing the general distance measures to the minimum
operator, and approximating the sigmoidal function by a piece-wise linear step function
to give the window constraint of the LVQ2 learning law (Kohonen, Kangas, Laaksonen
and Torkkola, 1992). Due to the generality of the minimum error classification theory,
the results of the GPD formulation can be correspondingly used to justify the LVQ
based training methods presented in this paper.

A common feature in all these corrective algorithms is the need for the traditional
maximum likelihood approach to first train the initial models. If the initial model
performs poorly, the convergence for good results by the error corrections can be slow
and inefficient. One reason might be that the discriminative training includes the tuning
of some incorrect reference vectors away from the observations, which can have
unwanted effects by isolating some reference vectors, if they do not manage to get
tuned towards any correct observations. Also, it is not normally sensible to use the
corrective training to all HMM parameters (e.g. the state transition probabilities).

2.5. Why initialize HMMs?

A common problem for all practically applicable iterative methods used for HMM
parameter estimation is the selection of suitable initial parameter values. Although the
methods usually obey some hill-climbing property due to their probabilistic nature, it
is intuitively clear that the better the starting point the higher the probability of reaching
good models within a reasonable number of literations.

The difference in the computational load between a proper initialization and extra
epochs of the actual training depends on the size of the phoneme models, but an
approximate relation observed in this paper is that the whole time spent in the
initialization phase, if small SOMs are trained for each phoneme, corresponds roughly
to the time of only one training epoch of the standard Viterbi training. For higher
feature dimensions and mixture densities, the difference of the amount of computations
grows even larger.

When striving for better models by increasing modelling complexity (number of
HMMs, states, mixture densities and feature dimensions), the roughness of the error
surface and the number of local optima usually increases as the size of the training
database is increased in order to reliably estimate the model parameters. So careful
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initialization not only saves time but also leads to better models because, in practice,
the search must be finished long before the global optimum is reached.

2.6. New initialization methods

By using a self-organizing map (Kohonen, 1990), a high-dimensional input space can
be mapped into an ordered set of codebook vectors {mi} M

i=1 so that the input topology
is maintained, i.e. nearby feature vectors will be mapped to nearby codebook vectors.
In this work, the SOMs are applied to adaptively produce a representative clustering
of the feature vectors for each state of HMMs on which the mixture densities are built.
The obtained codebook topology can also be used in later phases, for example, to
speed up the calculations to approximate the observation probabilities by using only
the best matching unit and its nearest neighbours (Kurimo and Somervuo, 1996).

For HMMs, SOMs have been applied to train smoother DHMM codebooks (Zhao
and Rowden, 1991; Monte, 1992) and initialize the mixture densities for CDHMMs
and SCHMMs (Kurimo and Torkkola, 1992b; Kurimo, 1993). With CDHMMs the
SOM codebook vectors are transformed to mean vectors of the mixture densities and
the initialization of the mixture weights and the covariance matrices is based on the
clustering of training samples based on those mean vectors. For CDHMMs it is
observed (Kurimo and Torkkola, 1992b) that initialization using SOMs leads to a near-
minimum recognition error rate in at least three times less epochs of training. The
reason why SOM smoothing gives better initialization than other mappings (e.g. by
the K-means, often with even smaller distortion) is that the generalization to the test
data tends to be better and also all the mixtures contribute better to the density
modelling (Kim et al., 1994; Kurimo and Somervuo, 1996).

The SOM adapts to the input space by using the input samples x in a random order
one at a time and adjusting the nearest codebook vector mc (best-matching unit, bmu)
and its neighbours to be closer to x:

mi(t+1)=mi(t )+hci(t )[x(t )−mi(t )], (3)

where t=0,1, . . . is a discrete time index. The function hci(t ) determines the neighbour-
hood around the bmu and its value can be, for example, the learning rate (alpha)
a(t )v(0,1), if the array distance between mi and mc is smaller than neighbourhood
radius r(t ) and zero otherwise (Kohonen, 1995). a(t ) and r(t ) decrease gradually (while
t increases) to obtain the desired form of convergence.

For the phoneme-based tied density codebooks (Kurimo, 1994b) used for the mixture
density HMMs in this work, the initialization of the mean vectors could be done by
building a large SOM covering all phonemes and then splitting it into separate phoneme
codebooks according to the labelling. A faster and better way, however, is to use the
initially segmented data to train a small separate SOM for each phoneme (Kurimo and
Somervuo, 1996). In this way, an equal number of mixtures and a proper representation
for the variation in rare phonemes, such as /D/ and /Ö/, can be ensured.

For DHMMs it was concluded in Iwamida et al. (1990) that the concern should not
be with reducing spectral distortion in the vector quantizer codebook design, but rather
with providing discrimination information to minimize the number of misclassifications.
It is reported both in Iwamida et al. (1990) and Utela (1992) that tuning the feature
vector classifier with LVQ to increase the discrimination decreases the recognition error
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rate significantly. It is also possible to apply LVQ to the initialization of CDHMMs
and SCHMMs (Kurimo and Torkkola, 1992b; Kurimo, 1993). The motivation for LVQ
initialization is to test whether a discriminative initialization might guide the ML training
to find solutions with high discrimination between models. SCHMM initialization
experiments reported in Kurimo (1993) show that applying LVQ2 or LVQ3 after SOM
leads to fewer recognition errors than initialization by the SOM alone. LVQ training
is applied in the normal way using data vectors from pre-segmented (either by hand
or by another HMM) training samples (e.g. Section 3.2). Since all the candidate
reference vectors from all classes participate in the winner search for all data vectors,
this initialization for the MDHMMs is slower than in the suggested single-phoneme
SOMs mentioned above.

3. Discriminative training by LVQ

3.1. Minimization of the classification error by LVQ

When multiple codebook vectors are used to represent each class of the observed
feature vectors, the optimal training of the codebook vectors is an essentially different
problem to the quantization error minimization of classical vector quantization. The
minimization of misclassifications can be treated using Bayesian decision theory, in
which each sample x is classified into the class Ck of highest likelihood p(xxvCk)P (Ck).
Here, P (Ck) is the prior probability of class Ck.

The learning vector quantization (LVQ) (Kohonen, 1990) generates a VQ codebook
to approximate the Bayesian decision surfaces by classification using the label of the
best matching codebook vector. For mixture density HMMs, LVQ is applied in the
training of the codebook of Gaussians to maximize the differentiation accuracy near
the border areas between the phonemes. Compared to mixture densities estimated to
approximate the conditional output densities p(xxvCk) of each state of the HMMs,
mixture densities designed for optimal classification may not produce as accurate
probability estimates but instead aim at the generation of likelihoods that discriminate
the states better. To recognize the phonemes correctly, the selection of the correct
sequence of states is, after all, more important than the determination of the correct
probabilities of different state sequences.

3.2. The basic LVQ3

For a randomly selected training vector x, the two best-matching codebook vectors mc

and mc′ are adjusted by LVQ3 (Kohonen, 1990) as follows: if the sample vector x
appears to be near the border between two classes and mc and x belong to the same
class, but mc′ to a different class:

mc(t+1)=mc(t )+a(t )[x(t )−mc(t )]
(4)

mc′(t+1)=mc′(t )−a(t )[x(t)−mc′(t )].

If mc′ is the one that belongs to the correct class the signs in front of a(t )s in (4) are
changed. If all mc, mc′ and x belong to the same class the update rule is:



329“Training HMMs with SOM and LVQ”

(5)
mc(t+1)=mc(t )+ea(t )[x(t )−mc(t )]

mc′(t+1)=mc′(t )+ea(t )[x(t )−mc′(t )],

where ev(0,1) is a stabilizing constant factor. The value of e should reflect the width of
the adjustment window around the border between classes c and c′ (Kohonen, 1990)
so that with a narrow window the stabilizing learning steps (5) are small (i.e. e is small).
The teaching gain a(t )v(0,1) is decreased monotonically.

3.3. The segmental LVQ3 training

The success of LVQ based tuning (Kurimo, 1994a) to enhance the recognition accuracy
of mixture density HMMs first trained by another method introduces the question,
why not save training effort by integrating the corrective training with the basic HMM
training. This would, hopefully, stabilize the convergence of the corrective training by
rewarding the correct results and applying discrimination only when the incorrect
decision is strong enough to displace the correct one. The proposition here is that the
K-means part (the adjustment of the model parameters) of the Viterbi training could
be replaced by LVQ3 training. Since the normal Viterbi estimation is sometimes called
segmental K-means training, this training method could in the same manner be called
segmental LVQ3 training (Kurimo, 1996).

In addition to the determination of the most probable correct state segmentation
(path) ql for each training word l in the Viterbi training, the application of LVQ3
requires also the best rival path q̄l for the discrimination. The finding of the latter path
simulates the recognition of an unknown word. The two paths are compared, and for
the coinciding states the density functions are updated to increase the observation
probability for the current acoustic observation as usual. If mismatching states are
found, the density of the correct state is adjusted as above, but the density of the best
incorrect state is adjusted to lower the likelihood of the observation. Combining the
effects of these two different updates, maximization of discrimination and likelihood,
the result corresponds to a kind of batch version of LVQ3.

The tuning of a mixture density function corresponding to a state HMM is performed
by selecting the nearest Gaussian mixture and applying the LVQ3 rule to tune its mean
vector and the corresponding weight. An attempt to briefly illustrate the consequences
of the density tuning in one dimension is presented in Fig. 1. Due to the nature of the
segmental training, i.e. the adaptation of the models is followed by a new segmentation
of the data followed by a new adaptation and so on, the adaptation phase is done in
the batch mode.

The batch formulation of the adjustment of the mean vector ljm of each Gaussian
kernel m=1, . . . , Mj of codebook j corresponds to the weighted average of all the
associated data vectors, where the representatives of incorrect states have a
contribution equal to the vector of the same size, but opposite direction (note that
[O l

t+(2lold−Ol
t)]/2=lold). A data vector O l

t affects the adjustment of ljm, if the cor-
responding state ql

t on the decoded correct path uses codebook j and the index o of the
best-matching Gaussian in that codebook equals m, thus

l̂jm=
RL

l=1R
Tl
t=1d( jvql

t)d(m=o)[d(q−l
t =q̄l

t)O l
t+d(q̄l

t≠ql
t)(2ljm−O l

t)]

RL
l=1R

Tl
t=ld( jvql

t)d(m=o)
, (6)

where
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Figure 1. Adjusting the mixture densities of competing states for one
observation (here, value 12). The parameters to be modified are the centroids
of the nearest Gaussian for the correct state and, if a rival HMM state causes
a misrecognition, also its corresponding centroid. The mixture weights of the
modified mixtures are tuned respectively, but taking care of the normalization.
The resulting new pdfs are shown dashed for this simple one-dimensional
three-mixture case.

d(z)=G1, if z is true,
0, if z is false.

(7)

For the mixture weight update, the idea is to increase the likelihood of a state by
increasing the weight, if the Gaussian matches to a correct state and by decreasing the
weight for a match to an incorrect state. To avoid any weight decreasing to zero or
below, the decrease of a weight is substituted by increasing the other weights by the
fraction representing their contribution (note that Rm=1,m≠ocim=1−cio)

ĉim=
RL

l=1R
Tl
t=1d(i=ql

t)[d(m=o)d(q l
t=ql

t)+d(m≠o)d(q l
t≠ql

t)cim/(1−cio) ]

RL
l=1R

Tl
t=1R

M
m=1d(i=ql

t)d(m=o)
. (8)

The summations are over all training samples: L is the number of training words, Tl

the length of the current word in frames and {O l
t}Tl

t=0 the corresponding sequence of
feature vectors.

After the adjustments, the new parameter values k are used to compute the paths
again followed by the next iteration of parameter value update. The process can be
iterated until the decided stopping criterion is fulfilled.
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3.4. Comparisons to other corrective training methods

The main difference between segmental LVQ3 and corrective tuning using LVQ (Kurimo,
1994a) is best characterized by considering the difference between the underlying LVQ
learning laws, LVQ3 and LVQ2. In tuning, the modifications of the output densities
occur only for misclassified states, like in LVQ2, which makes the algorithm suitable
mainly for fine tuning purposes. If misrecognitions occur frequently, the algorithm
becomes slow and, perhaps, unstable, because reducing the likelihood of the incorrect
models by tuning the densities away from the observations might have too much
influence and disturb successful convergence. However, if the recognition occurs with
few errors, the speed and stability increases and corrective tuning will be more efficient,
because the learning is directed towards the likely trouble areas.

The second major difference compared to corrective tuning (Kurimo, 1994a) and
also to Mizuta and Nakajima (1990) is the use of batch mode, i.e. adjustments are not
applied after each misclassified vector, but they are stored in the memory and processed
after the whole training data is checked. As a side effect, there will be less pre-specified
control parameters for the learning and the order of the presentation of the training
samples is guaranteed to have no effect.

The third difference to Kurimo, (1994a) is that the adjustments are not only applied
to the Gaussian mean vectors, but also to the weight vectors and the transition
probabilities. Corrective tuning was restricted to the mean vectors in order to avoid
dramatic parameter changes due to a single recognition error.

Unlike segmental LVQ3, in discriminative training methods such as segmental GPD
(Chou et al., 1992) and ODT (optimal discriminative training) (Mitzuta and Nakajima,
1990), the extent of the whole word or sentence misclassification directly controls the
magnitude of the parameter modification. However, the total misclassification extent
does not necessarily represent well the situation in every part of the observation
sequence. Another difference is that in segmental LVQ3, only adjustments to increase
the difference between competing paths by increasing state likelihoods are allowed for
phonemes that would already be correctly recognized.

4. Phoneme recognition experiments

4.1. Recognition system

The experimental evaluation is based on the speech recognition system of the Laboratory
of Information and Computer Science at Helsinki University of Technology (Torkkola et
al., 1991). The system behaves like a phonetic typewriter to transcribe spoken Finnish
words into phoneme sequences. The main difference here compared to the original system
is the application of the continuous density HMMs instead of the discrete HMMs.

The short-time acoustical features used as observations of the speech signal are 20-
component cepstra computed every 0·01 s from a 0·02 s partially overlapping window
concatenated with the energy of the signal. The cepstral coefficients are obtained by a
discrete cosine transform of a Mel-filtered power spectrum. For optimal classification
ability, the cepstrum is weighted using a window of raised sinusoid. An example of a
sequence of the obtained short-time features corresponding to the Finnish word
‘‘johdosta’’ is shown in Fig. 2.

The transformation of the most likely HMM path to the labels of the real word is
a relatively straightforward procedure (in Finnish). Because each HMM corresponds
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# J O H D O S # TA <

Figure 2. Short-time cepstra from a speech signal 10 ms apart. Time increases
to right and quefrency (same as frequency for a spectrum) upward. The
darkness of a pixel illustrates the value of the corresponding cepstral
coefficient. The thin vertical lines show the starting points of the phonemes. /#/
means the silence before the word or a plosive and /</ the end of word.

to one phoneme the sequence of visited HMMs is directly the sequence of phonemes
in the real word, which is quite near to the way the words are written in Finnish. The
long phonemes (e.g. /AA/) are represented by the same HMMs as the short ones and
their separation is based on the time spent in the corresponding HMM.

The comparison of the performance of different types of continuous density HMMs
(Kurimo, 1994b) concluded that the phoneme-based tied HMMs provide the best
configuration, when the combination of the number of parameters, the recognition
time and the error rate was set as the selection criterion. The baseline phoneme model
selected for this work is a 5-state unidirectional HMM with no skips and a density
codebook of 70 mixture Gaussians per phoneme. In the first training phase the Gaussian
mean vectors are trained by SOMs and in the second phase the training continues with
embedded Viterbi (a.k.a. segmental K-means) training. The SOMs are arranged in a
two-dimensional (10×7 units) hexagonal grid and for the rough organization (1000
samples) the neighbourhood radius decreases down from 8 and the learning rate down
from 0·2. In the fine organization (10 000 samples), the radius goes down from 2 and
the learning rate from 0·02. The final values for the radius and the learning rate are 1
and 0, respectively. As given in Kurimo (1994b) the total number of parameters for
this baseline configuration is about 40 000 and the average error rate 5·7% (Data 90).

4.2. Speech material

The experiments were carried out using a set of 311 Finnish words and three native
Finnish speakers (Data 90). From each speaker, four repetitions of the word set are
available and the speaker dependent HMMs are trained with three sets per speaker
leaving one set for testing. To verify the results with different data, seven speakers were
chosen from a new database (Data 95). To get more variation, the models from the
new data are trained with only the three first speech sets and tested with the fourth.
The time spans between the first and the fourth speech sets range from one to seven
months. The new data is recorded with a slightly higher sampling rate (16 vs. 12·8 kHz)
and with longer and phonetically better balanced sessions (350 words), but the speakers
used are not, on average, so experienced.
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The recognition performance was determined by calculating the sum of changed,
missing and extra phonemes in decoded phonetic transcriptions divided by the correct
number of phonemes in the test material. The Matched-Pairs and the McNemar’s test
(Gillick and Cox, 1989) are used to determine the statistical significance of the difference
in the average error rates. The Matched-Pairs test counts the difference in the number
of errors in independent segments (a word, here) made by the compared algorithms.
The significance level gives the risk of rejecting the hypothesis of no statistical difference.
For example, the results are significantly different (at risk 0·05), if the difference in the
number of errors is large enough to correspond to probability less than 0·05 in the
normal distribution. The McNemar’s test produces the corresponding risk level by
comparing the number of differently recognized words to a chi-square distribution. The
Matched-Pairs test result is given for most of the comparisons, but both results are
provided, if necessary.

4.3. Comparison of initializations

The suitability of different initialization procedures for the HMM output densities are
most reliably tested by running the whole parameter training several times and changing
only the initialization method, then comparing the results. In addition to the final error
rate it is also important that an appropriate recognizer performance is reached with as
few training epochs as possible. In practice, the available training data is limited and
often recycled for several epochs to give the algorithm time to converge. Thus, the
number of epochs can also be a limiting factor for the learning of the optimal models.

Since the optimal performance is both difficult to define (0% error rate on this test
data seems to be impossible with the limited training data) and difficult to reach (the
error rates tend to decrease too slowly after the first few epochs), one suggestion is to
set the lowest error rate obtained by the default training method as the benchmark
and compare how fast the error rates get close enough starting from the different
initializations.

The recognition tests are made for MDHMMs with Viterbi training by the segmental
K-means after several alternative mean vector initializations (Table I). Starting with
simple selection criteria (KNN, EVEN) requires at least five Viterbi training epochs to
get even roughly near to the benchmark, whereas the advanced methods (KM, SOM)
achieve that subgoal in only two or three epochs. If the training is continued to 10
epochs, the differences resulting from the initialization become small, but the benchmark
still remains unreached for most of the models. In the comparison of the required
Viterbi epochs to reach the benchmark result by the 95% confidence level the SOM
based initializations beats clearly the rival methods (five vs. at least 10 epochs).

Another difference between the initializations is observed from the averaged learning
curves (Fig. 3). While some initializations lead directly to the low rates (SOM, LVQ),
others (KM, KNN) have a flat phase after an insufficient local minimum is achieved.
The LVQ seems to give the smoothest learning curves, although the error rate is high
at the beginning of the training.

4.4. Comparison of training algorithms

The comparisons between the average test set error rates of the proposed segmental
LVQ3 and the conventional HMM training (the segmental K-means) and also the
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T I. Average test set error rates (Data 90 on Test I) for segmental
K-means trained MDHMMs using alternative initializations for the
Gaussian mean vectors. SOM learning is done in two phases (shorter
and longer) for each phoneme. LVQ is trained for all phonemes at the
same time and a short OLVQ1 phase precedes the main LVQ3 training.
The other initializations are RAN=random vectors evenly distributed
in the area of corresponding data vector components, EVEN=randomly
selected reference vectors from the correct classes, KNN=correctly
KNN-classified (K=5) reference vectors and KM=K-means clustered
vectors. The last column shows the number of Viterbi epochs required
to reach the threshold for the good accuracy defined here to be the
point, when the result is in average not statistically different (risk less
than 0·05 by Matched-Pairs (MP) and McNemar (MN)) from the best
result obtained by long Viterbi training (5·6% and 5·4% for Test I and
II, respectively). The Test II performed on the high dimensional context
vectors (‘‘context80’’ in Section 4.6) and on the database Data 95, was
performed to verify the comparison between the SOM and K-means
initializations

Initialization Error rate % Epochs required

Test I 3 ep. 5 ep. MP MN
RAN 10·5 8·2 >10 >10
EVEN 7·2 6·5 >10 >10
KNN 7·0 6·3 >10 >10
KM 6·4 6·0 >10 >10
SOM 6·0 5·8 6 5
LVQ3 7·0 6·3 >10 9
SOM+LVQ3 6·1 5·7 4 4

Test II
KM 6·3 6·2 >10 >10
SOM 5·8 5·5 5 4

discriminative segmental GPD are shown in Fig. 4, where the proposed method seems
to beat the rival methods both with respect to the fast convergence and low error rate.
The average error rates for these combinations (Table II, five training epochs, Test I)
are: SOM+LVQ3 5·3, KM+SKM 6·2 and KM+SGPD 5·8.

If the convergence speed is not important, the best final error rate is achieved by
concatenating different training methods. In Table II the lowest average error rate is
obtained by training the MDHMMs again by the segmental GPD after they have first
been trained by another method (segmental K-means or LVQ3). However, in the
verification test for the slightly easier database (but simpler models) the segmental GPD
actually increased the error rate and the LVQ2 based tuning method gave the lowest
error rate. It should be noted that this type of long training requires the availability of
enough training data in order to avoid overlearning effects.

According to the statistical tests for Table II, there is, in general, no need for more
than the five training epochs with one training algorithm. In addition to the segmental
GPD, corrective tuning using LVQ2 also introduces a significant drop in the error rate
for models trained first by segmental K-means. For models trained first by segmental
LVQ3 that difference is smaller, probably indicating that the discriminative learning
already occurs in the first part of the training.
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Figure 3. The development of the average test set error rate in the traditional
(segmental K-means type) Viterbi training for different initializations for the
density codebooks (see also Test I in Table I). The approximate limit rate is
here defined to be reached, when the result is on average not statistically
different from the best result obtained by full Viterbi training (5·6%): som (Η),
km (+), knn (Φ), som+lvq (×), limit rate (Α).

4.5. Boosting the recognition phase

When training a large number of mixtures to model the observation density of the
state, the result is that different mixtures become sensitive to different sorts of realizations
of the phoneme. Thus a single observation usually gets a large response of only a few
mixtures and the rest provide much smaller responses. Further, the mixture coefficients
will obtain many small and few large values, which strengthens even more the peaks
in the observation probabilities produced by different mixtures (Kurimo, 1994b). This
phenomenon can be effectively used in reducing the computation time for the observation
probabilities of the states by an approximative solution of only K nearest mixtures
instead of total M (see also Bellegarda and Nahamoo (1990)). Figure 5 illustrates the
average error rates and recognition times using this approximation for different mixture
sizes. It is remarkable that instead of decreasing as more mixtures are applied, the error
rate actually increases after a certain limit, which is surprisingly small, for example K
values 2,2,5 for M values 24,70,140, respectively. The average recognition error rates
differ significantly for K values 4,5,10 or larger for M values 24,70,140, respectively.
The explanation might be that the usage of only a few Gaussians emphasizes more



336 M. Kurimo

7

8.5

5
1

Training epochs

E
rr

or
 r

at
e 

(%
)

2

6

8

7.5

7

6.5

5.5

3 4 5 6

Figure 4. The development of the average test set error rate in the Viterbi
training by the segmental LVQ3 initialized by SOMs and the reference
methods segmental K-means and segmental GPD with K-means initialization
(see also Test I in Table I): km+skm (Η), km+sgpd (+), som+slvq (Φ).

clearly the distinctive features of the states. Using all the Gaussians reflects perhaps
more about how well the average features of states are represented. As shown in
Kurimo (1994a) this probability approximation can also be successfully applied in the
training phase.

When the centroids of the mixtures of a phoneme are initially organized by SOM,
the mixtures providing high responses are often close to each other in the SOM topology,
although the fine structure of the SOM is destroyed due to the training with zero
neighbourhood. This can be exploited in the search of the K nearest mixtures by sorting
only a small neighbourhood around the best matching mixture and tracking the
trajectory towards the gradient of the match (Kurimo and Somervuo, 1996). The
savings in the recognition time are important considering that the observation probability
computations take quite a significant part of total computation time (over 50% including
the signal preprocessing). More efficient ways to speed up the recognition by using the
SOM topology are presented in Kurimo and Somervuo (1996).

4.6. Scaling up the system

One important aspect in developing the experiments for the previous sections was the
ability to maintain an online demonstration system for speech recognition. The re-
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T II. Average test set error rates for alternative training methods after the
initialization by K-means or SOM. The main test (I) uses ‘‘context80’’ features (see
Section 4.6) on Data 95 and the verification test (II) ‘‘normal’’ features on Data 90.
The training methods are segmental K-means (SKM), segmental GPD (SGPD),
segmental LVQ3 (SLVQ3) and the corrective tuning based on LVQ2. In the two-
method combinations the first method is used for the five first epochs. The statistical
significance tests are Matched-Pairs (MP) and McNemar (MN). ‘‘=’’ means that
the result has not changed significantly after five epochs (‘‘>’’ (or ‘‘<’’) otherwise)

Initialization HMM training Error rate % Significance

Test I 5 ep. 10 ep. MP MN
KM SKM 6·2 6·1 = =
SOM SKM 5·5 5·4 = =
KM SGPD 5·8 5·6 = >
SOM SLVQ3 5·3 5·3 = =
KM SKM+SGPD 6·2 5·4 > >
SOM SKM+SGPD 5·5 4·8 > >
SOM SLVQ3+SGPD 5·3 4·8 > >
KM SKM+LVQ2 6·2 5·6 > >
SOM SKM+LVQ2 5·5 5·2 > >
SOM SLVQ3+LVQ2 5·3 5·2 = >

Test II
KM SKM 6·0 5·9 = =
SOM SKM 5·8 5·7 = =
KM SGPD 7·1 6·7 > =
SOM SLVQ3 5·6 5·5 = =
KM SKM+SGPD 6·0 7·3 > >
SOM SKM+SGPD 5·8 7·3 < <
SOM SLVQ3+SGPD 5·6 7·3 < <
KM SKM+LVQ2 6·0 5·5 > >
SOM SKM+LVQ2 5·8 5·5 > >
SOM SLVQ3+LVQ2 5·6 5·4 > >

cognition speed requirements restricted the previous experiments both in the sense of
the feature space dimensions and the density codebook sizes for mixture density
functions. However, since the computational capacity of the available workstations
continuously increases, it is vital to study the next step: what will happen to the developed
modelling and training method, when the dimensions will be doubled or trebled.

Most of the current speech recognition systems transform the speech into 10–15
dimensional cepstra and D-cepstra vectors. It is probably not worth adding higher
cepstral coefficients, but codebooks built of concatenated and averaged combinations
of features consisting of information over the local context seem to increase recognition
accuracy (e.g. Mäntysalo et al., 1992). The scaling up experiments in this work include
the variations of the feature vectors summarized in Table III.

The delta features were computed as a difference of the short-time features five
frames apart. The context vectors are formed using several successive frames (see Fig.
6). The basic idea in context vectors is the same as suggested in Mäntysalo et al. (1992)
for DHMMs and LVQ codebooks, but the dimension is slightly reduced by leaving
out the outermost windows. The objective of using these extended feature vectors is to
provide the HMMs more freedom to create component-wise sequential dependencies
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Figure 5. The average test set error rates and computation times when only K
nearest mixtures instead of the total M are used to approximate the
observation probabilities of HMM states. The M values 24, 70 and 140 were
tested. The recognition time is the average recognition time per word divided
by that of the baseline system (K=3 and M=70). The recognition times were
recorded with a Silicon Graphics Power Challenge server using precomputed
features: M=24 (Η), M=70 (+), M=140 (Φ).
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T III. The contents of the alternative feature vectors in the tests

Feature Cepstra RMS Context Dimension
vector normal D normal D concatenation in total

Basic 20 1 no 21
Delta21 10 10 1 no 21
Delta42 20 20 1 1 no 42
Context80 15 1 5 successive 80
Context105 20 1 5 successive 105

130 ms

Time/10 ms

Figure 6. The context vector includes concatenated averages of one, two and
four successive cepstral vectors. Successive context vectors are formed by
sliding the window through the computed short-time features.

T IV. The average test set error rates for alternative
feature vectors described in the Table III. The MDHMMs
are trained by SOMs and the segmental LVQ3. The re-
cognition time factor is the average recognition time per
word divided by that of the baseline system (70 mixtures
and ‘‘basic’’ features)

Feature Error rate % Recognition
vectors Data 90 Data 95 time factor

Basic 5·5 7·7 1·0
Delta21 4·7 6·8 1·3
Delta42 4·0 6·4 1·8
Context80 3·6 5·3 1·7
Context105 3·4 5·3 1·8

by giving the observation densities of the states information on variable length features.
To compare the increase of the recognition performance, the error rates and the

approximate recognition time factors are given in Table IV. The optimization of the
recognition speed includes the partial distance computation mentioned in Kurimo and
Somervuo (1996) that speeds up more the processing of the high than low dimensional
input and also more the cepstrum than delta-cepstrum input. The corresponding
comparison is also shown for changing the size of the mixture pool from the default
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T V. The average test set error rates for various mixture
sizes and the default (‘‘basic’’) feature vectors

Mixtures/ Error rate % Recognition
phoneme Data 90 Data 95 time factor

24 6·9 9·8 0·5
70 5·5 7·7 1·0

140 5·2 7·3 1·8

70 mixtures per phoneme (see Table V). The workstation based demonstration system
currently operates with the ‘‘basic’’ features (Table IV), but it will soon1 be able to
process also the ‘‘context80’’ features online, like the other demonstration version
equipped with special neural hardware. Although the best result is obtained by the
‘‘context105’’ features the difference to the ‘‘context80’’ is not significant.

4.7. Discussion

By studying the results more closely it was observed that although the difference of
results between the methods were quite consistent for all speakers compared to the
presented average values, the variation between the level of the results for speakers
vary remarkably depending, perhaps, on the clarity, the speed and the dictation
experience. For example, while the worst speaker could not give an error rate lower
than 5·9%, the best speaker achieved 1·7%. The best obtained error rate for one speaker
(1·7%) is quite high, since almost 80% of the remaining phoneme errors (actually 25
out of 32) were then caused by confusions between long and short versions of the same
phoneme, for example /II/ and /I/, and some rare phonemes not modelled at all in these
experiments. If the long phonemes could be correctly identified (e.g. using some special
methods) and their separation errors were excluded from the average error rates, the
improved recognition error rate for the ‘‘context80’’ features (see Table IV) and the
two databases, respectively, would be as low as 1·9% and 3·5% instead of the given
3·4% and 5·3%.

It is obvious that the results obtained from different initialization methods vary
depending on the random starting values. Because the experiments here show that the
success in the initialization considerably affects the obtained final error rates, the effect
of the random number seed was tested for otherwise equal initialization and training
conditions. In this test the baseline training method (21 dimensional features, SOM
initialization and segmental LVQ3 training) was performed for 10 different seeds. Each
of the 10 speaker dependent training sessions included all the seven test speakers from
the database Data 95. Each recognition test result was then, in turn, compared to the
other nine to check by Matched-Pairs test, if the differences were statistically significant.
Because a significant difference was observed using the 95% confidence level in only
one of the 10 tests, it seems that the average error rates used through this section cover
fairly well the variation caused by the selection of the random number seed. Anyhow,

1 The extension to the “context80” features and 140 mixture components per phoneme was made in April
1997.
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it would also be difficult, in practice, to always run every test with a large variety of
different seed values.

5. Conclusions

In this paper it is observed that the convergence of MDHMMs to low recognition
error rates is significantly accelerated by initializing the Gaussian mean vectors of the
mixture densities using SOMs compared to the traditional initialization methods. The
advantage offered by the SOMs is related to the way in which the codebook vectors
of the SOMs are smoothed using nearby vectors in the topologically specified neigh-
bourhood. After the initialization phase, to fully train the MDHMMs, the integration
of LVQ3 in the segmental learning framework of the Viterbi training is formulated and
tested. This training enhancement is found valuable, since it adds the beneficial
discriminative effects of corrective tuning to the actual training so that separate additive
tuning is no longer necessary to obtain low error rates. In the experiments segmental
LVQ3 provides, on average, lower error rate and faster convergence compared to the
conventional Viterbi training or the segmental GPD. However, if the training conditions
and data quality allow the data to be recycled many times for long training, the
successive usage of several training algorithms seems to provide the lowest final error
rates.

According to the experiments to boost up the recognition phase, the approximation
of the Gaussian mixture output density by using only a few nearest mixtures produces
slightly lower error rates than by using many mixtures. This is assumed to be due to
the increased discrimination between the different states, because then only the relations
to the most representative mixture densities affects the resulting observation prob-
abilities. The capabilities of scaling up the baseline system were also investigated by
expanding the feature vectors to cover the local context of individual short-time features
and by augmenting them with differential features. Reductions of about 40% in the
error rate were obtained in these experiments.

The practical achievements of this project are utilized by the online ASR de-
monstration system for Finnish. Although the system is not intended to be a practical
product, it shows that the proposed modelling and training methods can, in fact, be
used in a pilot application operating in real time on current commercial workstation
technology without any special hardware.
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