Aalto University
School of Science

A Fast and Simple Method for Mining Subsequences with Surprising Event Counts

Jefrey Lijffijt

Helsinki Institute for Information Technology (HIIT)
Department of Information and Computer Science
Aalto University, Finland

Summary

- Situation: We study event sequences
- Sequence of labels, e.g., words or amino acids
- (A, C, T, G, G, C, G, G, A, T, T, A)
- Aim: Find subsequences where a given event is surprisingly frequent or infrequent
- Subsequence = part of a long event sequence
- Surprising = improbable, assuming no structure

Example: text analysis

Burstiness measure \swarrow [Altmann et al. 2009]

Mining Subsequences with Surprising Event Counts Jefrey Lijffijt

Some basics

- Approach is based on statistical significance testing
- The null hypothesis is that the event probability is p
- Given a random subsequence of length m with count k

$$
p_{H}=\sum_{i=k}^{m} \operatorname{Bin}(i ; m, p)=\sum_{i=k}^{m}\binom{m}{i} p^{i}(1-p)^{m-i}
$$

Problem setting

- Basic procedure: low p-value \rightarrow significant structure
- However, we analyse all subsequences of a given length m
- Account for multiple hypotheses to prevent spurious results
- Family-wise error rate control:

$$
\operatorname{Pr}(F P>0) \leq \alpha
$$

		No	Yes
Null hypothesis	True	TN	FP
	False	FN	TP

Traditional solutions

- Apply post-hoc correction (Hochberg's procedure)
\rightarrow Low power, does not account for dependencies
- Or, use randomisation
\rightarrow Computationally demanding
- Alternative proposed in paper: analytical upper-bound

The dependency structure

- Full sequence: $\left(X_{1}, \ldots, X_{n}\right): X_{i} \in\{0,1\}, \operatorname{Pr}\left(X_{i}=1\right)=p$
- Sequence 1: $\left(X_{1}, \ldots, X_{m}\right)$
- Sequence 2: $\left(X_{2}, \ldots, X_{m+1}\right)$
- Sequence $\mathrm{n}-\mathrm{m}+1:\left(X_{n-m+1}, \ldots, X_{n}\right)$
- Test statistic $Z_{i, m}=X_{i}+\ldots+X_{i+m-1}$
- FWER adjusted p-value: $p_{H}^{(k)}=\operatorname{Pr}\left(\bigcup_{i=1}^{n-m+1}\left\{Z_{i, m} \geq k\right\}\right)$

Approximation

- Computing this exactly is computationally costly
- Approximation:

$$
\begin{aligned}
& \operatorname{Pr}\left(\bigcup_{i=1}^{n-m+1}\left\{Z_{i, m} \geq k\right\}\right) \\
& =\operatorname{Pr}\left(\left\{Z_{1, m} \geq k\right\}\right)+\operatorname{Pr}\left(\left\{Z_{2, m} \geq k\right\} \cap\left\{Z_{1, m}<k\right\}\right) \\
& +\operatorname{Pr}\left(\left\{Z_{3, m} \geq k\right\} \cap\left\{Z_{2, m}<k\right\} \cap\left\{Z_{1, m}<k\right\}\right)+\ldots \\
& \leq \operatorname{Pr}\left(\left\{Z_{1, m} \geq k\right\}\right)+(n-m) \cdot \operatorname{Pr}\left(\left\{Z_{2, m} \geq k\right\} \cap\left\{Z_{1, m}<k\right\}\right)
\end{aligned}
$$

Upper bound

- $\tilde{p}_{H}=(n-m) \cdot \operatorname{Pr}\left(\left\{Z_{2, m} \geq k\right\} \cap\left\{Z_{1, m}<k\right\}\right)+\operatorname{Pr}\left(\left\{Z_{1, m} \geq k\right\}\right)$

$$
=(n-m) \cdot(1-p) \cdot p \cdot \operatorname{Bin}(k-1 ; m-1, p)+\sum_{i=k}^{m} \operatorname{Bin}(i ; m, p)
$$

- Binomial and cumulative binomial can be computed in O(1) time [Loader, 2000]
- See paper for upper bound in low-frequency direction and for subsets of all subsequences

Uniformity/Power

ECML-PKDD 2013
26/09/2013

Mining Subsequences with Surprising Event Counts Jefrey Lijffijt

Uniformity Hochberg's procedure

ECML-PKDD 2013
26/09/2013

Mining Subsequences with Surprising Event Counts Jefrey Lijffijt

Some words occur uniformly

ECML-PKDD 2013 26/09/2013

Mining Subsequences with
Surprising Event Counts
Jefrey Lijffijt

We find more than β measure indicates

ECML-PKDD 2013
26/09/2013

Mining Subsequences with
Surprising Event Counts
Jefrey Lijffijt

You can find bursts that co-occur

Conclusion

- Aim:
- Find subsequences where a given event is surprisingly frequent or infrequent
- Method:
- Find all subsequences of a given length
- Control family-wise error rate
- Analytical approximation
- O(1) complexity per subsequence

