(©2010 Oxford University Press. This is a preprint version of 'Global mod-
eling of transcriptional responses in interaction networks’ by Lahti et al.,
Bioinformatics. Personal use of this material is permitted. For other pur-
poses, consult the copyright holder.



Vol. 00 no. 00 PREPRINT
Pages 1-8

Global modeling of transcriptional responses in

interaction networks

Leo Lahti'* Juha E.A. Knuuttila? and Samuel Kaski !

L Aalto University School of Science and Technology, Helsinki Institute for Information Technology
HIIT and Adaptive Informatics Research Centre, Department of Information and Computer Science,
P.O. Box 15400, FI-00076 Aalto, Finland. 2Neuroscience Center, University of Helsinki, P.O. Box 54,

FI1-00014, Finland

ABSTRACT

Motivation: Cell-biological processes are regulated through a
complex network of interactions between genes and their products.
The processes, their activating conditions, and the associated tran-
scriptional responses are often unknown. Organism-wide modeling
of network activation can reveal unique and shared mechanisms
between physiological conditions, and potentially as yet unknown
processes.

Results: We introduce a novel approach for organism-wide discovery
and analysis of transcriptional responses in interaction networks. The
method searches for local, connected regions in a network that exhibit
coordinated transcriptional response in a subset of conditions. Known
interactions between genes are used to limit the search space and to
guide the analysis. Validation on a human pathway network reveals
physiologically coherent responses, functional relatedness between
physiological conditions, and coordinated, context-specific regulation
of the genes.

Availability: Implementation is freely available in R and Matlab at
http://www.cis.hut.fi/projects/mi/software/NetResponse

Contact: leo.lahti@iki.fi, samuel.kaski@tkk.fi

1 INTRODUCTION

Coordinated activation and inactivation of genes through molecula

Connectivity magLambet al,, 2006) where a number of chemical
perturbations on a cancer cell line were used to reveal shared
transcriptional responses between disparate conditions to enhance
screening of therapeutic targets.

Transcriptional responses have been modeled using so-called
gene expression signatur@idu et al, 2006). A signature describes
a co-expression state of the genes, associated with particular
conditions. Well-characterized signatures have proven to be
accurate biomarkers in clinical trials, and hence reliable indicators
of cell’s physiological state. Disease-associated signatures are often
coherent across tissues (Dudktyal.,, 2009) or platforms (Het al,,
2006). Commercial signatures are available for routine clinical
practice (Nuyten and van de Vijver, 2008), and other applications
have been suggested recently (Duddéwl., 2009). The established
signatures are typically designed to provide optimal classification
performance between two particular conditions. The problem with
the classification-based signatures is that their associations to the
underlying physiological processes are not well understood (Lucas
et al, 2009). Our goal is to enhance the understanding by deriving
transcriptional signatures that are explicitly connected to well-
characterized processes through the network.

We introduce and validate a novel approach for organism-
wide discovery and analysis of transcriptional response patterns in
jnteraction networks. Our algorithm has been designed to detect

interactions determines cell function. Changes in cell-biologicai@"d model local regions in a network, each of which exhibits

conditions induce changes in the expression levels of co-regulat
genes in order to produce specific physiological responses. A
huge body of information concerning cell-biological processes

including gene ontologies ) - L
20086), predefined conditions (Ideket al., 2002; Sanguinettt al, 2008).

is available in public repositories,
(Ashburner et al, 2000), pathway models (Schaefer,

regulatory information (Loots and Ovcharenko, 2007), and protein

egjmilar transcriptional response in a subset of conditions. The

Igorithm is independent of predefined classifications for genes or
conditions. This extends the previous network-based approaches
that detect differentially expressed subnetworks between two

Organism-wide analysis can reveal unique and shared mechanisms
between disparate conditions (Lageal, 2008), and potentially

interactions (Kerrieret al,, 2007). Less is known about the contexts
in which these processes are activated (Racklinal, 2006), &S Y&t unknown processes (Naet al, 2007). The proposed

and how individual processes are reflected in gene expressio'NetReSponse algorithm provides an efficient model-based tool for
(Montaneret al, 2009). Although gene expression measurements'simultaneous feature selection and class discovery that utilizes
provide only an indirect view to physiological processes, theirknown intera_ctions between genes to guide the analysis._l_‘\’elated
wide availability provides a unique resource for investigating 2PProaches include cMonkey (Reiesal, 2006) and a modified

gene co-regulation on a genome- and organism-wide scale. Thirsion of SAMBA biclustering (Tanagt al, 2004). These are
allows the detection of transcriptional responses that are sharegpPlication-oriented tools that rely on additional, organism-specific

by multiple conditions, suggesting shared physiological mechanispformation, and their implementation is currently not available for

with potential biomedical implications, as demonstrated by theMOSt organisms, including human. We provide a general-purpose

algorithm whose applicability is not limited to particular organisms.

*to whom correspondence should be addressed
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A detected subnetwork with condition—specific responses

Interaction network
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Fig. 1. Organism-wide analysis of transcriptional responses inmagmupathway interaction network reveals physiologicallyerent activation patterns and
condition-specific regulation. One of the subnetworks &dandition-specific responses, as detected by the NedRsslgorithm is shown. The expression
of each gene is visualized with respect to its mean level ofesgion across all samples.

NetResponse makes it possible to perform data-driven identi2 METHODS

ficatic_)n of fun'ctionally coherent _ne_twork com_ponents and their2_1 The NetResponse Algorithm
condition-specific responses. This is useful since the commonl
used alternatives, predefined gene sets or pathways, are collectiol At - ) .
of intertwined processes rather than coherent functional entitiedon Of transcriptional responses in genome-scale interaction
(Nacu et al, 2007). This has complicated their use in genenetwork_s._ NetResp_onse searches for Iocgl, connembdetworks
expression analysis, and methods have consequently been suggesiifre joint modeling of gene expression reveals coordinated
for identifying the 'key condition-responsive genes’ of predefinedf@nscriptional response in particular conditions (Fig. 1). More
gene sets (Leeet al, 2008a), or for decomposing predefined generally, it is a new algorithm for simultaneous feature selection

pathways into smaller functional modules represented by ger]Q‘or genes) and class discovery (for conditions) that utilizes known
expression signatures (Charmg al, 2009). Our network-based interactions between genes to limit the search space and to guide the

search procedure detects the coordinately regulated gene Séatgalyss.
in a data-driven manner. Gene expression provides functional
information of the network that is missing in purely graph-oriented Gene expression signaturesSubnetworks are the functional units
approaches for studying cell-biological networks (Aittokallio and of the interaction network in our model; transcriptional responses
Schwikowski, 2006). The network brings in prior information of are described in terms of subnetwork activation. Given a physiologi-
gene function and connects the responses more closely to knowgal state, the underlying assumption is that gene expression in
processes. This would be missing from purely gene expressionsubnetworkn is regulated at particular levels to ensure proper
based methods such as biclustering (Madeira and Oliveira, 2004junctioning of the relevant processes. This can involve simultaneous
subspace clustering, or other feature selection approaches (Lasttivation and repression of the genes: sufficient amounts of mRNA
et al, 2004, Roth and Lange, 2004). A key difference to previousfor key proteins has to be available while interfering genes may need
network-based clustering methods, including MATISSE (Ulitsky to be silenced. This regulation is reflected in a unique expression
and Shamir, 2007) and related approaches (Hargéschl, 2002;  signatures™, a vector describing the associated expression levels
Shigaet al, 2007) is that they assume a single correlated reponsef the subnetwork genes. The level of regulation varies from gene
between all genes in a module. NetResponse additionally modet® gene; expression of some genes is regulated at precise levels
condition-specific responses of the network. This allows a moravhereas other genes fluctuate more freely. Given the physiological
expressive definition of a functional module, or a signature. state, we assume that the distribution of observed gene expression is
We validate the algorithm by modeling condition-specific tran- Gaussiang™ ~ N (s, %),
scriptional responses in a human pathway interaction network
across an organism-wide collection of physiological conditions. Thel\/l

Lo . . - odeling condition-specific transcriptional response&ach sub-
results highlight functional relatedness between tissues, providing a : . . . . L

. . . - network is potentially associated with alternative transcriptional
global view on cell-biological network activation patterns.

states, activated in different conditions and corresponding to unique
combinations of processes. Since individual processes and their
transcriptional responses are in general unknown éteg¢, 2008a),
detection of condition-specific responses provides an efficient proxy
for identifying functionally distinct states of the network. Our task

introduce a new approach for global detection and characteriza-
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Implementation

Efficient implementation is crucial for scalability. For fasbmputation,
be in any one o™ latent physiological states indexed hyEach e use an agglomerative procedure where interacting geregradually
state is associated with a unique expression signaﬁfh)eover the  merged into larger subnetworks (Fig. 2). Joint modeling ofedieient genes
subnetwork genes. Associations between the observations and theveals coordinated responses and improves the likelihbtieealata when
underlying physiological states are unknown, and treated as late§Pmpared to independent models, giving the first criteriomierging the

variables. This leads to a mixture model for gene expression in th&Ubnetworks. However, increasing subnetwork size teniwtease model
subnetworkn: complexity and the possibility of overfitting since the numbéisamples

remains constant while the dimensionality (subnetwork sizereases. To
compensate for this effect, we use a Bayesian informatioermit (Gelman

et al, 2003) to penalize increasing model complexity and to detegmin
optimal subnetwork size.

The cost function for a subnetwoi® is C(G) = —2L + gLog(N),
where L is the (marginal) log-likelihood of the data, given the mixtur
model in Eqg. 1, q is the the number of parameters, afd denotes
sample size. NetResponse searches for a joint model for th@rkegenes

ethat maximizes the likelihood of observed gene expressioi, albaids

is to detect and characterize these signatures. We assume that 22
specific observation (measurement condition), the subnetwosk

R(n)

2™~ Y wp@™ s, =),
r=1

@)

where each component distributipns assumed to be Gaussian. In
practice, we assume a diagonal covariance matiix.
A particular transcriptional response is characterized by th . ) = ; .
increasing model complexity through penalizing an increasiomber of

triple {s{, 5™ wi™}. _Th's defines the shape, ﬂuctuatlo_ns, and o del parameters. An optimal model is searched for by at eacimeteging
frequency of the associated gene expression signature in subneie subnetwork pair that produces the maximal gain in the costtion.
work n. The feasibility of the Gaussian modeling assumption iSmore formally, the algorithm merges at each step the subn&tair
supported by the previous observations of (Kehgl,, 2006), where  G,, G; that minimizes the coshC = —2(L; ; — (L; + L;)) + (¢:,; —
predefined gene sets were used to investigate differences in gefi@ + ¢;))Log(N). The agglomerative scheme is as follows:
expression between two predefined sample groups. In our model, the Initialize: Learn univariate Gaussian mixture for the expression vaifies
subnetworks, transcriptional responses and the activating conditiorch gene, and bivariate joint models for all potential geiespyith a direct
are learned from data. In one-channel data such as Affymetriysarra k- Assign each gene into its own singleton subnetwork.

. . - (n) . . Merge:Merge the neighboring subnetworks, GG; that have a direct link
used in this study, the Centr0|c§§ describe absolute expression in the network and minimize the differen¢e Compute new joint models

signals of the preprocessed array data. Relative differences can Bgyyeen the newly merged subnetwork and its neighbors.

investigated by comparing the detected responses. The model iSTerminate: Continue merging until no improvement is obtained by

applicable also on two-channel expression data when a commomerging the subnetworke\C > 0).

reference sample is used for all arrays since the relative diffesence The numberR(") of distinct transcriptional responses of the sub-

are not altered by the choice of comparison baseline when the sanmetwork is unknown, and is estimated with an infinite mixture elod

baseline is used for all samples. Learning several multivariate Gaussian mixtures betweemdighboring
Now the model has been specified assuming the subnetworks apdbnetworks at each step isa computationally_ demandingitepirticular _

given. In practice they are learned from the data. In order to do thig/nen the number of mixture components is unknown. The Gaussian

we make two assumptions. First, we rely on the prior informationmp(tures’ including the number of mixture components, are Ehmith

in th lobal int ti twork d that lat @n efficient variational Dirichlet process implementatiorufilaraet al,
In the global Interaction network, and assume that co-reguiate 007). The likelihoodL in the model is approximated by the lower bound

gene groups are connected components in this network. Second, Wfthe variational approximation. The Gaussian mixture dstagarticular
assume that the subnetworks are independent. This allows a welype of dependency between the genes. In contrast to MATIGBEKy

defined algorithm, and the subnetworks are then interpretable agd Shamir, 2007) and other studies that use correlationher otethods
independent components of transcriptional regulation. In practiceo measure global co-variation, the mixture model detects dioated
the algorithm, described below, is an agglomerative approximationesponses that can be activated only in a few conditionsdion-specific

for searching for locally independent subnetworks. joint regulation indicates functional dependency betwdengenes but it
may have a minor contribution to the overall correlation bemveene

expression profiles. In principle, we could also model theedegncies
in gene fluctuations within each individual response witlvac@nces
of the Gaussian components. However, this would heavily ebme
model complexity, and therefore we leave dependencies in-geeafic
fluctuations within each response unmodeled, and focus on lmgde
differences between the responses. NetResponse providéganerative
model for gene expression, where each subnetwork is dedcwiid an
independent joint mixture model. The maximum subnetwork sitienised
to 20 genes to avoid numerical instabilities in computatiohe Tfinite
Gaussian mixture can automatically adapt model complexitygcs#mple
size. We model subnetworks of 1-20 genes across 353 samptetarsi

Fig. 2. The agglomerative subnetwork detection procedure. Ihitisach
gene is assigned in its own singleton subnetwork. Agglorwergiroceeds
by at each step merging the two neighboring subnetworks #rafti most
from joint modeling of their transcriptional responses. sTbontinues until
no improvement is obtained by merging the subnetworks.

dimensionality per sample size has previously been used witlational
mixture models (Honkelat al, 2008).

2.3 Data

Pathway interaction network.We investigate the pathway interaction
network based on the KEGG database of metabolic pathwaysetsm
et al, 2008) provided by the SPIA package (Tarea al, 2009) of
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BioConductor (www.bioconductor.org). This implements thathway
impact analysis method originally proposed in (Dragktcal., 2007), which
is to our knowledge currently the only freely available pedly analysis
tool that considers pathway topology. SPIA provides the diata readily
suitable form for our analysis. Other pathway data sets, camynpyovided
in the BioPAX format, are not readily available in a suitabéérpise inter-
action form. Directionality and types of the interactiongeveot considered.
Genes with no expression measurements were removed from tlysiana
We investigate the largest connected component of the nietwitin 1800
unique genes, identified by Entrez GenelDs.

Gene expression datawe analyzed a collection of normal human tissue
samples from ten post-mortem donors (Rettal, 2006), containing gene
expression measurements from 65 normal physiological conditi To
ensure sample quality, RNA degradation was minimized in thggral study
by flash freezing all samples within 8.5 h postmortem. Only the@es
passing Affymetrix quality measures were included. Each itmmdhas 3-9
biological replicates measured on the Affymetrix HG-U133gl0 platform.
The reproducibility of our findings is investigated in anépendent human
gene expression atlas (%t al, 2004), measured on the Affymetrix HG-
U133A platform, where two biological replicates are avd#afor each
measured condition. In the comparisons we use the 25 corslitiemilable
in both data sets (adrenal gland cortex, amygdala, bone mareoebellum,
dorsal root ganglia, hypothalamus, liver, lung, lymph nodescipital
lobe, ovary, parietal lobe, pituitary gland, prostate dlasalivary gland,
skeletal muscle, spinal cord, subthalamic nucleus, tempobd, Itestes,
thalamus, thyroid gland, tonsil, trachea, and trigeminagjah Both data
sets were preprocessed with RMA (Irizarey al, 2003). Certain genes
have multiple probesets, and a standard approach to summzozaation
across multiple probesets is to use alternative probeseiititais based on
probe-genome remapping (Detf al, 2005). This would provide a single
expression measure for each gene. However, since the HGAU4Bay
represents a subset of probesets on the HG-U133Plus2yQtheaedefined
probesets are not technically identical between the cordpdega sets.
To minimize technical bias in the comparisons, we use probésatsare
available on both platforms. Therefore, we rely on manufactannotations
of the probesets and use an alternative approach (used ye.Nyrark
et al. (2007)), where one of the available probesets is selectethdbm to
represent each unique gene. Random selection is used tbs@lection bias.

paper. The second comparison method is the SAMBA biclustetggyithm
(Tanayet al,, 2002). The output is a list of associated genes and conditio
for each identified bicluster. SAMBA detects gene sets withndition-
specific responses but, unlike NetResponse and MATISSE+algorithm
does not utilize the network. Influence of the prior netwaladditionally
investigated by randomly shuffling the gene expression vectahile
keeping the network and the within-gene associations in@emparisons
between the original and shuffled data help to assess eelatiluence of
the prior network on the results. Comparisons to randomlyfidtlienes in
SAMBA are not included since SAMBA does not use the network.

Reproducibility in validation data. Reproducibility of the findings is
investigated in an independent validation data set in tefrsiginificance and
correlation (for details, see Section 2.3). Each companmsethod implies a
grouping for the physiological conditions in each subnekyoorresponding

to the detected responses. It is expected that physiolbgicelevant
differences between the groups are reproducible in othta sets. We
tested this by estimating differential expression betwéencbrresponding
conditions in the validation data for each pairwise compari®f the
predicted groups using a standard test for gene set and(ybobalTest;
Goemanet al. (2004)). To ensure that the responses are also qualitativel
similar in the validation data, we measured Pearson comel&tween the
detected responses and those observed in the correspamadidgions in
validation data. The responses were characterized by titeo@ds provided

by the model in NetResponse and MATISSE+. For SAMBA we used the
mean expression level of each gene within each group of dondisince
SAMBA groups the conditions but does not characterize tlspaeses.

In validation data, the mean expression level of each geneseésl o
characterize the response within each group of conditiBnsbesets were
available for 75% of the genes in the detected subnetworkteeinalidation
data; transcriptional responses with less than three petb@ the validation
data were not considered. Validation data contained qooreting samples
for > 79% of the predicted responses in NetResponse, MATISSE+, and
SAMBA (Supplementary Table 1).

3 RESULTS

The validation results reported below demonstrate that the
NetResponse algorithm is readily applicable for modeling tran-

When available, the 'xxxxxat’ probesets were used because they are morescriptional responses in interaction networks on an organism-

specific by design than the other probe set types (www.affyrmedm).

2.4 Validation

The NetResponse algorithm is validated with an applicatiothe pathway
interaction network of 1800 genes (Tarea al, 2009) across 353 gene
expression samples from 65 physiological conditions in nbhaean body
(Rothet al, 2006). NetResponse is compared to alternative approaghes
terms of physiological coherence and reproducibility offthdings.

Comparison methods.NetResponse is designed for organism-wide

modeling of transcriptional responses in genome-scalesictien networks.
Simultaneous detection of the subnetworks and their camd&pecific
responses is a key feature of the model. A straightforwarerradtive
would be a two-step approach where the subnetworks anddbedition-
specific responses are detected in separate steps, althiisgban be
unoptimal for detecting condition-specific responses. dtesimethods are
available for detecting subnetworks based on network ané ggpression
data (Hanischet al,, 2002; Shigaet al, 2007) in the two-step approach.
We use MATISSE, a state-of-the-art algorithm describedUtitgky and
Shamir, 2007). MATISSE finds connected subgraphs in the mktaach
that each subgraph consists of highly correlated genes.otlmut is a
list of genes for each detected subnetwork. Since MATISS¥ closters
the genes, we model transcriptional responses of the ddtsatmetworks
in a separate step by using a similar mixture model to the NetResp
algorithm. This combination is also new, and called MATISSE+his

wide scale. While biomedical implications of the findings

require further investigation, NetResponse detects a number of
physiologically coherent and reproducible transcriptional responses
in the network, and highlights functional relatedness between
physiological conditions. It also outperformed the comparison

.methods in terms of reproducibility of the findings.

3.1 Application to human pathway network

In total, NetResponse identified 106 subnetworks with 3-20 genes
(Supplementary data file). For each subnetwork, typically (median)
3 distinct transcriptional responses were detected across the 65
physiological conditions (Supplementary Fig. 1). One of the
subnetworks with four distinct responses is illustrated in Fig. 1.
Each respose is associated with a subset of conditions. Statistically
significant differences between the corresponding conditions were
observed also in the independent validation daia < 0.01;
GlobalTest). Three of the four responses were also qualitatively
similar (correlation> 0.8; Supplementary Fig. 2). The first
response is associated with immune-system related conditions such
as spleen and tonsil. Responses 2-3 are associated with neuronal
conditions such as subthalamic or nodose nucleus, or with central
nervous system, for example accumbens and cerebellum. The fourth
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group manifests a 'baseline’ signature that fluctuates around the
mean expression level of the genes. Testis and pituitary gland
are examples of conditions in this group. While most physiologi-

cal conditions are strongly associated with a particular response,
samples from amygdala, bone marrow, cerebral cortex, heantatriu
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and temporal lobe manifested multiple responses. In general, it
is not well known how individual pathways are manifested at
gene expression level. While alternative responses reveal conditio
specific regulation, detection of physiologically coherent and il ’ " '
reproducible responses may indicate shared mechanisms betwegn il 1l !
physiological conditions. Although the responses may reflect |I' :W [y
previously unknown processes, it is likely that some of them reflect M "\ MJ by

o . g I i
the activation patterns of known pathways. Overlapping pathways |1 — " ' i h m i
can provide a starting point for interpretation. The subnetwork of E ‘ g T a
Fig. 1 overlaps with various known pathways, most remarkably with »" o [" L i 3??‘3%3?;5?%’}?'
the MAPK pathway with 10 genes (detailed gene-pathway associ- il 1 ! E{%Einhofg{%%df:
ations are provided in the Supplementary data file; see subnetwork|| | '| | /! 22’;?&? py;"”f
12). MAPK is a general signal transduction system that participates | j It I %iﬁ}}gﬁéqw
in a complex, cross-regulated signaling network that is sensitive brovichus
to cellular stimuli (Wilkinson and Millar, 2000). Association of \l hu" gg)%?éacrossfsec-
MAPK to cell growth and proliferation could potentially explain the ) i )
differences between neuronal and other conditions. Six subnetwork || conX m
genes participate in the p53 pathway, which is a known regulator of i }H | Phy,sgﬁ}gﬁ'-
the MAPK signaling pathway. In addition, p53 is known to interact h ﬂh %ﬁgg@ °°:ex
with a number of other pathways, both as an upstream regulator, 1 W [Vg,']V;%e m;pcopr_p
and a downstream target (Wu, 2004). Both MAPK and p53 are O ‘l S hac:
associated with processes including cell growth, differentiation, I | ||, \\ HI‘HI
and apoptosis, and exhibit diverse cellular responses to varying ! L
conditions. Condition-specific regulation can potentially explain the Transcriptional responses
detection of alternative transcriptional states of the subnetwork.

The detected responses characterize absolute expression signglg. 3. Associations between 65 physiological conditions (rows) ghe
in our preprocessed one-channel array data. Systematic difeerencdetected transcriptional responses of the pathway irtteracetwork of
in the expression levels of the individual genes are normalized oufig. 1. The shade indicates the probability of a particutanscriptional
in the visualization by showing the relative expression of each gengesponse in each condition (black: = 0; white: P = 1). Hierarchical
with respect to its mean expression level across all samples. Not@ustering based on the signature co-occurrence protiebibietween each
that the choice of a common baseline does not affect the relativBair of physiological conditions highlights their relatess.
differences between the samples.

the subnetworks, given the model in Eq. 1. The analysis reveals

physiological conditions and the detected transcriptional responségncnonal r_elatedness between the conditions. In partl_cu_lar, two
are shown in Fig. 3. Some responses are shared by many conditio lbcategorles of the central nervous system appear distinct from

while others are more specific to particular contexts such asimmun e other condiitions. Closer investigation of the observed responses
system, muscle, or the brain. Related physiological conditioné’vomd reveal how the conditions are related at transcriptional level

often exhibit similar network activation patterns, which is seen by(SuppIementary data file).

grouping the conditions according to co-occurrence probabilities of . .

shared transcriptional response. This is knowtissie-selectivity 3-2 Comparison to alternative approaches

of gene expression (Liargt al., 2006). NetResponse was compared to the alternative approaches in terms of
physiological coherence and reproducibility of the findings (Fig. 4;

Probabilistic tissue connectomeRelatedness of physiological Supplementary Table 1). NetResponse detected the largest amount

conditions can be measured in terms of shared transcriptionalf responses; 68% of the network genes were associated with a

responses (Supplementary Fig. 3). This is an alternative formulatioresponse, compared to 45% in MATISSE+ and SAMBA. At the

of the tissue connectommap suggested by Great al. (2008)  same time, NetResponse outperformed the comparison methods in

to highlight functional connectivity between tissues based on terms of reproducibility of the findings.

the number of shared differentially expressed genes at different

thresholds. We use shared network responses instead of sharBdlysiological coherence.The association between the responses

gene count. The use of co-regulated gene groups is expected &md physiological conditions was measured by normalized mutual

be more robust to noise than the use of individual genes. As thenformation (NMI; Bush et al. (2008)) between the sample-

overall measure of connectivity between physiological conditionsresponse assignments and sample class labels within each

we use the mean of signature co-occurrence probabilities ovesubnetwork. The NMI varies from O (no association) to 1

Condition-selective network activation Associations between the
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DISCUSSION
- Cell-biological networks may cover thousands of genes, but any
etResponse . . . )
= NetRosponse (shuffed) change in the physiological context typically affects only a small
0.8 1 O MATISSE+ (shuffled) part of the network. While gene function and interactions are often
O SAMBA

o subject to condition-specific regulation (Liamg al., 2006), they
_— are typically studied only in particular experimental conditions.
Organism-wide analysis could reveal highly specialized functions
that are activated only in one or a few conditions. Detection of
shared responses between the conditions can reveal previously
unknown functional connections and help to formulate novel
hypotheses of gene function in previously unexplored contexts. We
provide a well-defined algorithm for such analysis.
The results support the validity of the model. NetResponse
detected the largest number of responses without compromising
Detected responses  Reproducibility Reproducibility physiological coherence or reproducibility of the findings compared
(fraction of genes)  (significance) (correlation) to the alternatives. The most highly reproducible results were
obtained by NetResponse. Further analysis is needed to establish
the physiological role of the findings.
Fig. 4. Comparison between the alternative approacheéetected NetResponse is readily applicable for modeling condition-
responses:Fraction of genes participating in the detected trandoript specific responses in cell-biological networks, including pathways,
nal responsesReproducibility (significance)Fraction of responses that protein interactions, and regulatory networks. The network connects
are reproducible in the validation data in terms of diffei@néxpression  the responses to well-characterized processes, and provides readily
between the associated conditiops< 0.05; GlobalTest) Reproducibility  jerretable results that are less biased towards known biological
(correlation): Median correlation betweep the gene expression levelseof th phenomena than methods based on predefined gene sets that
detected responses and the corresponding conditions Vralidation data. . B - - . . .
are routinely used in gene expression studies to bring in prior
information of gene function and to increase statistical power.

R - e However, these are often collections of intertwined processes rather
(deterministic association). The transcriptional responses detectqﬂan coherent functional entities. For example, pathways from

by NetResponse, MATISSE+, and SAMBA show statistically KEGG may contain hundreds of genes while only a small part of

sig_nifit_:gnt asso_ciations to particular physiological conditions Witha pathway may be affected by changes in physiological conditions
asignificantly higher average NMI (0.46-0.5(3)4than expected baseE’Nacuet al,, 2007). This has complicated the use of predefined gene
on ralndomly Iabeleoll data (OHZG;IQ'st 107%; Wilcoxon test; sets in gene expression studies. Drageial. (2007) demonstrated

Supplementary Table 1). The highest average NMI (0.50) WaShat taking into account aspects of pathway topology, such as

obtair;esd by Ne(thgsponse but diﬁergnc$s between NetRespops&ene and interaction types can improve the estimation of pathway
MATISSE+, and SAMBA are not significant. NetResponse is activity. While their SPIA algorithm measures the activity of

significantly physiologically more coherent also when comparedknown pathways between two predefined conditions, our algorithm

to results obtained with shuffled gene expression (NMI o'22;searches for potentially unknown functional modules, and detects

heir association to multiple conditions simultaneously. This is
seful since biomedical pathways are human-made descriptions of
cellular processes, often consisting of smaller, partially independent
o o modules (Changt al., 2009; Hartwelket al,, 1999). Our data-driven
Reproducibility. The majority of the detected responses weregsearch procedure can rigorously identify functionally coherent
reproducible both in terms of significance and correlationnetwork modules where the interacting genes show coordinated
(Supplementary Fig. 4) as described in Section 2.4. Of the predicteghgponses. Joint modeling increases statistical power which is
differences between groups of physiological conditions, 80% werg,sefyl since gene expression, and many interaction data types
significant in validation data with < 0.05 (GlobalTest), compared  ¢,ch as protein-protein interactions, have high noise levels. The
to 72% and 63% in MATISSE+ and SAMBA, respectively, or 43% propapilistic formulation accounts for biological and measurement
obtained for randomly shuffled data with NetResponse (Fig. 4). Thégise in a principled manner. Certain types of interaction data such
changes were also qualitatively similar; in NetResponse the mediags transcription factor binding or protein interactions are directly
correlation between the detected responses and correspondifgsed on measurements. This can potentially help to discover as yet
conditions in the validation data is 0.76, which is significantly nknown processes that are not described in the pathway databases
higher p < 0.01; Wilcoxon test) than in the comparison methods (yacyet al, 2007). False negative interactions form a limitation for
(MATISSE+: 0.64; SAMBA: 0.68), or in randomly shuffled he current model because joint responses of co-regulated gemes ¢
NetResponse data (0.14). NetResponse detected responses fopmodeled only when they form a connected subnetwork.

larger fraction of the genes (68%) than the other methods. This The need for principled methods for analyzing large-scale
seems an intrinsic property of the algorithm since it detecteqg|iections of gene expression data is increasing with their
responses for a similar fraction of the genes also in the networkyqjlapility. Versatile gene expression atlases contain valuable

with randomly shuffled genes (72%). However, only the findingsinformation about shared and unique mechanisms between disparate
from the real data were reproducible.

Fraction / Correlation

p < 107'2). The observations confirm the potential physiologi-
cal relevance of the findings in NetResponse, MATISSE+, an
SAMBA.
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conditions which is not available in smaller and more specificneeded, and are often sufficient in practice. A combination of

experiments (Laget al, 2008; Scherkt al, 2000). For example, techniques is used to achieve an efficient algorithm compared to
Lamb et al. (2006) demonstrated that large-scale screening of celthe model complexity. First, we focus the analysis on those parts
lines under diverse conditions can enhance the finding of therapeutif the data that are supported by known interactions. This increases
targets. Our model is directly applicable in similar exploratory modeling power and considerably limits the search space. Second,
tasks, providing tools for organism-wide analysis of transcriptio-the agglomerative scheme finds an approximative solution where at

nal activity in normal human tissues (Rogh al,, 2006; Suet al, each step the subnetwork pair that leads to the highest improvement
2004), cancer, and other diseases (Kilpieeal., 2008; Lukket al,, in cost function is merged. This finds a solution relatively fast
2010) in agenome- and organism-wide scale. Similar collections areompared to the complexity of the task. Note that the order in
available for several model organisms including mouse€Sal., which the subnetworks become merged may affect the solution.
2004), yeast (Granovskaét al, 2010), and plants (Schmt al, Finally, the variational implementation considerably speeds up

2005). A key advantage of our approach compared to methodmixture modeling (Kuriharat al., 2007). The running time of our
that perform targeted comparisons between predefined conditiorepplication was 248 min on a standard desktop computer (Intel
(Ideker et al, 2002; Sanguinettet al, 2008) is that it allows 2.83GHz; Supplementary Fig. 5).
systematic organism-wide investigation when the responses and Investigation of a human pathway interaction network revealed
the associated conditions are unknown. The motivation is similacondition-specific regulation in the network, that is, groups of
to SAMBA and other biclustering approaches that detect groupsnteracting genes whose joint response differs between physiologi-
of genes that show coordinated respose in a subset of conditiore@l conditions. This highlights the condition-dependent nature of
(Madeira and Oliveira, 2004), but the network ties the findings morenetwork activation, and emphasizes an important shortcoming in
tightly to cell-biological processes in our model. This can focusthe current gene set-based testing methods (Nam and Kim, 2008):
the analysis and improve interpretability. Since the nonparametrisimply measuring gene set 'activation’ is often not sufficient;
mixture model adjusts model complexity with sample size, ourit is also crucial to characterizbow the expression changes,
algorithm is potentially applicable also in smaller and more targetegand in which conditions. Organism-wide modeling can provide
data sets. For example, it could potentially advance disease subtyp@antitative information about these connections.
discovery by revealing differential network activation in subsets of
patients.

Many large-scale collections are continuously updated with neaCONCLUSIONS

measurements. Our algorithm provides no integration techniqugye have introduced and validated a general-purpose algorithm
for new experiments yet; on-line extensions that could dlrecﬂyfor global identification and characterization of transcriptional

integrate data from new experiments provide an interesting topic fofe gy onses in genome-scale interaction networks across diverse
further study. Another potential extension would be afuIIy-BayeS|anphySi0|ogica| conditions. An organism-wide analysis of a human

treatment that vyou!d_ provide CO”ﬁde”C? intervals, removing _thepathway interaction network validates the model, and provides a
need to assess significance of the results in a separate step. While Qygy ) view on cell-biological network activation. The resuits reveal
model provides a model-based criterion for detecting the responseSared and unique mechanisms between physiological conditions,

V‘{ithf)_Ut prior knowl_edg_e of the aCtiva““Q _con_ditions, the sta_tistical and potentially help to formulate novel hypotheses of gene function
significance of the findings has to be verified in further experiments; | previously unexplored contexts

The majority of the responses in our experiments could be verified
in an independent data set. Other potential extensions include
adding more structure to address the directionality, relevance an
s . . . . UNDING

probabilities of the interactions. Not all cell-biological processes )
have clear manifestations at transcriptome level. Hence informatiort NiS Work was supported by the Academy of Finland [207467]
of transcript and interaction types, as in SPIA, could potentially help2nd the IST Programme of the European Community, under the
to improve the sensitivity of our approach. We could also seek td”ASCAL 2 Network of Excellence [ICT-216886]. LL and SK
loosen the constraints imposed by the prior network. However, suchelong to the Finnish CoE on Adaptive Informatics Research Centre
extensions would come with an increased computational cost. Thef Academy of Finland, and to the Helsinki Institute for Information
simple and efficient implementation is a key advantage. Technology HIIT.
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(AIVGA; Honkela et al. (2008)). However, AIVGA and other REFERENCES
model-based feature selection techniques (ledval, 2004; Roth  Aittokallio, T. and Schwikowski, B. (2006). Graph-based methods for airajys
and Lange, 2004) consider all potential connections between the networks in cell biologyBrief. Bioinform, 7, 243-255. _
features, which leads to a more limited scalability. Finding a globa|Ashbumer, M.et al. (2000). Gene ontology: tool for the unification of biologyat.

. L . - . . Genet, 25, 25-29.
optimum in our mod_el would reqU|re_eXhaUStlve Com_blnatonal Bush, W.et al. (2008). Alternative contingency table measures improve the power and
search over all potential subnetworks. Since the complexity depends detection of multifactor dimensionality reductioBMC Bioinformatics9, 238.
on the topology of the network, finding a general formulation for theChang, J.Tet al. (2009). A genomic strategy to elucidate modules of oncogenic
model complexity is problematic. The number of potential solutions  Pathway signaling networks/olec. Cel| 34, 104-14. o
grows faster than exponentially with the number of features (genes[ga' et al. (2005). Evolving gene/transcript definitions significantly alter the

. . . X interpretation of GeneChip dathlucl. Acids Res33, e175—.

and links between them, making exhaustive search in genomesagnici, s.et al. (2007). A systems biology approach for pathway level analysis.
scale interaction networks infeasible. Approximative solutions are Genome Resl7, 1537-1545.




Lahti et al

Dudley, J. Tet al.(2009). Disease signatures are robust across tissues and experimentgladeira, S. C. and Oliveira, A. L. (2004). Biclustering algorithms for biatagdata

Mol. Syst Biol, 5, 307. analysis: a survejl EEE Trans. Comput. Biol. Bioinformatics, 24—-45.

Gelman, Aet al.(2003).Bayesian Data Analysis (2nd editiorfhapman & Hall/CRC, Maglott, D.et al.(2005). Entrez Gene: gene-centered information at NGBEI. Acids
Boca Raton, FL. Res, 33 (Database issue), D54-D58.

Gentleman, R. Cet al. (2004). Bioconductor: Open software development for Montaner, D.et al. (2009). Gene set internal coherence in the context of functional
computational biology and bioinformatic&enome Biol.5, R80. profiling. BMC Genomicsl0, 197.

Goeman, J. ket al.(2004). A global test for groups of genes: testing association with a Nacu, S.et al. (2007). Gene expression network analysis and applications to
clinical outcome Bioinformatics 20, 93-99. immunology. Bioinformatics 23, 850-858.

Granovskaia, M. Vet al. (2010). High-resolution transcription atlas of the mitotic cell Nam, D. and Kim, S.-Y. (2008). Gene-set approach for expression pattern analysis.
cycle in budding yeastGenome Biol.11, R24 Brief. Bioinform, 9, 189-197.

Greco, D.et al. (2008). Physiology, pathology and relatedness of human tissues fromNuyten, D. and van de Vijver, M. (2008). Using microarray analysis as a prognosti
gene expression meta-analys.oS ONE 3, e1880. and predictive tool in oncology: focus on breast cancer and normal tissue yoxicit

Hanisch, D.et al. (2002). Co-clustering of biological networks and gene expression  Semin. Radiat Oncql18, 105-114.
data.Bioinformatics 18, 145-154. Nymark et al. (2007). Gene Expression Profiles in Asbestos-exposed Epithelial and

Hartwellet al.(1999). From molecular to modular cell biologyature 402, C47-C52. Mesothelial Lung Cell LinesBMC Genomics, 62.

Honkela, A.et al. (2008). Agglomerative independent variable group analysis. Rachlin, Jet al.(2006). Biological context networks: a mosaic view of the interactome.
Neurocomp.71, 1311-1320. Mol. Syst Biol, 2, 66.

Hu, Z. et al. (2006). The molecular portraits of breast tumors are conserved acrosgeijss, D et al.(2006). Integrated biclustering of heterogeneous genome-wide datasets
microarray platformsBMC Genomics?, 96. for the inference of global regulatory networlMC Bioinformatics 7, 280.

Ideker, T.et al. (2002). Discovering regulatory and signalling circuits in molecular ot R.et al. (2006). Gene expression analyses reveal molecular relationships among
interaction networksBioinformatics 18 (suppl. 1), S233-240. 20 regions of the human CN$leurogenetics?, 67—80.

Irizarn_/, R. A.etal.(2003). Summaries of Affymetrix GeneChip probe level datacl. Roth, V. and Lange, T. (2004). Feature selection in clustering problems. Inrén,Th
Acids Res.31, e15. LK. Saul and B. Scblkopf, eds., Advances in Neural Information Processing

Kanehisa, Met al. (2008). KEGG for linking genomes to life and the environment. Systemd6. MIT Press, Cambridge, MA.
Nucl. Acids Res36 (suppl. 1), D480-484. Sanguinetti, Get al. (2008). MMG: a probabilistic tool to identify submodules of

Kerrien, S.et al. (2007). IntAct-open source resource for molecular interaction data.  metabolic pathwaysBioinformatics 24, 1078-1084.
Nucl. Acids Res35 (suppl. 1), D561-565. Schaefer, C. F. (2006). An Introduction to the NCI Pathway Interaction Database.

Kilpinen, S.et al. (2008). Systematic bioinformatic analysis of expression levels  ncl-Nature Pathway Interaction Database.
of 17,330 human genes across 9,783 samples from 175 types of healthy angcherf, U.et al. (2000). A gene expression database for the molecular pharmacology

pathological tissuesGenome Biol.9, R139. of cancer.Nat. Genet.24, 236-44.
Kong, S. W.et al. (2006). A multivariate approach for integrating genome-wide gchmid, M.et al.(2005). A gene expression map of Arabidopsis thaliana development.
expression data and biological knowled@éoinformatics 22, 2373-2380. Nat. Genet.37, 501-6.
Kurihara, K. et al. (2007). Accelerated variational dirichlet process mixtures. In Shiga, M.et al.(2007). Annotating gene function by combining expression data with a
B. Sclolkopf, J. Platt, and T. Hoffman, edsAdvances in Neural Information modular gene networkBioinformatics 23, 468—478.
Processing Systems 18651-768. MIT Press, Cambridge, MA. Son, C. Get al.(2005). Database of MRNA gene expression profiles of multiple human
Lage, K.et al. (2008). A large-scale analysis of tissue-specific pathology and gene  grgans.Genome Resl5, 443-50.
expression of human disease genes and complexes. Natl Acad. Sci. USAOS, Su et al(2004). A gene atlas of the mouse and human protein-encoding transcriptomes
20870-20875. N . o PNAS 101, 6062-6067.
Lamb, J.et al. (2006). The Connectivity Map: Using Gene-Expression Signatures t0 tanay, A. et al. (2002). Discovering statistically significant biclusters in gene
Connect Small Molecules, Genes, and Dise&sgence313, 1929-1935. expression dataBioinformatics 18, S136-S144.
Law, M. et al. (2004). Simultaneous feature selection and clustering using mixtureTanay' A.et al.(2004). Revealing modularity and organization in the yeast molecular
models.IEEE Trans. Pattern Anal. Mach. Inte|26, 1154— 1166. network by integrated analysis of highly heterogeneous genomewide Bate.
Lee, E.etal.(2008a). Inferring pathway activity toward precise disease classification.  Na| Acad. Sci. USALOL, 2981-2986.
PLoS Comput. Bigl4, €1000217. Tarca, A. L.et al.(2009). A novel signaling pathway impact analys@oinformatics
Liang, S.et al. (2006). Detecting and profiling tissue-selective geneBhysiol. 25, 75-82.
Genomics26, 158-162. Ulitsky, I. and Shamir, R. (2007). Identification of functional modulesigsietwork

Loots, G. and Ovcharenko, I. (2007). ECRbase: database of evolutionary conserved topology and high-throughput datBMC Syst Biol.1, 8.
regions, promoters, and transcription factor binding sites in vertebrate @snom \jikinson, M.G. and Millar, J.B. (2000). Control of the eukaryotic agjtle by MAP

Bioinformatics 23, 122-124. kinase signaling pathway§ASEB J,. 14, 2147-2157.

Lucas, J. Eet al. (2009). Cross-study projections of genomic biomarkers: An \wy G.S. (2004). The functional Interactions Between the MAPK and p53 Signali
evaluation in cancer genomicBL0oS ONE4, e4523. PathwaysCancer Biol. & Therapy3, 146-151.

Lukk, M. et al. (2010). A global map of human gene expressidiat. Biotech. 28,
322-324.




Global modeling of transcriptional responses in interaction net-
works: Supplementary Figures
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Figure 1: Histograms of model statistics: A Number of transcriptional responses in the sub-
networks detected by NetResponse. B Subnetwork size. C Number of physiological conditions
associated with each response.



NetRespose NetResponse MATISSE+ MATISSE+ SAMBA

(shuffled) (shuffled)

Reproducibility (corr.) 0.76 0.14 0.64 0.60 0.68
Reproducibility (signif.) 0.80 0.43 0.72 0.71 0.63
Fraction of responses 0.81 0.34 0.79 0.80 0.89
with validation data

Physiol. coh. (NMI) 0.50 0.22 0.49 0.41 0.46
Physiol. coh. (signif.) <10™* 0.65 <10™* <1072 <107
Fraction of data 0.68 0.72 0.45 0.40 0.45

assigned to subnetworks

Table 1: Comparison statistics. Reproducibility (correlation): Median correlation between the
detected responses and the corresponding conditions in the validation data. Reproducibility
(significance): Fraction of transcriptional responses that were reproducible in the validation
data (GlobalTest p < 0.05). The results are shown for the responses where corresponding
conditions in the validation data were available. Significance of differential expression was
calculated for each pairwise comparison between the associated conditions of the predicted
responses in the validation data. Transcriptional responses with validation data: Fraction of
transcriptional responses for which corresponding samples were available for testing in the
validation data. Physiological coherence (NMI): Normalized mutual information between the
detected transcriptional responses and sample labels (physiological conditions). A higher NMI
indicates stronger association between the detected responses and physiological conditions. The
differences between NetResponse, MATISSE+, and SAMBA are not significant. Physiological
coherence (significance): Significance of the physiological coherence (NMI) compared to the
expectation based on randomly labeled samples (Wilcoxon test p-value). Fraction of data
assigned to subnetworks: Fraction of genes participating in the detected responses.
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Figure 2: Reproducibility of transcriptional responses of the subnetwork of Figure 1 (main
text) in independent validation data. Correlation: Qualitatively similar responses are observed
in the validation data (Pearson correlation > 0.8), except for the fourth response (correlation
-0.27). Differential expression with respect to the mean level of each gene is used in the
comparisons. This removes overoptimistic bias in the correlations caused by the systematic
differences in the expression levels of the genes. Significance: Each response is associated with
a subset of conditions. The differences between the corresponding conditions are statistically
significant (p < 0.01; GlobalTest) in the validation data for each pairwise comparison between
the predicted four groups of conditions. The investigated gene expression atlas (Roth et al.,
2006) and the validation data (Su et al., 2004) have been measured on different array platforms
(HG-U133Plus2 and HG-U133A, respectively). Gene expression levels are here shown for the
17 (out of 20) probesets that are available on both platforms.
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Figure 3: Tissue connectome based on the detected transcriptional responses of the human
pathway interaction network. For each pair of tissues the overall probability of shared tran-
scriptional response across the network is shown (black: P = 0; white: P = 1; see main text
for details). This gives a probabilistic measure of tissue similarity based on network activation.
The rows and columns are ordered with hierarchical clustering to highlight the relatedness
between physiological conditions.
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Figure 4: Reproducibility of the detected transcriptional responses in the independent Su et
al., 2004 validation data in terms of significance and correlation. A Significance of differential
expression between each pair of associated conditions for predicted responses in the validation
data. 80% of the predicted differences between the conditions were verified in the validation
data with p < 0.05 (GlobalTest). We tested only the responses where corresponding conditions
were available in the validation data (81% of the responses). B Correlation between the detected
responses in the investigated data set and the corresponding conditions in the validation data.
Differential expression with respect to the mean level of each gene was used in the comparisons.
This removes the potential bias in the correlations caused by the systematic differences in the
expression levels of the genes.



Sample size vs. running time
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Figure 5: Running time for data sets of different sizes on the pathway network described in
the main text. The running time for the GSE3526 data set investigated in the main text
was 248 minutes (i.e. 4.1 hours). Computation time increases superlinearly with sample size
from 33 minutes with 20 samples to 64 hours with 1977 samples. Model fitting in the algo-
rithm can be parallelized, which will make the model scalable to larger data sets in standard
multi-core desktop computers. The running time depends also on the size and connectivity of
the network. Our investigated network represents a standard pathway network used in cur-
rent organism-wide studies. The network has a median of 5 and a maximum of 105 direct
interaction partners per gene. This reduces the search space considerably compared to models
that would consider all potential interactions between the 1800 network genes. To investigate
time consumption we have selected random subsets of various sizes (20, 50, 100, 200, and 353
samples) from the GSE3526 data, described in the main text and having 353 arrays in total.
The data sets with 500 and more (1000, 1500, 1973) samples were obtained by picking random
subsets from the GSE2109 data set, which has 1973 arrays in total (downloaded 30.5.2008 from
http://www.ncbi.nlm.nih.gov/geo/). Both data sets were preprocessed as described in Section
2.3 in the main text.



