

A Fast and Simple Method for Mining Subsequences with Surprising Event Counts

Jefrey Lijffijt Helsinki Institute for Information Technology (HIIT) Department of Information and Computer Science Aalto University, Finland

Summary

- Situation: We study event sequences
 - Sequence of labels, e.g., words or amino acids
 - (A, C, T, G, G, C, G, G, A, T, T, A)
- <u>Aim</u>: Find subsequences where a given event is surprisingly frequent or infrequent
- Subsequence = part of a long event sequence
- Surprising = improbable, assuming no structure

ECML-PKDD 2013 26/09/2013 2

ECML-PKDD 2013 26/09/2013 3

Some basics

- Approach is based on statistical significance testing
- The null hypothesis is that the event probability is *p*
- Given a random subsequence of length *m* with count *k*

$$p_{H} = \sum_{i=k}^{m} Bin(i;m,p) = \sum_{i=k}^{m} \begin{pmatrix} m \\ i \end{pmatrix} p^{i} (1-p)^{m-i}$$

ECML-PKDD 2013 26/09/2013 4

Problem setting

- Basic procedure: low p-value → significant structure
- However, we analyse all subsequences of a given length *m*
- Account for multiple hypotheses to prevent spurious results

 Family-wise error Pr(FP > 0) ≤ α 	ate control:		Declared significant No Yes	
	Null hypothesis	True False	TN FN	FP TP
Aalto University School of Science	ECML-PKDD 2013 26/09/2013 5		Mining Subsequences with Surprising Event Counts Jefrey Lijffijt	

Traditional solutions

- Apply post-hoc correction (Hochberg's procedure)
 → Low power, does not account for dependencies
- Or, use randomisation
 → Computationally demanding
- Alternative proposed in paper: analytical upper-bound

ECML-PKDD 2013 26/09/2013 6

The dependency structure

• Full sequence: $(X_1, ..., X_n): X_i \in \{0, 1\}, Pr(X_i = 1) = p$

• Sequence 1:
$$(X_1, \ldots, X_m)$$

- Sequence 2: $(X_2, ..., X_{m+1})$
- . .
- Sequence n-m+1: (X_{n-m+1}, \ldots, X_n)
- Test statistic $Z_{i,m} = X_i + \ldots + X_{i+m-1}$

• FWER adjusted p-value:
$$p_H^{(k)} = \Pr\left(\bigcup_{i=1}^{n-m+1} \{Z_{i,m} \ge k\}\right)$$

ECML-PKDD 2013 26/09/2013 7

Approximation

- Computing this exactly is computationally costly
- Approximation:

$$\begin{aligned} &\Pr\left(\bigcup_{i=1}^{n-m+1} \{Z_{i,m} \ge k\}\right) \\ &= \Pr\left(\{Z_{1,m} \ge k\}\right) + \Pr\left(\{Z_{2,m} \ge k\} \cap \{Z_{1,m} < k\}\right) \\ &+ \Pr\left(\{Z_{3,m} \ge k\} \cap \{Z_{2,m} < k\} \cap \{Z_{1,m} < k\}\right) + \dots \\ &\leq \Pr\left(\{Z_{1,m} \ge k\}\right) + (n-m) \cdot \Pr\left(\{Z_{2,m} \ge k\} \cap \{Z_{1,m} < k\}\right) \end{aligned}$$

ECML-PKDD 2013 26/09/2013 8

Upper bound

•
$$\tilde{p}_{H} = (n-m) \cdot \Pr\left(\{Z_{2,m} \ge k\} \cap \{Z_{1,m} < k\}\right) + \Pr\left(\{Z_{1,m} \ge k\}\right)$$

= $(n-m) \cdot (1-p) \cdot p \cdot Bin(k-1;m-1,p) + \sum_{i=k}^{m} Bin(i;m,p)$

- Binomial and cumulative binomial can be computed in O(1) time [Loader, 2000]
- See paper for upper bound in low-frequency direction and for subsets of all subsequences

ECML-PKDD 2013 26/09/2013 9

Uniformity/Power

ECML-PKDD 2013 26/09/2013 10

Uniformity Hochberg's procedure

ECML-PKDD 2013 26/09/2013 11

Some words occur uniformly

Aalto University School of Science

ECML-PKDD 2013 26/09/2013 12

We find more than β measure indicates

26/09/2013 13

You can find bursts that co-occur

School of Science

ECML-PKDD 2013 26/09/2013 14

Conclusion

- Aim:
 - Find subsequences where a given event is surprisingly frequent or infrequent
- Method:
 - Find all subsequences of a given length
 - Control family-wise error rate
 - Analytical approximation
 - O(1) complexity per subsequence

ECML-PKDD 2013 26/09/2013 15