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Abstract. Automatic image annotation has attracted a lot of attention
recently as a method for facilitating semantic indexing and text-based
retrieval of visual content. In this paper, we propose the use of multiple
Self-Organizing Maps in modeling various semantic concepts and anno-
tating new input images automatically. The effect of the semantic gap is
compensated by annotating multiple images concurrently, thus enabling
more accurate estimation of the semantic concepts’ distributions. The
presented method is applied to annotating images from a freely-available
database consisting of images of different semantic categories.

1 Introduction

Content-based image retrieval (CBIR) addresses the problem of finding images
relevant to the users’ information needs, based principally on low-level visual
features for which automatic extraction methods are available. Due to the se-
mantic gap, i.e. the weak connection between the high-level semantic concepts
that humans associate with images and the low-level features that computers
are relying upon, developing this kind of systems has proven to be challenging.

One approach to improve retrieval results is to group somehow similar im-
ages together and use these groupings to filter out non-relevant images for the
given query. Unfortunately, semantic categorizations often do not exist and they
are difficult to produce automatically. Still, low-level classification and, in some
cases, also certain semantic categorizations are possible with current automatic
methods. Examples of low-level classification are distinguishing photographs
from computer-generated graphics [1] and separating color and grayscale images.
Certain types of semantic image categories can be distinguished with specialized
classifiers which typically perform two-class classifications to the database im-
ages [2, 3, 1]. However, constructing such specific detectors for all categories that
might appear in real-world images is clearly infeasible.
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Instead of strict classification, a somewhat more permissive approach is the
automatic annotation of images (see e.g. [4–8]), where the input images are
labeled with any of the available annotations if they fulfill the corresponding
criteria. Unlike in classification, we do not assume that the database can be di-
vided to a set of classes but rather that the images having a certain annotation
constitute the representation of that semantic concept. Thereby, a single image
may contain multiple annotations, and, on the other hand, the annotations may
be incomplete, i.e. it is assumed that the database may contain some images
of a certain concept that do not have the corresponding annotation. Instead
of completely automatic methods, one may also apply semi-automatic annota-
tion [9, 12], in which some additional information is used to derive annotations to
the images. Recorded user interaction is usually used for this purpose. In many
ways, automatic annotation is an inverse to the problem of keyword-based image
retrieval, which can be considered as automatic illustration of textual concepts.

An even more challenging task is to target the annotations into specific re-
gions in the images, i.e. region naming, partly due to the difficulty of robust image
segmentation. This is naturally closely related to object recognition, although
the approach is again more inexact as model-based recognition of thousands of
objects in large image databases remains an unsolved problem.

In this paper, we approach the problem by assessing simultaneously multi-
ple images sharing a semantic concept and jointly annotating the whole group.
Our method can be applied to single images as well, but with a larger group of
images of a given concept available, the concept’s probability distribution can
be estimated more accurately. Here, the focus is on annotation of whole images
with global features instead of targeting image regions or blobs, so we do not
discuss region naming. Since effective image understanding is generally not fea-
sible without segmentation, the global approach is bound to have its limitations,
although they can be somewhat alleviated with the use of several examples of
the semantic concepts.

The rest of the paper is organized as follows. Our approach on using Self-
Organizing Maps in image indexing and retrieval is described briefly in Section 2.
In Section 3, we extend the use of multiple image indices from representing on-
line image queries into modeling various semantic concepts and annotating new
images automatically. Annotation experiments using a database of 101 object
categories is presented in Section 4. Section 5 then concludes the paper.

2 SOMs in Image Indexing and Retrieval

The Self-Organizing Map (SOM) [10] is a powerful tool for exploring huge
amounts of high-dimensional data. It defines an elastic, topology-preserving grid
of points that is fitted to the input space. It is often used for clustering or vi-
sualization, usually on a two-dimensional regular grid. The distribution of the
data vectors over the map forms a two-dimensional discrete probability density.
Even from the same data, qualitatively different distributions can be obtained
by using different feature extraction techniques.



2.1 Multi-Feature Image Indexing

Using the PicSOM system, we have previously studied CBIR with several par-
allel SOMs trained with separate feature data simultaneously (see e.g. [11, 12]).
After training the SOMs, their map units are connected with the images of the
database by locating the best-matching map unit (BMU) for each image on each
SOM. As a result, the different SOMs impose different similarity relations on
the images. The task of the retrieval system then becomes to select and combine
these similarity relations so that their composite would approximate the human
notion of image similarity in the current retrieval task as closely as possible.

The system can also utilize features and indexing methods for different types
of image subsets [12]. Certain feature extraction methods are not meaningful
for all kinds of images, e.g. extracting color features may be appropriate only
to color images, and shape features requiring segmentation are valid for images
containing salient objects and not e.g. for landscape or textural images. Also,
it may be the case that a certain feature is available only for a portion of the
database. Alternatively, the pertinent information of a subset can be contained
in set membership, i.e. the subset consists of images having a specific property,
such as the presence of a certain automatically detected object.

2.2 Relevance Feedback

During a retrieval session with the PicSOM system, the user marks images that
she considers relevant, and the remaining ones are implicitly regarded as non-
relevant. As the first step, the SOM units are awarded a positive score for every
relevant image mapped in them resulting in an attached positive impulse. Like-
wise, associated non-relevant images result in negative scores and impulses. Let
us denote the cumulative sets of relevant and non-relevant images up to query
round r on mth SOM as D+(r, m) and D−(r, m). As the positive and negative
scores, we use the inverses of the cardinalities of the corresponding image sets.
Then, for each SOM, these values are mapped from the shown images (rated ei-
ther as relevant or non-relevant by the user) to their corresponding BMUs where
they are summed. Thus, for the kth map unit, we obtain the following response:

x[k]rm =
1

|D+(r, m)|
∑

i∈D+(r,m)

δ(cm(i), k)− 1
|D−(r, m)|

∑
i∈D−(r,m)

δ(cm(i), k) (1)

where cm(i) denotes the BMU of the image i on the mth SOM. This way, we
obtain a zero-sum sparse value field on every SOM in use.

Due to the topology preservation of the SOM, we are motivated to spread the
relevance information provided by the user also to the neighboring map units
of the BMUs. This can be done by convolving the sparse value fields in with
a two-dimensional tapered window function. For computational reasons, this is
implemented as one-dimensional horizontal convolution followed by one-dimen-
sional vertical convolution. Figure 1 illustrates how the positive and negative
responses are first mapped on a 16×16-sized SOM to produce the sparse value
field and how the responses are expanded in the convolution.



⇒

Fig. 1. An example of how a SOM surface is convolved with a window function. Left:
the selected and rejected images are shown with white and black marks, respectively.
Right: the convolution result, where relevance information is spread around the centers.

2.3 Feature Combination

As the response values of the parallel indices are mutually comparable, we can
determine a global ordering and the overall best candidate images. By locating
the corresponding images in all SOM indices, we get their scores with respect to
different features. The total scores for the candidate images are then obtained
by summing up the mapwise values in their BMUs after the convolution.

Content descriptors that fail to coincide with the user’s conceptions mix pos-
itive and negative user responses in the same or nearby map units. Therefore,
they produce lower scores than those descriptors that match the user’s expec-
tations and impression of image similarity and thus produce areas or clusters of
high positive response. As a consequence, the parallel content descriptors and
indices do not need explicit weighting. In image retrieval, this method for com-
bining parallel descriptors automatically has been found out to be able to exceed
or at least follow the performance of the best single image descriptors [11].

3 Modeling Semantic Concepts

In addition to the relevant and non-relevant image sets during online processing,
the sparse value fields can also be constructed with any other image subsets,
such as groups of images with semantically similar content.

3.1 Concept Representation with Class Distributions

Different features’ capabilities in mapping semantically similar images near each
other in the corresponding feature spaces can be studied visually by consider-
ing ground-truth semantic image classes as positive impulses on the sparse value
fields. The convolution step is again useful to spread the concept information and
also to ease visual inspection on large SOMs, as e.g. in class distribution visual-
izations shown in [11]. Furthermore, the discrimination abilities of the represen-
tations of the classes on the different SOMs can be analyzed quantitatively [13].



These class distributions can be considered as estimates of the true distri-
butions of the semantic concepts in question, not on the original feature spaces,
but on the discrete two-dimensional grids defined by the used SOMs. Thereby,
instead of modeling the density in the high-dimensional feature spaces, we are
essentially performing kernel-based estimation of class densities at the discrete
distributions over the SOM surface. Then by enumerating the units of the two-
dimensional SOM grid, we can represent the distribution as a vector x ∈ RK of
length equaling the number of SOM units.

As an example, the most representative images of a given semantic concept
can be obtained by locating the SOM units, and the images mapped to these
units, that have highest responses on the estimated class distribution. Combining
the responses of multiple features can be performed similarly as in the retrieval
stage (Section 2.3), after which we can obtain the overall most representative
image or images of a specific concept regarding all the used feature extraction
methods (see Figure 2). Secondly, the shortcomings of different features can
be examined by studying the images that yield a strong response on the class
distributions but do not share the semantic content in question.

An important source of information about semantic correspondence between
images in an unannotated database is the storage of relevance assessments of
the system’s users for later utilization. The relevance evaluations provided by
a user during a query session partition the set of displayed images into classes
of relevant and nonrelevant images with respect to that particular query target.
The fact that two images belong to the class of relevant images during the same
query is a strong cue for similarities in their semantic contents.

3.2 Automatic Annotation of Image Groups

Given an unannotated image or a group of semantically similar images, the goal
of automatic annotation is to attach relevant annotations to the input images.
For this purpose, some method for estimating the joint distribution of image
representations and semantic concepts is required. We utilize an existing ground-
truth database for which annotations are available and construct a separate
model for every semantic concept present in the training data.

The responses invoked by different concept models on the SOMs can be
directly used in automatic annotation. The input image group which we want
to annotate is used to construct a class distribution xq which is then compared
to the existing models of semantic concepts xi. This approach has the distinct
advantage that it inherently supports the annotation of image groups; with more
reference images of a given concept available, the estimate of the corresponding
distribution can be expected to become more accurate.

In this paper, we experiment with five similarity or distance measures. First
of all, whether or not to perform the convolution step on xq yields two alter-
native methods. By carrying out the convolution step we end up measuring the
similarity of two estimated probability distributions. The similarity of xq and
xi on the SOM grids can be measured in many ways; e.g. with 1) dot product



sDP(xq,xi), 2) Euclidean distance dEU(xq,xi), 3) intersection

sIN(xq,xi) =
∑K

k=1 min(xq[k], xi[k])∑K
k=1 xq[k]

, (2)

and 4) Jeffrey divergence

dJD(xq,xi) =
K∑

k=1

(
xq[k] log

xq[k]
x̂[k]

+ xi[k] log
xi[k]
x̂[k]

)
, (3)

where x̂[k] = (xq[k] + xi[k])/2 is the mean distribution.
Secondly, the input image group can be associated with the semantic concepts

that invoke the strongest positive responses on just the BMUs, not the neighbor-
hoods, of the images to be annotated. This leads to measure 5, corresponding to
omitting the smoothing convolution operation on xq before calculating the dot
product between xq and xi.

Regardless of the measure used, the actual value of the similarity measure is
an indication of annotation confidence. This can be utilized e.g. by defining an
annotation threshold or emphasizing annotations that have high confidence.

4 Experiments

4.1 Database and Settings

In previous works on automatic annotation it has been common to use images
from Corel Photo CDs (e.g. [4–8]). These images are of high quality and have
been grouped by Corel in thematic groups. Ground-truth keyword annotations
are also available for the images. Unfortunately, there is no single uniform Corel
image set and thus the Corel databases different research groups possess are
usually not identical. In addition, the Corel images are copyrighted and no longer
even available. For example, the data set of Barnard et al. [5] has been made
available1, including segmentations and extracted features, but not the original
images which we would need in order to properly apply our method to the data.
We have also used Corel images in most of our earlier experiments (e.g. [11–13]).

Due to the non-free nature of the Corel database, we decided to use the 101
Object Categories database [14] of the PASCAL object recognition challenge2

in the following experiments. The database contains 9197 images divided into
101 semantic categories, each containing between 31 and 800 images, and a
background class of 520 miscellaneous images. The database has been gathered
mostly for object recognition purposes and therefore does not contain detailed
imagewise annotations. Still, the provided categorization can be used as a test
setting for the annotation approach as well. Images from 16 random categories

1 http://vision.cs.arizona.edu/kobus/research/data/jmlr 2003/
2 http://www.pascal-network.org/challenges/VOC/



Fig. 2. Some example images from the 101 Object Categories database. The shown
images are the most representative images of the following categories: beaver, elec-
tric guitar, faces easy, ferry, grand piano, hedgehog, llama, menorah, pagoda, revolver,
rhino, schooner, scissors, starfish, stegosaurus, and stop sign.

of the database are displayed in Figure 2. Specifically, the shown images are the
most representative images of these 16 categories, as defined in Section 3.1.

From each category, ten random images were selected to the test set and the
remaining images were used to construct the category model on the SOM indices.
Image groups of 10, 5, 2, and 1 images were then annotated by using each of the
five measures (Section 3.2) of the similarity between the image group and the
category models. All the ten images in the test set were always used in measuring
the performance; for image groups smaller than ten, the test images were split
into multiple groups and the results are the average of all the respective runs.

As visual features, we used a set of MPEG-7 [15] descriptors suitable for still
images, viz. Scalable Color, Dominant Color, Color Structure, Color Layout,
Edge Histogram, Homogeneous Texture, and Region Shape. These descriptors
were extracted from every image in the database and 64×64-sized SOMs (K =
4096) were trained for each of them. A triangular window of four map units in
length was then used in spreading the responses of the sparse value fields.

4.2 Measuring Annotation Performance

Measuring the performance of automatic image annotation requires some con-
sideration. The straightforward approach is to compare predicted annotations
to the manual ones and measure the overlap. In [5], the following measure was
used for this purpose:

E =
r

n
− w

N − n
(4)

where r and w are the numbers of words predicted right and wrong, n is the num-
ber of manual annotations for the image and N is the size of the vocabulary. In
practice the manual annotations are often incomplete. Appropriate annotations
may be missing from individual images, especially ones describing the back-
ground of the image or ones being very general, since humans tend to overlook
obvious but subsidiary visual cues when describing image content. Synonyms
can also be problematic if the annotations were generated without a synonym-
free set of allowed keywords. As an example, the supplied annotations for the



Table 1. The results of the annotation experiments for image groups of different sizes.
On each cell, the three reported values are MRR, N1 and N5. In total there were 101
semantic categories and a background category.

group size 1) dot product 2) Euclidean 3) intersection 4) Jeffrey div. 5) no convol.

10 0.755, 64, 90 0.679, 56, 81 0.870, 82, 95 0.868, 83, 93 0.788, 69, 93
5 0.654, 54, 83 0.633, 54, 75 0.720, 62, 86 0.752, 68, 86 0.693, 59, 84
2 0.491, 37, 64 0.512, 41, 64 0.494, 37, 64 0.541, 43, 67 0.518, 40, 66
1 0.391, 27, 52 0.407, 31, 51 0.388, 27, 52 0.403, 29, 53 0.407, 29, 52

Corel database contain distinct annotations such as “automobile” and “car”. As
a result, the observed annotation performance may be overly pessimistic. When
comparing different annotation methods, this is, however, not crucial, since all
methods encounter the same missing annotations. The word frequency of the
annotations should also be taken into account. Annotating images with general
concepts like “sky” or “landscape” is successful with a higher probability than
with very specific terms.

In our current experiment setting the situation is more straightforward. Since
each image has exactly one correct annotation (i.e. its category) and the word
frequency is relatively flat, we can measure the rank of the correct category for
each annotation task. In order to be useful for annotation, the rank of the correct
category should be low; a high rank can be deemed an annotation failure and
the actual rank is inconsequential. Therefore we record the inverses of the ranks
and by averaging over the 101 categories, we obtain the mean reciprocal rank,
MRR. Furthermore, we record the number of categories for which the rank of
the correct category is one (N1) and for which it is less or equal than five (N5).

4.3 Results

The annotation results for image group sizes 10, 5, 2, and 1 with the five tested
similarity or distance measures are shown in Table 1. It can be seen that the size
of the image group is a critical factor in annotation performance as increasing
the group size improves results considerably in all cases. This behavior was,
naturally, to be expected since the probability distributions of the semantic
concepts can be modeled more accurately with more reference images available.

The selection of the similarity measure is less crucial. The best results for
groups of ten images are obtained using the intersection and Jeffrey divergence
measures. With them, all but six3 and eight4 categories, respectively, are anno-
tated correctly among the five highest-scoring annotations. For the 16 categories
represented in Fig. 2, the five best annotations for groups of ten reference images
per category and using the intersection measure are listed in Table 2.

Due to the semantic gap, the performance of single image annotation re-
mained rather poor; less than one third of the single test images were annotated

3 anchor, ant, barrel, cannon, crab, and wild cat.
4 anchor, ant, barrel, cannon, crab, emu, platypus, and wild cat.



Table 2. Five best annotations for a sample of 16 object categories (see Fig. 2) with
ten reference images per category and using intersection as the similarity measure.

category annotations

beaver crab, emu, beaver, llama, kangaroo
electric guitar electric guitar, accordion, trilobite, sea horse, mandolin
faces easy faces easy, faces, dalmatian, lamp, flamingo
ferry ferry, helicopter, ketch, schooner, laptop
grand piano grand piano, rooster, okapi, mandolin, gramophone
hedgehog emu, hedgehog, courgar face, kangaroo, okapi
llama llama, crocodile head, elephant, gerenuk, okapi
menorah menorah, garfield, sunflower, starfish, rooster
pagoda pagoda, minaret, accordion, trilobite, cellphone
revolver revolver, stapler, wrench, umbrella, dragonfly
rhino crocodile, llama, emu, elephant, rhino
schooner schooner, ketch, buddha, ferry, helicopter
scissors scissors, snoopy, wrench, pigeon, headphone
starfish starfish, strawberry, scorpion, sunflower, ant
stegosaurus stegosaurus, panda, cannon, brontosaurus, octopus
stop sign stop sign, strawberry, flamingo head, yin yang, soccer ball

correctly as the first annotation, among the five highest-scoring annotations the
correct one was in about half of the cases. Also, with smaller image groups the
differences between the tested similarity methods are less distinctive. Most no-
tably, measuring the responses of the category models directly on the BMUs of
the input images (measure 5) seems to work relatively better with small image
groups. Overall, Jeffrey divergence seems to perform relatively well on image
groups of any size and could thus be used as a default similarity measure.

5 Conclusions and Future Directions

In this paper, we proposed a method for applying multiple SOMs in represent-
ing semantic concepts of images and automatic image annotation. The density
models for different semantic concepts are produced using an annotated image
collection as a ground truth. New image groups are then annotated by compar-
ing them to these concept models on the SOM grids. The presented methods for
measuring the similarity between database subsets can also be used for other
purposes, e.g. detecting synonyms or similar semantic concepts, and combining
such stored user interaction records that had similar semantic query targets.

Due to the weak connection between semantic concepts and low-level visual
features, the task of automatic annotation based on global features is bound to
have only limited success. By visual inspection of the failed categories, one can
observe remarkably high variation and diverse backgrounds. For successful an-
notation of this kind of images, the method needs to be extended from the image
level to subobjects, based either on image segmentation, using fixed image zones
or calculating interest points from the images. Especially on the 101 Object



Categories database, the lack of separation of the salient object from the back-
ground is a crucial impediment. In any event, even the global approach can reach
quite prominent performance by annotating multiple images concurrently. The
method presented in this paper is directly applicable to and will undoubtedly
be an asset also when dealing with image segments or other subobjects.

The experiments of this paper were carried out using a database consisting
of semantic object categories. Further tests and consideration are needed for
annotations of different levels of specificity, i.e. by using databases that have
imagewise annotations. Such databases should, however, be freely available to
researchers to facilitate comparisons of different methods.
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