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Abstract

This paper introduces two recent open source software pack-
ages developed for unsupervised natural language modeling
The Morfessor program segments words automatically into
morpheme-like units without any rule-based morphological
alyzers. The VariKN toolkit trains language models prodgc
compact set of high-order n-grams utilizing state-of-areker-

Ney smoothing. As an example, this paper shows how to con-
struct a language model for speech recognition in multipfe |
guages utilizing only a minimal amount of linguistic resces.
Morfessor and VariKN also have other applications in text un
derstanding, information retrieval and machine transtatUn-
supervised machine learning techniques are particulagly w
suited for the development of systems for less-resourced la
guages, because they do not depend on manually designed mor-
phological or syntactical analyzers or annotated data.

Index Terms: variable length language modeling, speech
recognition, unsupervised morphology, open source softwa

1. Introduction

The rapid growth of digital media has brought about large
amounts of data written and spoken in languages for which
there are few language processing tools available. Thighas
couraged people to direct funding for the development of ma-
chine translation, information retrieval and speech ragam

for many new languages.

Porting existing tools to new languages is not straightfor-
ward. Many current language technology solutions are build
ing on large hand-crafted lexica, pronunciation dictigesrtree
banks and morphological analyzers. Even if the tools them-
selves could, in principle, work in the new target languages
available resources would not be sufficient for the creatibn
the required building blocks. In practice, it can turn ouwtttihe
whole language modeling approach, and thus, the design prin
ciples of the tools, will need to be revised. This is the céze,
example, in moving from English to highly inflected or agglut
native languages, Finnish and Estonian.

Instead of directing new resources into the manual con-
struction of building blocks for traditional language taology
tools, it is often better to develop new tools that utilizectmae
learning methods to automatically derive models from dasa.
pecially for less-resourced and morphologically rich laages,
algorithms capable of unsupervised learning are most Lsefu
because they can utilize poorly annotated and formatteéad-tra
ing data that is becoming available.

The Morfessor and VariKN program packages both imple-
ment unsupervised machine learning methods to obtain lan-
guage models that emerge when maximizing corpus coverage
while minimizing the model size. The algorithms are languag

independent in such a way that any suitably preprocessee lar
text corpus can be used as training data. The corpus may
even include words and sentences in several different &gesi
Both packages have first been utilized for unlimited vocaiyul
speech recognition at Helsinki University of TechnologKKi)

[1, 2]. As the main results, itis shown that the tools can esse
fully produce effective language models for different laages
without the need for expert knowledge of the target language
speech recognition, the language models have been sudbessf
used to cover a practically unlimited vocabulary in threglag
tinative languages: Finnish, Turkish and Estonian [2]. éDth
remarkable results are the online speech recognition dambs
PASCAL Morpho Challenge competitions [3].

2. Morfessor

Morfessor is an unsupervised data-driven method for the seg
mentation of words into morpheme-like units. The generaaid

is to discover as compact a description of the input textu®gs
possible. Substrings occurring frequently enough in s
ferent word forms are proposedm®rphs and the words in the
corpus are then represented as a concatenation of morghs, e.
‘hand, hand+s, left+hand+ed, hand+ful’. Through maximum
a posteriori optimization (MAP), an optimal balance is duig
between the compactness of the inventory of morphs, i.e., th
morph lexiconversus the compactness of the representation of
the corpus.

It has been shown (e.g.,[4, 5, 6, 7, 8]) that models based
on the above approach produce segmentations that resemble
linguistic morpheme segmentations, when formulated mathe
matically in a probabilistic framework or equivalently ngithe
Minimum Description Length (MDL) principle [9]. Similar|ya
hierarchical Dirichlet model has been used in combinatigh w
morph bigram probabilities [10].

The Morfessor model has been developed over the years,
and different model versions exist. Two versions are diseds
in the current paper: the oldest and simplest so-calledes-
sor Baselinealgorithm, as well as the most recent and most ad-
vanced so-calleMorfessor Categories-MARIgorithm.

2.1. Morfessor Baseline

The Morfessor Baseline algorithm was originally introddide

[7], where it was called the “Recursive MDL" method. Addi-
tionally, the Baseline algorithm is described in [1]. ThesBa
line method is acontext-independergplitting algorithm. This
means thamorphotactic violationsnay occur; for instance, the
English segmentations ‘wing+s’ and ‘s+wing’ are equallpdpo
according to the model. Additionallyyndersegmentatioof
frequent strings andversegmentatioof rare strings are fairly
common errors, because the most concise representation is o



tained when any frequent string is stored as a whole in the lex
con (e.g., English ‘having, soldiers, states, seemed’greds
infrequent strings are better coded in parts (e.g., ‘orgmth
s+ed+it+ious, vol+can+o’).

Morfessor Baseline can be used alone or as a baseline for
bootstrapping thecontext-dependen€ategories-MAP model
version.

2.2. Morfessor CategoriesMAP

Morfessor Categories-MAP makes use of morph categories; th
segmentation of the corpus is modeled using a Hidden Markov
model (HMM) with transition probabilities between cateigsr
and emission probabilities of morphs from categories. &hre
categories are usedrefix, stemandsuffixand an additional
non-morpheméor noisg category. More details can be found
in [11].

The more advanced structure of Categories-MAP typi-
cally enables this model version to obtain more accurate mor
pheme segmentations than the Baseline method (when evalu-
ated against a linguistic gold standard). For instance Ette
glish morph ‘-s’ is identified as a good suffix candidate, vhhic
can occur in the word ‘wing+s’, but it is not proposed word-
initially in ‘swing'.

2.3. Grapheme-to-phoneme mapping

In many languages (e.g., Finnish, Estonian, Turkish), the
spelling of a word indicates the pronunciation of the word.
More or less, there is a one-to-one correspondence beteten |
ters (graphemes) and phonemes. When splitting the word into
parts, the pronunciation of the parts in isolation does fiféerd
much from the pronunciation of the parts in context.

To cope with less obvious grapheme-to-phoneme mappings
(e.g., inlanguages such as English and French), maximun lik
lihood alignment can be performed. In the first stage, sgelle
words are split using Morfessor. Next, segmentations of the
pronunciations of the words are obtained using maximum-
likelihood alignment of the characters in both strings (&pg
vS. pronunciation). Breaks are inserted into the prontiacia
at the locations given by the alignment.

In cases where one spelled morph gets different pronun-
ciations in different contexts the different variants arade
unique through numbering. The language model can then
learn which variant to use in which context. For example, in
English this would correspond to having two versions of the
morph ‘hid’: *hid1’ (pronounced [hid]) and ‘hid2’ (pronowed
[hald]). These morphs can be used, e.g., in the word fornas ‘hi
vs. ‘hiding’: ‘hid1’ vs. ‘hid2 +ing’.

3. VariKN language modeling toolkit

Kneser-Ney smoothing [12] has been shown to be an excellent
smoothing method for n-gram models [13, 14]. The VariKN
language modeling toolkit is a specialized toolkit for kg,
pruning and growing Kneser-Ney smoothed models.

For most smoothing methods, the probability distributions
of n-grams of one order do not depend on the existence of
the probability distributions of other orders. In KnesesyN
smoothing, a lower order probability distribution is moeito
take into account what is modeled by the higher order prdbabi
ity distributions.

3.1. About variable order language models

A simple way of choosing, which n-grams to include in the lan-
guage model is to determine the length of the n-grams to be
modeled and include all n-grams up to that order that wene see
in the training set. This is called a full model in this paper.
Full models are inefficient, since some n-grams affect tteg-ov
all probability distribution only insignificantly while sne other
n-grams are likely to never be used. The n-grams that do not af
fect the overall probability distribution much can be redby
pruning: if removing the n-gram does not change the likeltho
of the training data significantly, the n-gram can be removed
Count cutoffs, on the other hand, remove the n-grams tha hav
been seen fewer times than some set threshold. The motivatio
is that the infrequently seen n-grams are not likely to bensee
again and the probability estimates are not likely to be ateu
since only little data was found for estimating the paramsete
Variable order n-gram models are a good match for sub-
word based language modeling. The modeling context can be
extended over several shorter morphs if necessary. Onltee ot
hand, if a long context does not help in predicting a morph,
memory can be saved by only using a few low order n-grams.

3.2. Likelihood pruning and count cutoffs

Several methods exist for pruning n-gram models [16, 17, 18]
Most of the methods do not take into account that with Kneser-
Ney smoothing, the probability distributions of differearters
depend on each other. Kneser pruning does take into account
this fact, but there are other approximations that degrhde t
performance of the algorithm. The VarikKN toolkit implemsnt

a pruning algorithm, which has been shown to give signifigant
better results for Kneser-Ney smoothed models than the othe
smoothing methods [19].

Often, count cutoffs are implemented so that the n-grams
seen less frequently than a threshold are removed before the
model is estimated. Additionally, the toolkit implements- a
other variant: When n-grams are removed the lower order dis-
tributions are modified accordingly. Good results are often
achieved by combining likelihood pruning and count cutoffs

3.3. Growing

Generally, the starting point of the pruning algorithms feil&
model, possibly with count cutoffs. However, if a high order
gram model is desired, it is often impossible to construchsa
model due to high memory consumption. Growing algorithms
start from a small model and use a greedy search to find the
most useful n-grams [20, 21]. They can generate high order
models, since only some n-grams from each model order are in-
cluded. The VariKN toolkit implements an growing algorithm
which takes into account the properties of Kneser-Ney shmoot
ing and can provide an excellent starting point for the prgni
algorithms [19].

4. Putting it all together

Figure 1 depicts the whole process of generating a VariKN lan
guage model based on morphs learned in an unsupervised way
using Morfessor:

1. Morfessor. A morph segmentation model is trained us-
ing Morfessor. Both the Morfessor Baseline and Categories-
MAP model versions are publicly available under GNU GPL
(General Public License) atttp://ww. ci s. hut.fi/
pr oj ect s/ nor pho/ .



Morfessor takes as input a list containing all word forms oc-
curring in the text corpus together with the numbers of occur
rences of the words. In practice, if the Morfessor Baseligie v
sion is used, morph segmentations that are closer to litiguis
morpheme segmentations are usually obtained if each werd fr
quency is set to 1 rather than its real value. This reduces the
dominance of frequent word forms in the model.

If the Morfessor Categories-MAP version is used, word fre-
guencies need not be altered. One model parameter (the so-
called perplexity threshold) must be set to an appropriakeer

The value depends on the size of the corpus and the morpholog-
ical structure of the language. Try a value between 10 and 50 t
begin with.

2. Viterbi segmentation. Itis possible to train a segmenta-
tion model on some set of words and then use this model to seg-
ment a larger set of words using the Viterbi algorithm (icleld
in the Morfessor software packages). This may be necessary
if the Morfessor Baseline algorithm is used and the resgiltin
morph inventory is too large (for some intended purpose&j)c&i
the morph inventory discovered by the Morfessor Baselige-al
rithm is larger the more training data there is, the trairiegcan
be reduced by filtering out the least frequent word forms. The
rarest words are excluded from the model training, but Haaet
less segmentations for these words can be obtained by b&ng t
Viterbi algorithm to select the most likely segmentationad-
ing to the (smaller) model.

3. Pronunciation of the morphs. If there is no di-
rect grapheme-to-phoneme mapping in the language studied,
maximum-likelihood alignment can be performed in order to
construct a pronunciation lexicon of morphs (see Sec. 28).
input, a standard pronunciation lexicon of words is neagssa
for at least part of the words. The necessary program will
be available athttp://wwv. ci s. hut.fi/projects/
nor pho/ .

4, Modeling of word and sentence boundaries. In word-
based n-gram models, each lexicon entry is implicitly assiim
to end in a word break. No such assumption can be made for
a lexicon based on sub-word units. One way of modeling word
breaks is to mark word-final morphemes using a special symbol
e.g., wor d# break s# are# easi |y# nodel ed#.
Another (usually preferable) way is to add a special word
break token between each split word, evgpr d <w> br eak
s <w> are <w> easi |y <w> nodel ed <w>. The
language model can be estimated as usual and is also cajpable o
predicting where the word breaks should be placed.

Sentence breaks are often modeled similarly; special tof@n
sentence staks> and end</ s> are added into the training
corpus. Itis customary not to use the contexts that crosa-a se
tence boundaries in the n-gram models.

5. Estimation of an n-gram language model. The
VariKN language modeling toolkit is available under GNU
LGPL (Lesser General Public License)rtt p: / / vari kn.

f or ge. pascal - net wor k. or g/ . For the estimation of an
n-gram model, suitable growing and pruning parameters teeed
be determined. It is usually best to grow as large model as pos
sible for the pruning algorithm. For producing a relativetgall
model, we suggest usirigl for growing and0.25 for pruning.
The training set needs to be partitioned into a set, whera-the
gram probabilities are trained on and a held-out set, ontwhic
the language model discount parameters are optimizederé th
is a sufficient amount of training data left in the main seyi&s
able size for the held-out set is around 100 000 tokens.

6. Evaluation of the language model. Language model
performance is often measured by calculating how well the
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Figure 1: Putting it all together: how to train segmentation
model using the Morfessor Baseline algorithm, and how te fur
ther train an n-gram model based on morphs.

probability distribution of the model fits test data. Theuless
usually normalized by the number of words in the test set; als
the scores of subword based models should be normalized by
the number of words for meaningful results. The VariKN tablk
reports both the cross-entropy and perplexity of the maslatr

tive to a test set.

5. Performance

A few experimental results illustrate the benefits of using t
proposed tools.

Table 1 shows how accurately Morfessor succeeds in the
placement of morpheme boundaries on four data sets of dif-
ferent languages (English, Finnish, Turkish, and the dtadé
Arabic spoken in Egypt). Typically, the Categories-MAP rabd
version outperforms the Baseline version, but for the “rhorp
logically poor” language English, the difference is ratberall.

Table 1: Morpheme segmentation accuracy [%] obtained by
Morfessor in comparison to a linguistic gold standard. Tlge fi
ures are F-measures (harmonic mean of precision and recall)
of the discovery of morpheme boundaries. The sizes of the dat
sets are also shown (token and type counts).

English Finnish Turkish EgyptArabic

Baseline 66.0 54.2 51.3 41.7
Categories-MAP 66.2 66.4 70.7 68.1
Word tokens 24M 32M 17M 150k
Word types 170k 1.6M 580k 17k

Table 2 summarizes speech recognition experiments on four
languages: the Finnish and Turkish results have earliar bee
ported in [3], and the Estonian results in [22]. The figuressh
that morph-based recognition outperforms standard was¢h
recognition, except for Egyptian Arabic. The Arabic data se
is very small, and the number of different word forms is sinall
which reduces the benefits of morph-based modeling. Additio
ally, the Arabic “templatic” morphology with non-contigus
morphemes poses special difficulties. It is pleasant tolsate t
the morphs obtained in an unsupervised manner from unan-
notated text lose very little (if any) to morphs obtainednfro
manually designed morphological analyzers. (It can furthe
be noted that the more advanced Morfessor Categories-MAP
version does not outperform the simpler Baseline methdd; al
morphfigures in Table 2 correspond to the Baseline method.)

Figure 2 shows the n-gram distribution by n-gram order; a
full 5-gram model and a grown model are compared. The mod-
els were trained from a Finnish corpus of 150 million words
(460 million morphs) and include approximately 200 million
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Figure 2: N-gram distribution by n-gram order for Finnish; a
full 5-gram model and a grown model.

grams each. The higher order n-grams are useful because the
grown model obtains lower perplexity on the test set than the
full 5-gram model; 7600 for the grown model and 8600 for the
full model. Note that the perplexity of some languages is nat
urally much higher than English due to the morphology of the
language. If the perplexity is normalized by the number of se
tences instead of the number of words, the values for Finnish
and English are similar [19].

Table 2: Automatic speech recognition performance: word er-
ror rates are reported for three alternative approachesarst
dard word model,morpts obtained using the Morfessor Base-
line algorithm, andgrammaticaimorphs obtained using manu-
ally designed morphological analyzers.

Finnish Estonian Turkish EgyptArabic
word 17.9 53.1 32.6 57.7
morph 9.8 39.4 31.4 58.8
grammatical 9.6 38.7 31.4 59.1

6. Conclusion

Descriptions and instructions for using two recent openc®u
software packages developed at Helsinki University of Tech
nology are presented in this paper. Unsupervised segrimmtat
of words into morpheme-like units is performed by Morfessor
and variable length n-gram language models are built usiag t
VariKN toolkit. The tools are language independent and ¢éasy
use. This paper shows how they can be used to construct lan-
guage models for large vocabulary speech recognition iti-mul
ple languages, where a traditional word-based languageimod
performs poorly. The tools also have other applicationexit t
understanding, information retrieval and machine traisia
Unsupervised machine learning techniques like these are pa
ticularly well suited for the development of systems forsles
resourced languages, because they can operate on rawtext da
and do not depend on manually designed morphological or syn-
tactical analyzers or annotated data.
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