
Journal of Machine Learning Research 8 (2007) 155-201 Submitted 11/04; Revised 12/05; Published 1/07

Building Blocks for Variational Bayesian Learning of Latent Variable
Models

Tapani Raiko TAPANI.RAIKO@HUT.FI

Harri Valpola HARRI.VALPOLA@HUT.FI

Markus Harva MARKUS.HARVA@HUT.FI

Juha Karhunen JUHA.KARHUNEN@HUT.FI

Adaptive Informatics Research Centre
Helsinki University of Technology
P.O.Box 5400, FI-02015 HUT, Espoo, Finland

Editor: Michael I. Jordan

Abstract
We introduce standardised building blocks designed to be used with variational Bayesian learning.
The blocks include Gaussian variables, summation, multiplication, nonlinearity, and delay. A large
variety of latent variable models can be constructed from these blocks, including nonlinear and
variance models, which are lacking from most existing variational systems. The introduced blocks
are designed to fit together and to yield efficient update rules. Practical implementation of various
models is easy thanks to an associated software package which derives the learning formulas au-
tomatically once a specific model structure has been fixed. Variational Bayesian learning provides
a cost function which is used both for updating the variables of the model and for optimising the
model structure. All the computations can be carried out locally, resulting in linear computational
complexity. We present experimental results on several structures, including a new hierarchical
nonlinear model for variances and means. The test results demonstrate the good performance and
usefulness of the introduced method.
Keywords: latent variable models, variational Bayesian learning, graphical models, building
blocks, Bayesian modelling, local computation

1. Introduction

Various generative modelling approaches have provided powerful statistical learning methods for
neural networks and graphical models during the last years. Such methods aim at finding an ap-
propriate model which explains the internal structure or regularities found in the observations. It is
assumed that these regularities are caused by certain latent variables (also called factors, sources,
hidden variables, or hidden causes) which have generated the observed data through an unknown
mapping (Bishop, 1999). In unsupervised learning, the goal is to identify both the unknown latent
variables and generative mapping.

The expectation-maximisation (EM) algorithm (Dempster et al., 1977) has often been used for
learning latent variable models. The distribution for the latent variables is modelled, but the model
parameters are found using maximum likelihood or maximum a posteriori estimators. However,
with such point estimates, determination of the correct model order and overfitting are ubiquitous
and often difficult problems. Therefore, full Bayesian approaches making use of the complete poste-
rior distribution have recently gained a lot of attention. Exact treatment of the posterior distribution

c©2007 Tapani Raiko, Harri Valpola, Markus Harva and Juha Karhunen.

RAIKO, VALPOLA, HARVA AND KARHUNEN

is intractable except in simple toy problems, and hence one must resort to suitable approximations.
So-called Laplace approximation (Tierney and Kadane, 1986; Swartz and Evans, 2000) employs a
Gaussian approximation around the peak of the posterior distribution. However, this method still
suffers from overfitting. In real-world problems, it often does not perform adequately, and has there-
fore largely given way for better alternatives. Among them, Markov Chain Monte Carlo (MCMC)
techniques (Gelfand and Smith, 1990; Geman and Geman, 1984; Swartz and Evans, 2000) are popu-
lar in supervised learning tasks, providing good estimation results. Unfortunately, the computational
load is high, which restricts the use of MCMC in large scale unsupervised learning problems where
the parameters and variables to be estimated are numerous. For instance, Rowe (2003) has a case
study in unsupervised learning from brain imaging data. He used MCMC for a scaled down toy
example but resorted to point estimates with real data.

Variational Bayesian learning (Wallace, 1990; Hinton and van Camp, 1993; Neal and Hinton,
1999; Waterhouse et al., 1996; Lappalainen and Miskin, 2000) (for an introduction, see Jordan
et al., 1999; MacKay, 2003) has gained increasing attention during the last years. This is because
it largely avoids overfitting (Honkela and Valpola, 2004), allows for estimation of the model order
and structure, and its computational load is reasonable compared to the MCMC methods. Vari-
ational Bayesian learning was first employed in supervised problems (Wallace, 1990; Hinton and
van Camp, 1993; MacKay, 1995; Barber and Bishop, 1998), but it has now become popular also
in unsupervised modelling. Recently, several authors have successfully applied such techniques to
linear factor analysis, independent component analysis (ICA) (Hyvärinen et al., 2001; Roberts and
Everson, 2001; Choudrey et al., 2000; Højen-Sørensen et al., 2002), and their various extensions.
These include linear independent factor analysis (Attias, 1999), several other extensions of the ba-
sic linear ICA model (Attias, 2001; Chan et al., 2001; Miskin and MacKay, 2001; Roberts et al.,
2004), mixture models and other graphical models (Attias, 2000; Beal and Ghahramani, 2003; Winn
and Bishop, 2005), as well as MLP networks for modelling nonlinear observation mappings (Lap-
palainen and Honkela, 2000; Hyvärinen et al., 2001) and nonlinear dynamics of the latent variables
(source signals) (Ilin et al., 2003; Valpola and Karhunen, 2002; Valpola et al., 2003b). Variational
Bayesian learning has also been applied to large discrete models (Murphy, 1999) such as sigmoid
belief networks (Jaakkola and Jordan, 1997), nonlinear belief networks (Frey and Hinton, 1999),
and hidden Markov models (MacKay, 1997).

In this paper, we introduce a small number of basic blocks for building latent variable models
which are learned using variational Bayesian learning. The blocks have been introduced earlier in
two conference papers (Valpola et al., 2001; Harva et al., 2005) and their applications in Valpola
et al. (2003c), Honkela et al. (2003), Honkela et al. (2005), Raiko et al. (2003), Raiko (2004), and
Raiko (2005). Valpola et al. (2004) studied hierarchical models for variance sources from signal
processing point of view. This paper is the first comprehensive presentation about the block frame-
work itself. Our approach is most suitable for unsupervised learning tasks which are considered in
this paper, but in principle at least, it could be applied to supervised learning, too. A wide variety of
factor analysis type latent variable models can be constructed by combining the basic blocks suit-
ably. Variational Bayesian learning then provides a cost function which can be used for updating the
variables as well as for optimising the model structure. The blocks are designed so as to fit together
and yield efficient update rules. By using a maximally factorial posterior approximation, all the
required computations can be performed locally. This results in linear computational complexity
as a function of the number of connections in the model. The Bayes Blocks software package by
Valpola et al. (2003a) is an open-source C++/Python implementation that can freely be downloaded.

156

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

The basic building block is a Gaussian variable (node). It uses as its input values both mean and
variance. The other building blocks include addition and multiplication nodes, delay, and a Gaussian
variable followed by a nonlinearity. Several known model structures can be constructed using these
blocks. We also introduce some novel model structures by extending known linear structures using
nonlinearities and variance modelling. Examples will be presented later on in this paper.

The key idea behind developing these blocks is that after the connections between the blocks in
the chosen model have been fixed (that is, a particular model has been selected and specified), the
cost function and the updating rules needed in learning can be computed automatically. The user
does not need to understand the underlying mathematics since the derivations are done within the
software package. This allows for rapid prototyping. The Bayes Blocks can also be used to bring
different methods into a unified framework, by implementing a corresponding structure from blocks
and by using results of these methods for initialisation. Different methods can then be compared
directly using the cost function and perhaps combined to find even better models. Updates that
minimise a global cost function are guaranteed to converge, unlike algorithms such as loopy belief
propagation (Pearl, 1988), extended Kalman smoothing (Anderson and Moore, 1979), or expecta-
tion propagation (Minka, 2001).

Winn and Bishop (2005) have introduced a general purpose algorithm called variational mes-
sage passing. It resembles our framework in that it uses variational Bayesian learning and factorised
approximations. The VIBES framework allows for discrete variables but not nonlinearities or non-
stationary variance. The posterior approximation does not need to be fully factorised which leads
to a more accurate model. Optimisation proceeds by cycling through each factor and revising the
approximate posterior distribution. Messages that contain certain expectations over the posterior
approximation are sent through the network.

Beal and Ghahramani (2003); Ghahramani and Beal (2001), and Beal (2003) view variational
Bayesian learning as an extension to the EM algorithm. Their algorithms apply to combinations of
discrete and linear Gaussian models. In the experiments, the variational Bayesian model structure
selection outperformed the Bayesian information criterion (Schwarz, 1978) at relatively small com-
putational cost, while being more reliable than annealed importance sampling (Neal, 2001) even
with the number of samples so high that the computational cost is hundredfold.

A major difference of our approach compared to the related methods by Winn and Bishop (2005)
and by Beal and Ghahramani (2003) is that they concentrate mainly on situations where there is a
handy conjugate prior (Gelman et al., 1995) available. This restriction makes computations easier,
but on the other hand our blocks can be combined more freely, allowing richer model structures.
For instance, the modelling of variance in a way described in Section 5.1, would not be possible
using the gamma distribution for the precision parameter in the Gaussian node. The price we have
to pay for this advantage is that the minimum of the cost function must be found iteratively, while
it can be solved analytically when conjugate distributions are applied. The cost function can always
be evaluated analytically in the Bayes Blocks framework as well. Note that the different approaches
would fit together.

Similar graphical models can be learned with sampling based algorithms instead of variational
Bayesian learning. For instance, the BUGS software package by Spiegelhalter et al. (1995) uses
Gibbs sampling for Bayesian inference. It supports mixture models, nonlinearities, and nonstation-
ary variance. There are also many software packages concentrated on discrete Bayesian networks.
Notably, the Bayes Net toolbox by Murphy (2001) can be used for Bayesian learning and infer-
ence of many types of directed graphical models using several methods. It also includes decision-

157

RAIKO, VALPOLA, HARVA AND KARHUNEN

theoretic nodes. Hence it is in this sense more general than our work. A limitation of the Bayes net
toolbox (Murphy, 2001) is that it supports latent continuous nodes only with Gaussian or conditional
Gaussian distributions.

Autobayes (Gray et al., 2002) is a system that generates code for efficient implementations of
algorithms used in Bayes networks. Currently the algorithm schemas include EM, k-means, and
discrete model selection. This system does not yet support continuous hidden variables, nonlinear-
ities, variational methods, MCMC, or temporal models. One of the greatest strengths of the code
generation approach compared to a software library is the possibility of automatically optimising
the code using domain information.

In the independent component analysis (ICA, see textbook by Hyvärinen et al., 2001) commu-
nity, traditionally, the observation noise has not been modelled in any way. Even when it is mod-
elled, the noise variance is assumed to have a constant value which is estimated from the available
observations when required. However, more flexible variance models would be highly desirable in a
wide variety of situations. It is well-known that many real-world signals or data sets are nonstation-
ary, being roughly stationary on fairly short intervals only. Quite often the amplitude level of a signal
varies markedly as a function of time or position, which means that its variance is nonstationary.
Examples include financial data sets, speech signals, and natural images.

Recently, Parra, Spence, and Sajda (2001) have demonstrated that several higher-order statis-
tical properties of natural images and signals are well explained by a stochastic model in which
an otherwise stationary Gaussian process has a nonstationary variance. Variance models are also
useful in explaining volatility of financial time series and in detecting outliers in the data. On cer-
tain conditions the nonstationarity of variance makes it possible to perform blind source separation
(Hyvärinen et al., 2001; Pham and Cardoso, 2001).

Several authors have introduced hierarchical models related to those discussed in this paper.
These models use subspaces of dependent features instead of single feature components. This kind
of models have been proposed at least in context with independent component analysis (Cardoso,
1998; Hyvärinen and Hoyer, 2000b,a; Park and Lee, 2004), and topographic or self-organising maps
(Kohonen et al., 1997; Ghahramani and Hinton, 1998). A problem with these methods is that it is
difficult to learn the structure of the model or to compare different model structures.

The remainder of this paper is organised as follows. In the following section, we briefly present
basic concepts of variational Bayesian learning. In Section 3, we introduce the building blocks
(nodes), and in Section 4 we discuss variational Bayesian computations with them. In the next
section, we show examples of different types of models which can be constructed using the building
blocks. Section 6 deals with learning and potential problems related with it, and in Section 7 we
present experimental results on several structures given in Section 5. This is followed by a short
discussion as well as conclusions in the last section of the paper.

2. Variational Bayesian Learning

In Bayesian data analysis and estimation methods (Gelman et al., 1995),all the uncertain quantities
are modelled in terms of their joint probability density function (pdf). The key principle is to con-
struct the joint posterior pdf for all the unknown quantities in a model, given the data sample. This
posterior density contains all the relevant information on the unknown variables and parameters.

Denote by θ the set of all parameters for the model H and other unknown variables that we wish
to estimate from a given data set X . The posterior probability density p(θ | X ,H) of the parameters

158

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

θ given the data X is obtained from Bayes rule1

p(θ | X ,H) =
p(X | θ,H)p(θ |H)

p(X |H)
. (1)

Here p(X | θ,H) is the likelihood of the parameters θ given the data X , p(θ |H) is the prior pdf of
these parameters, and

p(X |H) =
Z

θ
p(X | θ,H)p(θ |H)dθ

is a normalising term which is called the evidence. The evidence can be directly understood as
the marginal probability of the observed data X assuming the chosen model H . By evaluating the
evidences p(X | Hi) for different models Hi, one can therefore choose the model which describes
the observed data with the highest probability (See Valpola and Karhunen, 2002; Bishop, 1995;
MacKay, 2003, for a more complete discussion).

Variational Bayesian learning (Wallace, 1990; Hinton and van Camp, 1993; Neal and Hinton,
1999; Waterhouse et al., 1996; Barber and Bishop, 1998; Lappalainen and Miskin, 2000) is a fairly
recently introduced approximate fully Bayesian method, which has become popular. Its key idea
is to approximate the exact posterior distribution p(θ | X ,H) by another distribution q(θ) that is
computationally easier to handle. The approximating distribution is usually chosen to be a product
of several independent distributions, one for each parameter or a set of similar parameters.

Variational Bayesian learning employs the Kullback-Leibler (KL) information (divergence) be-
tween two probability distributions q(v) and p(v). The KL information is defined by the cost func-
tion

JKL(q ‖ p) =
Z

v
q(v) ln

q(v)
p(v)

dv (2)

which measures the difference in the probability mass between the densities q(v) and p(v). Its
minimum value 0 is achieved when the densities q(v) and p(v) are the same.

The KL information is used to minimise the misfit between the actual posterior pdf p(θ | X ,H)
and its parametric approximation q(θ). However, the exact KL information JKL(q(θ) ‖ p(θ | X ,H))
between these two densities does not yet yield a practical cost function, because the normalising
term p(X |H) needed in computing p(θ | X ,H) cannot usually be evaluated.

Therefore, the cost function used in variational Bayesian learning is defined (Hinton and van Camp,
1993; MacKay, 1995)

CKL = JKL(q(θ) ‖ p(θ | X ,H))− ln p(X |H). (3)

After slight manipulation, this yields

CKL =
Z

θ
q(θ) ln

q(θ)

p(X ,θ |H)
dθ (4)

which does not require p(X |H) any more. The cost function CKL = Cq +Cp consists of two parts,
the negative entropy Cq and the expected energy Cp:

Cq = 〈lnq(θ)〉=
Z

θ
q(θ) lnq(θ)dθ, (5)

1. The subscripts of all pdf’s are assumed to be the same as their arguments, and are omitted for keeping the notation
simpler.

159

RAIKO, VALPOLA, HARVA AND KARHUNEN

Figure 1: The dash-lined nodes and connections can be ignored while updating the shadowed node.
Left: In general, the whole Markov blanket needs to be considered. Right: A completely
factorial posterior approximation with no multiple computational paths leads to a decou-
pled problem. The nodes can be updated locally.

Cp =
〈
− ln p(X ,θ |H)

〉
= −

Z

θ
q(θ) ln p(X ,θ |H)dθ (6)

where the shorthand notation 〈·〉 denotes expectation with respect to the approximate pdf q(θ).
In addition, the cost function CKL provides a bound for the evidence p(X |H). Since JKL(q ‖ p)

is always nonnegative, it follows directly from (3) that

CKL ≥− ln p(X |H).

This shows that the negative of the cost function bounds the log-evidence from below.
It is worth noting that variational Bayesian ensemble learning can be derived from information-

theoretic minimum description length coding as well (Hinton and van Camp, 1993). Further con-
siderations on such arguments, helping to understand several common problems and certain aspects
of learning, have been presented in a recent paper (Honkela and Valpola, 2004).

The dependency structure between the parameters in our method is the same as in Bayesian
networks (Pearl, 1988; Bishop, 2006). Variables are seen as nodes of a graph. Each variable is
conditioned by its parents. The difficult part in the cost function is the expectation

〈
ln p(X ,θ |H)

〉

which is computed over the approximation q(θ) of the posterior pdf. The logarithm splits the prod-
uct of simple terms into a sum. If each of the simple terms can be computed in constant time, the
overall computational complexity is linear.

In general, the computation time is constant if the parents are independent in the posterior
pdf approximation q(θ). This condition is satisfied if the joint distribution of the parents in q(θ)
decouples into the product of the approximate distributions of the parents. That is, each term in q(θ)
depending on the parents depends only on one parent. The independence requirement is violated
if any variable receives inputs from a latent variable through multiple computational paths or from
two latent variables which are dependent in q(θ), having a non-factorisable joint distribution there.
Figure 1 illustrates the flow of information in the network in these two qualitatively different cases.

Our choice for q(θ) is a multivariate Gaussian density with a diagonal covariance matrix. Even
this crude approximation is adequate for finding the region where the mass of the actual posterior
density is concentrated. The mean values of the components of the Gaussian approximation provide
reasonably good point estimates of the corresponding parameters or variables, and the respective

160

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

−1zv

m s

As+a f(s)
s(t−1)

s
A,a

s

s(t)

Figure 2: First subfigure from the left: The circle represents a Gaussian node corresponding to
the latent variable s conditioned by mean m and variance exp(−v). Second subfigure:
Addition and multiplication nodes are used to form an affine mapping from s to As + a.
Third subfigure: A nonlinearity f is applied immediately after a Gaussian variable. The
rightmost subfigure: Delay operator delays a time-dependent signal by one time unit.

variances measure the reliability of these estimates. However, occasionally the diagonal Gaussian
approximation can be too crude. This problem has been considered in context with independent
component analysis in Ilin and Valpola (2003), giving means to remedy the situation.

Taking into account posterior dependencies makes the posterior pdf approximation q(θ) more
accurate, but also usually increases the computational load significantly. We have earlier consid-
ered networks with multiple computational paths in several papers, for example (Lappalainen and
Honkela, 2000; Valpola et al., 2002; Valpola and Karhunen, 2002; Valpola et al., 2003b). The com-
putational load of variational Bayesian learning then becomes roughly quadratically proportional
to the number of unknown variables in the MLP network model used in Lappalainen and Honkela
(2000), Valpola et al. (2003b), and Honkela and Valpola (2005).

The building blocks (nodes) introduced in this paper together with associated structural con-
straints provide effective means for combating the drawbacks mentioned above. Using them, up-
dating at each node takes place locally with no multiple paths. As a result, the computational load
scales linearly with the number of estimated quantities. The cost function and the learning formulas
for the unknown quantities to be estimated can be evaluated automatically once a specific model has
been selected, that is, after the connections between the blocks used in the model have been fixed.
This is a very important advantage of the proposed block approach.

3. Node Types

In this section, we present different types of nodes that can be easily combined together. Variational
Bayesian inference algorithm for the nodes is then discussed in Section 4.

In general, the building blocks can be divided into variable nodes, computation nodes, and
constants. Each variable node corresponds to a random variable, and it can be either observed or
hidden. In this paper we present only one type of variable node, the Gaussian node, but others can
be used in the same framework. The computation nodes are the addition node, the multiplication
node, a nonlinearity, and the delay node.

In the following, we shall refer to the inputs and outputs of the nodes. For a variable node, its
inputs are the parameters of the conditional distribution of the variable represented by that node,

161

RAIKO, VALPOLA, HARVA AND KARHUNEN

and its output is the value of the variable. For computation nodes, the output is a fixed function of
the inputs. The symbols used for various nodes are shown in Figure 2. Addition and multiplication
nodes are not included, since they are typically combined to represent the effect of a linear transfor-
mation, which has a symbol of its own. An output signal of a node can be used as input by zero or
more nodes that are called the children of that node. Constants are the only nodes that do not have
inputs. The output is a fixed value determined at creation of the node.

Nodes are often structured in vectors or matrices. Assume for example that we have a data
matrix X = [x(1),x(2), . . . ,x(T)], where t = 1,2, . . .T is called the time index of an n-dimensional
observation vector. Note that t does not have to correspond to time in the real world, it is just
the index of the data case. In the implementation, the nodes are either vectors so that the values
indexed by t (observations and latent variables) or scalars so that the values are constants w.r.t. t
(parameters). The data X would be represented with n vector nodes. A weight matrix A has to be
represented with scalar nodes only. A scalar node can be a parent of a vector node, but not a child
of a vector node in this sense. In figures and formulae, we use vectors and matrices more freely.

3.1 Gaussian Node

The Gaussian node is a variable node and the basic element in building hierarchical models. Figure 2
(leftmost subfigure) shows the schematic diagram of the Gaussian node. Its output is the value of
a Gaussian random variable s, which is conditioned by the inputs m and v. Denote generally by
N (x;mx,σ2

x) the probability density function of a Gaussian random variable x having the mean mx

and variance σ2
x . Then the conditional probability function (cpf) of the variable s is p(s | m,v) =

N (s;m,exp(−v)). As a generative model, the Gaussian node takes its mean input m and adds to it
Gaussian noise (or innovation) with variance exp(−v).

Variables can be latent or observed. Observing a variable means fixing its output s to the value
in the data. Section 4 is devoted to inferring the distribution over the latent variables given the
observed variables. Inferring the distribution over variables that are independent of t is also called
learning.

3.2 Computation Nodes

The addition and multiplication nodes are used for summing and multiplying variables. These stan-
dard mathematical operations are typically used to construct linear mappings between the variables.
This task is automated in the software, but in general, the nodes can be connected in other ways,
too. An addition node that has n inputs denoted by s1,s2, . . . ,sn, gives the sum of its inputs as the
output ∑n

i=1 si. Similarly, the output of a multiplication node is the product of its inputs ∏n
i=1 si.

A nonlinear computation node can be used for constructing nonlinear mappings between the
variable nodes. The nonlinearity

f (s) = exp(−s2) (7)

is chosen because the required expectations can be solved analytically for it. Another implemented
nonlinearity for which the computations can be carried out analytically is the cut function g(s) =
max(s,0). Other possible nonlinearities are discussed in Section 4.3.

162

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

3.3 Delay Node

The delay operation can be used to model dynamics. The node operates on time-dependent signals.
It transforms the inputs s(1),s(2), . . . ,s(T) into outputs s0,s(1),s(2), . . . ,s(T − 1) where s0 is a
scalar parameter that provides a starting distribution for the dynamical process. The symbol z−1

in the rightmost subfigure of Fig. 2 illustrating the delay node is the standard notation for the unit
delay in signal processing and temporal neural networks (Haykin, 1998). Models containing the
delay node are called dynamic, and the other models are called static.

4. Variational Bayesian Inference in Bayes Blocks

In this section we give equations needed for computation with the nodes introduced in Section 3.
Generally speaking, each node propagates to the forward direction a distribution of its output given
its inputs. In the backward direction, the dependency of the cost function (4) of the children on
the output of their parent is propagated. These two potentials are combined to form the posterior
distribution of each variable. There is a direct analogy to Bayes rule (1): the prior (forward) and the
likelihood (backward) are combined to form the posterior distribution. We will show later on that
the potentials in the two directions are fully determined by a few values, which consist of certain
expectations over the distribution in the forward direction, and of gradients of the cost function w.r.t.
the same expectations in the backward direction.

In the following, we discuss in more detail the properties of each node. Note that the delay node
does not actually process the signals, it just rewires them. Therefore no formulas are needed for its
associated the expectations and gradients.

4.1 Gaussian Node

Recall the Gaussian node in Section 3.1. The variance is parameterised using the exponential func-
tion as exp(−v). This is because then the mean 〈v〉 and expected exponential 〈expv〉 of the input v
suffice for evaluating the cost function, as will be shown shortly. Consequently the cost function can
be minimised using the gradients with respect to these expectations. The gradients are computed
backwards from the children nodes, but otherwise our learning method differs clearly from standard
back-propagation (e.g., Haykin, 1998).

Another important reason for using the parameterisation exp(−v) for the prior variance of a
Gaussian random variable s is that the posterior distribution of s then becomes approximately Gaus-
sian, provided that the prior mean m of s is Gaussian, too (see for example Section 7.1 or Lap-
palainen and Miskin, 2000). The conjugate prior distribution of the inverse of the prior variance of
a Gaussian random variable is the gamma distribution (Gelman et al., 1995).

p(x | µ,γ) = N
(
x | µ,γ−1) ,

p(γ | a,b) = Gamma(γ | a,b) =
ba

Γ(a)
γa−1 exp(−bγ).

Using such gamma prior pdf causes the posterior distribution to be gamma, too, which is mathe-
matically convenient. However, the conjugate prior pdf of the second parameter b of the gamma
distribution is something quite intractable. Hence gamma distribution is not suitable for developing
hierarchical variance models. The logarithm of a gamma distributed variable is approximately Gaus-
sian distributed (Gelman et al., 1995), justifying the adopted parameterisation exp(−v). However,

163

RAIKO, VALPOLA, HARVA AND KARHUNEN

it should be noted that both the gamma and exp(−v) distributions are used as prior pdfs mainly
because they make the estimation of the posterior pdf mathematically tractable (Lappalainen and
Miskin, 2000); one cannot claim that either of these choices would be correct.

4.1.1 COST FUNCTION

Recall now that we are approximating the joint posterior pdf of the random variables s, m, and v
in a maximally factorial manner. It then decouples into the product of the individual distributions:
q(s,m,v) = q(s)q(m)q(v). Hence s, m, and v are assumed to be statistically independent a posteriori.
The posterior approximation q(s) of the Gaussian variable s is defined to be Gaussian with mean
s and variance s̃: q(s) = N (s;s, s̃). Using these, the part Cp of the Kullback-Leibler cost function
arising from the data, defined in Eq. (6), can be computed in closed form. For the Gaussian node of
Figure 2, the cost becomes

Cs,p =−〈ln p(s|m,v)〉

=
1
2

{
〈expv〉

[
(s−〈m〉)2 +Var{m}+ s̃

]
−〈v〉+ ln2π

}
(8)

The derivation is presented in Appendix B of Valpola and Karhunen (2002) using slightly different
notation. For the observed variables, this is the only term arising from them to the cost function
CKL.

However, latent variables contribute to the cost function CKL also with the part Cq defined in Eq.
(5), resulting from the expectation 〈lnq(s)〉. This term is

Cs,q =
Z

s
q(s) lnq(s)ds =−

1
2
[ln(2πs̃)+1]

which is the negative entropy of Gaussian variable with variance s̃. The parameters defining the
approximation q(s) of the posterior distribution of s, namely its mean s and variance s̃, are to be
optimised during learning.

The output of a latent Gaussian node trivially provides the mean and the variance: 〈s〉 = s and
Var{s} = s̃. The expected exponential can be easily shown to be (Lappalainen and Miskin, 2000;
Valpola and Karhunen, 2002)

〈exps〉= exp(s+ s̃/2). (9)

The outputs of the nodes corresponding to the observations are known scalar values instead of
distributions. Therefore for these nodes 〈s〉 = s, Var{s} = 0, and 〈exps〉 = exps. An important
conclusion of the considerations presented this far is that the cost function of a Gaussian node
can be computed analytically in a closed form. This requires that the posterior approximation is
Gaussian and that the mean 〈m〉 and the variance Var{m} of the mean input m as well as the mean
〈v〉 and the expected exponential 〈expv〉 of the variance input v can be computed. To summarise,
we have shown that Gaussian nodes can be connected together and their costs can be evaluated
analytically.

We will later on use derivatives of the cost function with respect to some expectations of its
mean and variance parents m and v as messages from children to parents. They are derived directly

164

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

from Eq. (8), taking the form

∂Cs,p

∂〈m〉
= 〈expv〉(〈m〉− s), (10)

∂Cs,p

∂Var{m}
=
〈expv〉

2
, (11)

∂Cs,p

∂〈v〉
=−

1
2
, (12)

∂Cs,p

∂〈expv〉
=

(s−〈m〉)2 +Var{m}+ s̃
2

. (13)

4.1.2 UPDATING THE POSTERIOR DISTRIBUTION

The posterior distribution q(s) of a latent Gaussian node can be updated as follows.

1. The distribution q(s) affects the terms of the cost function Cs arising from the variable s itself,
namely Cs,p and Cs,q, as well as the Cp terms of the children of s, denoted by Cch(s),p. The
gradients of the cost Cch(s),p with respect to 〈s〉, Var{s}, and 〈exps〉 are computed according
to Equations (10–13).

2. The terms in Cp which depend on s and s̃ can be shown (see Appendix B.2) to be of the form
2

Cp = Cs,p +Cch(s),p = Ms+V [(s− scurrent)
2 + s̃]+E 〈exps〉 , (14)

where

M =
∂Cp

∂s
, V =

∂Cp

∂s̃
, and E =

∂Cp

∂〈exps〉
.

3. The minimum of Cs = Cs,p + Cs,q + Cch(s),p is solved. This can be done analytically if E = 0,
corresponding to the case of so-called free-form solution (see Lappalainen and Miskin, 2000,
for details):

sopt = scurrent−
M
2V

, s̃opt =
1

2V
.

Otherwise the minimum is obtained iteratively. Iterative minimisation can be carried out
efficiently using Newton’s method for the posterior mean s and a fixed-point iteration for the
posterior variance s̃. The minimisation procedure is discussed in more detail in Appendix A.

4.2 Addition and Multiplication Nodes

Consider first the addition node. The mean, variance and expected exponential of the output of the
addition node can be evaluated in a straightforward way. Assuming that the inputs si are statistically

2. Note that constants are dropped out since they do not depend on s or s̃.

165

RAIKO, VALPOLA, HARVA AND KARHUNEN

independent, these expectations are respectively given by
〈

n

∑
i=1

si

〉
=

n

∑
i=1

〈si〉 , (15)

Var

{
n

∑
i=1

si

}
=

n

∑
i=1

Var{si} , (16)

〈
exp

(
n

∑
i=1

si

)〉
=

n

∏
i=1

〈expsi〉 . (17)

The proof has been given in Appendix B.1.
Consider then the multiplication node. Assuming independence between the inputs si, the mean

and the variance of the output take the form (see Appendix B.1)
〈

n

∏
i=1

si

〉
=

n

∏
i=1

〈si〉 , (18)

Var

{
n

∏
i=1

si

}
=

n

∏
i=1

[
〈si〉

2 +Var{si}
]
−

n

∏
i=1

〈si〉
2 . (19)

For the multiplication node the expected exponential cannot be evaluated without knowing the exact
distribution of the inputs.

The formulas (15)–(19) are given for n inputs because of generality, but in practice we have
carried out the needed calculations pairwise. When using the general formula (19), the variance
might otherwise occasionally take a small negative value due to minor imprecisions appearing in
the computations. This problem does not arise in pairwise computations. Now, the propagation in
the forward direction is covered.

The form of the cost function propagating from children to parents is assumed to be of the form
(14). This is true even in the case, where there are addition and multiplication nodes in between
(see Appendix B.2 for proof). Therefore only the gradients of the cost function with respect to the
different expectations need to be propagated backwards to identify the whole cost function w.r.t. the
parent. The required formulas are obtained in a straightforward manner from Eqs. (15)–(19). The
gradients for the addition node are:

∂C
∂〈s1〉

=
∂C

∂〈s1 + s2〉
, (20)

∂C
∂Var{s1}

=
∂C

∂Var{s1 + s2}
, (21)

∂C
∂〈exps1〉

= 〈exps2〉
∂C

∂〈exp(s1 + s2)〉
. (22)

For the multiplication node, they become

∂C
∂〈s1〉

= 〈s2〉
∂C

∂〈s1s2〉
+2Var{s2}

∂C
∂Var{s1s2}

〈s1〉 , (23)

∂C
∂Var{s1}

=
(
〈s2〉

2 +Var{s2}
) ∂C

∂Var{s1s2}
. (24)

166

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

As a conclusion, addition and multiplication nodes can be added between the Gaussian nodes whose
costs still retain the form (14). Proofs can be found in Appendices B.1 and B.2.

4.3 Nonlinearity Node

A serious problem arising here is that for most nonlinear functions it is impossible to compute the
required expectations analytically. Here we describe a particular nonlinearity in detail and discuss
the options for extending to other nonlinearities, for which the implementation is underway.

Ghahramani and Roweis have shown (1999) that for the nonlinear function f (s) = exp(−s2) in
Eq. (7), the mean and variance have analytical expressions, to be presented shortly, provided that it
has Gaussian input. In our graphical network structures this condition is fulfilled if we require that
the nonlinearity must be inserted immediately after a Gaussian node. The same type of exponential
function (7) is frequently used in standard radial-basis function networks (Bishop, 1995; Haykin,
1998; Ghahramani and Roweis, 1999), but in a different manner. There the exponential function
depends on the Euclidean distance from a centre point, while in our case it depends on the input
variable s directly.

The first and second moments of the function (7) with respect to the distribution q(s) are
(Ghahramani and Roweis, 1999)

〈 f (s)〉= exp

(
−

s2

2s̃+1

)
(2s̃+1)−

1
2 , (25)

〈
[f (s)]2

〉
= exp

(
−

2s2

4s̃+1

)
(4s̃+1)−

1
2 . (26)

The formula (25) provides directly the mean 〈 f (s)〉, and the variance is obtained from (25) and
(26) by applying the familiar formula Var{ f (s)} =

〈
[f (s)]2

〉
−〈 f (s)〉2. The expected exponential

〈exp f (s)〉 cannot be evaluated analytically, which limits somewhat the use of the nonlinear node.
The updating of the nonlinear node following directly a Gaussian node takes place similarly as

the updating of a plain Gaussian node. The gradients of Cp with respect to 〈 f (s)〉 and Var{ f (s)}
are evaluated assuming that they arise from a quadratic term. This assumption holds since the
nonlinearity can only propagate to the mean of Gaussian nodes. The update formulas are given in
Appendix C.

Another possibility is to use as the nonlinearity the error function f (s) =
R s
−∞ exp(−r2)dr, be-

cause its mean can be evaluated analytically and variance approximated from above (Frey and Hin-
ton, 1999). Increasing the variance increases the value of the cost function, too, and hence it suffices
to minimise the upper bound of the cost function for finding a good solution. Frey and Hinton (1999)
apply the error function in MLP (multilayer perceptron) networks (Bishop, 1995; Haykin, 1998) but
in a manner different from ours.

Finally, Murphy (1999) has applied the hyperbolic tangent function f (s) = tanh(s), approxi-
mating it iteratively with a Gaussian. Honkela and Valpola (2005) approximate the same sigmoidal
function with a Gauss-Hermite quadrature. This alternative could be considered here, too. A prob-
lem with it is, however, that the cost function (mean and variance) cannot be computed analytically.

4.4 Other Possible Nodes

One of the authors has recently implemented two new variable nodes (Harva, 2004; Harva et al.,
2005) into the Bayes Blocks software library. They are the mixture-of-Gaussians (MoG) node and

167

RAIKO, VALPOLA, HARVA AND KARHUNEN

Node type 〈·〉 Var{·} 〈exp ·〉

Gaussian node s s̃ (9)
Addition node (15) (16) (17)
Multiplication node (18) (19) -
Nonlinearity (25) (25),(26) -
Constant c 0 expc

Table 1: The forward messages or expectations that are provided by the output of different types
of nodes. The numbers in parentheses refer to defining equations. The multiplication and
nonlinearity cannot provide the expected exponential.

the rectified Gaussian node. MoG can be used to model any sufficiently well behaving distribution
(Bishop, 1995). In the independent factor analysis (IFA) method introduced in Attias (1999), a MoG
distribution was used for the sources, resulting in a probabilistic version of independent component
analysis (ICA) (Hyvärinen et al., 2001).

The second new node type, the rectified Gaussian variable, was introduced in Miskin and
MacKay (2001). By omitting negative values and retaining only positive ones of a variable which
is originally Gaussian distributed, this block allows modelling of variables having positive values
only. Such variables are commonplace for example in digital image processing, where the picture
elements (pixels) have always non-negative values. The cost functions and update rules of the MoG
and rectified Gaussian node have been derived by Harva (2004). We postpone a more detailed
discussion of these nodes to forthcoming papers to keep the length of this paper reasonable.

In the early conference paper (Valpola et al., 2001) where we introduced the blocks for the
first time, two more blocks were proposed for handling discrete models and variables. One of
them is a switch, which picks up its k-th continuous valued input signal as its output signal. The
other one is a discrete variable k, which has a soft-max prior derived from the continuous valued
input signals ci of the node. However, we have omitted these two nodes from the present paper,
because their performance has not turned out to be adequate. The reason might be that assuming
posterior independence of the auxiliary Gaussian variables is too rough and that the cost function
in the soft-max case could not be computed exactly. For instance, building a mixture-of-Gaussians
from discrete and Gaussian variables with switches is possible, but the construction loses out to a
specialised MoG node that makes fewer assumptions. Raiko (2005) uses the soft-max node without
switches.

Action and utility nodes (Pearl, 1988; Murphy, 2001) would extend the library into decision
theory and control. In addition to the messages about the variational Bayesian cost function, the
network would propagate messages about utility. Raiko and Tornio (2005) describe such a system
in a slightly different framework.

5. Combining the Nodes

The expectations provided by the outputs and required by the inputs of the different nodes are
summarised in Tables 1 and 2, respectively. One can see that the variance input of a Gaussian node
requires the expected exponential of the incoming signal. However, it cannot be computed for the
nonlinear and multiplication nodes. Hence all the nodes cannot be combined freely.

168

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Input type ∂C
∂〈·〉

∂C
∂Var{·}

∂C
∂〈exp ·〉

Mean of a Gaussian node (10) (11) 0
Variance of a Gaussian node (12) 0 (13)
Addendum (20) (21) (22)
Factor (23) (24) 0

Table 2: The backward messages or the gradients of the cost function w.r.t. certain expectations.
The numbers in parentheses refer to defining equations. The gradients of the Gaussian
node are derived from Eq. (8). The Gaussian node requires the corresponding expecta-
tions from its inputs, that is, 〈m〉, Var{m}, 〈v〉, and 〈expv〉. Addition and multiplication
nodes require the same type of input expectations that they are required to provide as
output. Communication of a nonlinearity with its Gaussian parent node is described in
Appendix C.

When connecting the nodes, the following restrictions must be taken into account:

1. In general, the network has to be a directed acyclic graph (DAG). The delay nodes are an
exception because the past values of any node can be the parents of any other nodes. This
violation is not a real one in the sense that if the structure were unfolded in time, the resulting
network would again be a DAG.

2. The nonlinearity must always be placed immediately after a Gaussian node. This is because
the output expectations, Equations (25) and (26), can be computed only for Gaussian inputs.
The nonlinearity also breaks the general form of the likelihood (14). This is handled by using
special update rules for the Gaussian followed by a nonlinearity (Appendix C).

3. The outputs of multiplication and nonlinear nodes cannot be used as variance inputs for the
Gaussian node. This is because the expected exponential cannot be evaluated for them. These
restrictions are evident from Tables 1 and 2.

4. There should be only one computational path from a latent variable to a variable. A compu-
tational path is a path that consists of computation nodes only. Otherwise, the independency
assumptions used in Equations (8) and (16)–(19) are violated and variational Bayesian learn-
ing becomes more complicated (recall Figure 1).

Figure 3 shows examples of model structures that break each of the restrictions in turn. The
software package includes a function that checks whether a given model structure is correct or not.
Note that the network may contain loops, that is, the underlying undirected network can be cyclic.
Note also that the second, third, and fourth restrictions can be circumvented by inserting mediating
Gaussian nodes. A mediating Gaussian node that is used as the variance input of another variable,
is called the variance source and it is discussed in the following.

5.1 Nonstationary Variance

In most currently used models, only the means of Gaussian nodes have hierarchical or dynamical
models. In many real-world situations the variance is not a constant either but it is more difficult to

169

RAIKO, VALPOLA, HARVA AND KARHUNEN

4.1. 2. 3.
Figure 3: Examples of illegal model structures violating each of the restriction described in the text

in turn.

m v m

v s(t) w u(t) s(t)

Figure 4: Left: The Gaussian variable s(t) has a a constant variance exp(−v) and mean m. Right:
A variance source is added for providing a non-constant variance input u(t) to the output
(source) signal s(t). The variance source u(t) has a prior mean v and prior variance
exp(−w).

model it. For modelling the variance, too, we use the variance source (Valpola et al., 2004) depicted
schematically in Figure 4. Variance source is a regular Gaussian node whose output u(t) is used as
the input variance of another Gaussian node. Variance source can convert prediction of the mean
into prediction of the variance, allowing to build hierarchical or dynamical models for the variance.

The output s(t) of a Gaussian node to which the variance source is attached (see the right sub-
figure of Fig. 4) has in general a super-Gaussian distribution. Such a distribution is typically charac-
terised by long tails and a high peak, and it is formally defined as having a positive value of kurtosis
(see Hyvärinen et al. (2001) for a detailed discussion). This property has been proved by Parra et al.
(2001) who showed that a nonstationary variance (amplitude) always increases the kurtosis. The
output signal s(t) of the stationary Gaussian variance source depicted in the left subfigure of Fig. 4
is naturally Gaussian distributed with zero kurtosis. The variance source is useful in modelling nat-
ural signals such as speech and images which are typically super-Gaussian, and also in modelling
outliers in the observations.

170

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Var{u(t)}=0
Var{u(t)}=1
Var{u(t)}=2

Figure 5: The distribution of s(t) is plotted when s(t)∼N (0,exp[−u(t)]) and u(t)∼N (0, ·). Note
that when Var{u(t)} = 0, the distribution of s(t) is Gaussian. This corresponds to the
right subfigure of Fig. 4 when m = v = 0 and exp(−w) = 0,1,2.

5.2 Linear Independent Factor Analysis

In many instances there exist several nodes which have quite similar role in the chosen structure.
Assuming that ith such node corresponds to a scalar variable yi, it is convenient to use the vector y =
(y1,y2, . . . ,yn)

T to jointly denote all the corresponding scalar variables y1,y2, . . . ,yn. This notation
is used in Figures 6 and 7 later on. Hence we represent the scalar source nodes corresponding to the
variables si(t) using the source vector s(t), and the scalar nodes corresponding to the observations
xi(t) using the observation vector x(t).

The addition and multiplication nodes can be used for building an affine transformation

x(t) = As(t)+a+nx(t) (27)

from the Gaussian source nodes s(t) to the Gaussian observation nodes x(t). The vector a denotes
the bias and vector nx(t) denotes the zero-mean Gaussian noise in the Gaussian node x(t). This
model corresponds to standard linear factor analysis (FA) assuming that the sources si(t) are mutu-
ally uncorrelated; see for example, Hyvärinen et al. (2001).

If instead of Gaussianity it is assumed that each source si(t) has some non-Gaussian prior, the
model (27) describes linear independent factor analysis (IFA). Linear IFA was introduced by Attias
(1999), who used variational Bayesian learning for estimating the model except for some parts
which he estimated using the expectation-maximisation (EM) algorithm. Attias used a mixture-of-
Gaussians source model, but another option is to use the variance source to achieve a super-Gaussian
source model. Figure 6 depicts the model structures for linear factor analysis and independent factor
analysis.

5.3 A Hierarchical Variance Model

Figure 7 (right subfigure) presents a hierarchical model for the variance, and also shows how it
can be constructed by first learning simpler structures shown in the left and middle subfigures of
Fig. 7. This is necessary, because learning a hierarchical model having different types of nodes from
scratch in a completely unsupervised manner would be too demanding a task, ending quite probably
into an unsatisfactory local minimum.

171

RAIKO, VALPOLA, HARVA AND KARHUNEN

A

u(t) s(t)

x(t)

A

s(t)

x(t)

Figure 6: Model structures for linear factor analysis (FA) (left) and independent factor analysis
(IFA) (right).

The final rightmost variance model in Fig. 7 is somewhat involved in that it contains both non-
linearities and hierarchical modelling of variances. Before going into its mathematical details and
into the two simpler models in Fig. 7, we point out that we have considered in our earlier papers
related but simpler block models. In Valpola et al. (2003c), a hierarchical nonlinear model for the
data x(t) is discussed without modelling the variance. Such a model can be applied for example to
nonlinear ICA or blind source separation. Experimental results (Valpola et al., 2003c) show that this
block model performs adequately in the nonlinear BSS problem, even though the results are slightly
poorer than for our earlier computationally more demanding model (Lappalainen and Honkela,
2000; Valpola et al., 2003b; Honkela and Valpola, 2005) with multiple computational paths.

In another paper (Valpola et al., 2004), we have considered hierarchical modelling of variance
using the block approach without nonlinearities. Experimental results on biomedical MEG (mag-
netoencephalography) data demonstrate the usefulness of hierarchical modelling of variances and
existence of variance sources in real-world data.

Learning starts from the simple structure shown in the left subfigure of Fig. 7. There a variance
source is attached to each Gaussian observation node. The nodes represent vectors, with u1(t) being
the output vector of the variance source and x(t) the t th observation (data) vector. The vectors u1(t)
and x(t) have the same dimension, and each component of the variance vector u1(t) models the
variance of the respective component of the observation vector x(t).

Mathematically, this simple first model obeys the equations

x(t) = a1 +nx(t), (28)

u1(t) = b1 +nu1(t). (29)

Here the vectors a1 and b1 denote the constant means (bias terms) of the data vector x(t) and
the variance variable vector u1(t), respectively. The additive “noise” vector nx(t) determines the
variances of the components of x(t). It has a Gaussian distribution with a zero mean and variance
exp[−u1(t)]:

nx(t)∼N (0,exp[−u1(t)]). (30)

More precisely, the shorthand notation N (0,exp[−u1(t)]) means that each component of nx(t) is
Gaussian distributed with a zero mean and variance defined by the respective component of the
vector exp[−u1(t)]. The exponential function exp(·) is applied separately to each component of the

172

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

A
11B

x(t)

x(t)

u (t)

u (t)

u (t) s (t)

1

2 2

1

2

1 1

2

u (t)

B

B A

A

u (t)

2

u (t)

s (t)2

s (t)3

x(t)1

3

Figure 7: Construction of a hierarchical variance model in stages from simpler models. Left: In the
beginning, a variance source is attached to each Gaussian observation node. The nodes
represent vectors. Middle: A layer of sources with variance sources attached to them is
added. They layers are connected through a nonlinearity and an affine mapping. Right:
Another layer is added on the top to form the final hierarchical variance model.

vector −u1(t). Similarly,
nu1(t)∼N (0,exp [−v1]) (31)

where the components of the vector v1 define the variances of the zero mean Gaussian variables
nu1(t).

Consider then the intermediate model shown in the middle subfigure of Fig. 7. In this second
learning stage, a layer of sources with variance sources attached to them is added. These sources are
represented by the source vector s2(t), and their variances are given by the respective components
of the variance vector u2(t) quite similarly as in the left subfigure. The (vector) node between the
source vector s2(t) and the variance vector u1(t) represents an affine transformation with a trans-
formation matrix A1 including a bias term. Hence the prior mean inputted to the Gaussian variance
source having the output u1(t) is of the form B1f(s2(t))+b1, where b1 is the bias vector, and f(·) is
a vector of componentwise nonlinear functions (7). Quite similarly, the vector node between s2(t)
and the observation vector x(t) yields as its output the affine transformation A1f(s2(t))+a1, where
a1 is a bias vector. This in turn provides the input prior mean to the Gaussian node modelling the
observation vector x(t).

The mathematical equations corresponding to the model represented graphically in the middle
subfigure of Fig. 7 are:

x(t) = A1f(s2(t))+a1 +nx(t), (32)

u1(t) = B1f(s2(t))+b1 +nu1(t), (33)

s2(t) = a2 +ns2(t), (34)

u2(t) = b2 +nu2(t). (35)

173

RAIKO, VALPOLA, HARVA AND KARHUNEN

Compared with the simplest model (28)–(29), one can observe that the source vector s2(t) of the
second (upper) layer and the associated variance vector u2(t) are of quite similar form, given in Eqs.
(34)–(35). The models (32)–(33) of the data vector x(t) and the associated variance vector u1(t) in
the first (bottom) layer differ from the simple first model (28)–(29) in that they contain additional
terms A1f(s2(t)) and B1f(s2(t)), respectively. In these terms, the nonlinear transformation f(s2(t))
of the source vector s2(t) coming from the upper layer have been multiplied by the linear mixing
matrices A1 and B1. All the “noise” terms nx(t), nu1(t), ns2(t), and nu2(t) in Eqs. (32)–(35) are
modelled by similar zero mean Gaussian distributions as in Eqs. (30) and (31).

In the last stage of learning, another layer is added on the top of the network shown in the
middle subfigure of Fig. 7. The resulting structure is shown in the right subfigure. The added new
layer is quite similar as the layer added in the second stage. The prior variances represented by
the vector u3(t) model the source vector s3(t), which is turn affects via the affine transformation
B2f(s3(t))+b2 to the mean of the mediating variance node u2(t). The source vector s3(t) provides
also the prior mean of the source s2(t) via the affine transformation A2f(s3(t))+a2.

The model equations (32)–(33) for the data vector x(t) and its associated variance vector u1(t)
remain the same as in the intermediate model shown graphically in the middle subfigure of Fig. 7.
Note that A1 and B1 are still updated. The model equations of the second and third layer sources
s2(t) and s3(t) as well as their respective variance vectors u2(t) and u3(t) in the rightmost subfigure
of Fig. 7 are given by

s2(t) = A2f(s3(t))+a2 +ns2(t),

u2(t) = B2f(s3(t))+b2 +nu2(t),

s3(t) = a3 +ns3(t),

u3(t) = b3 +nu3(t).

Again, the vectors a2, b2, a3, and b3 represent the constant means (biases) in their respective models,
and A2 and B2 are mixing matrices with matching dimensions. The vectors ns2(t), nu2(t), ns3(t),
and nu3(t) have similar zero mean Gaussian distributions as in Eqs. (30) and (31).

It should be noted that in the resulting network the number of scalar-valued nodes (size of the
layers) can be different for different layers. Additional layers could be appended in the same manner.
The final network of the right subfigure in Fig. 7 uses variance nodes in building a hierarchical model
for both the means and variances. Without the variance sources the model would correspond to a
nonlinear model with latent variables in the hidden layer. As already mentioned, we have considered
such a nonlinear hierarchical model in Valpola et al. (2003c). Note that as latent variables of the
upper layer are connected to observations through multiple hidden nodes, having computation nodes
as hidden nodes would result in multiple computational paths. This type of structure was used in
Lappalainen and Honkela (2000), and it has a quadratic computational complexity as opposed to
linear one of the networks in Figure 7.

5.4 Linear Dynamic Models for the Sources and Variances

Sometimes it is useful to complement the linear factor analysis model

x(t) = As(t)+a+nx(t) (36)

with a recursive one-step prediction model for the source vector s(t):

s(t) = Bs(t−1)+b+ns(t). (37)

174

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

−1z

A

B

s(t)

x(t)

−1z

A

B

u(t) s(t)

x(t)

−1z

−1z

A

u(t) s(t)

x(t)

C

Figure 8: Three model structures. A linear Gaussian state-space model (left); the same model com-
plemented with a super-Gaussian innovation process for the sources (middle); and a dy-
namic model for the variances of the sources which also have a recurrent dynamic model
(right).

The noise term ns(t) is called the innovation process. The dynamic model of the type (36), (37) is
used for example in Kalman filtering (Haykin, 1998, 2001), but other estimation algorithms can be
applied as well (Haykin, 1998). The left subfigure in Fig. 8 depicts the structure arising from Eqs.
(36) and (37), built from the blocks.

A straightforward extension is to use variance sources for the sources to make the innovation
process super-Gaussian. The variance signal u(t) characterises the innovation process of s(t), in
effect telling how much the signal differs from the predicted one but not in which direction it is
changing. The graphical model of this extension is depicted in the middle subfigure of Fig. 8.
The mathematical equations describing this model can be written in a similar manner as for the
hierarchical variance models in the previous subsection.

Another extension is to model the variance sources dynamically by using one-step recursive
prediction model for them:

u(t) = Cu(t−1)+ c+nu(t).

This model is depicted graphically in the rightmost subfigure of Fig. 8. In context with it, we use
the simplest possible identity dynamical mapping for s(t):

s(t) = s(t−1)+ns(t).

The latter two models introduced in this subsection will be tested experimentally later on in this
paper.

5.5 Hierarchical Priors

It is often desirable that the priors of the parameters should not be too restrictive. A common type of
a vague prior is the hierarchical prior (Gelman et al., 1995). For example the priors of the elements

175

RAIKO, VALPOLA, HARVA AND KARHUNEN

ai j of a mixing matrix A can be defined via the Gaussian distributions

p(ai j | v
a
i) = N (ai j;0,exp(−va

i)),

p(va
i | m

va,vva) = N (va
i ;mva,exp(−vva)) .

Finally, the priors of the quantities mva and vva have flat Gaussian distributions N (·;0,100)
(the constants depending on the scale of the data). When going up in the hierarchy, we use the same
distribution for each column of a matrix and for each component of a vector. On the top, the number
of required constant priors is small. Thus very little information is provided and needed a priori.
This kind of hierarchical priors are used in the experiments later on this paper.

6. Learning

Let us now discuss the overall learning procedure, describing also briefly how problems related with
learning can be handled.

6.1 Updating of the Network

The nodes of the network communicate with their parents and children by providing certain expec-
tations in the feedforward direction (from parents to children) and gradients of the cost function
with respect to the same expectations in the feedback direction (from children to parents). These
expectations and gradients are summarised in Tables 1 and 2.

The basic element for updating the network is the update of a single node assuming the rest
of the network fixed. For computation nodes this is simple: each time when a child node asks
for expectations and they are out of date, the computational node asks from its parents for their
expectations and updates its own ones. And vice versa: when parents ask for gradients and they
are out of date, the node asks from its children for the gradients and updates its own ones. These
updates have analytical formulas given in Section 4.

For a variable node to be updated, the input expectations and output gradients need to be up-
to-date. The posterior approximation q(s) can then be adjusted to minimise the cost function as
explained in Section 4. The minimisation is either analytical or iterative, depending on the situation.
Signals propagating outwards from the node (the output expectations and the input gradients) of a
variable node are functions of q(s) and are thus updated in the process. Each update is guaranteed
not to increase the cost function.

One sweep of updating means updating each node once. The order in which this is done is not
critical for the system to work. It would not be useful to update a variable twice without updating
some of its neighbours in between, but that does not happen with any ordering when updates are
done in sweeps. We have used an ordering where each variable node is updated only after all of its
descendants have been updated. Basically when a variable node is updated, its input gradients and
output expectations are labelled as outdated and they are updated only when another node asks for
that information.

It is possible to use different measures to improve the learning process. Measures for avoiding
local minima are described in the next subsection. Another enhancement can be used for speeding
up learning. The basic idea is that after some time, the parameters describing q(s) are changing
fairly linearly between consecutive sweeps. Therefore a line search in that direction provides faster
learning, as discussed in Honkela (2002); Honkela et al. (2003). We apply this line search only at
every tenth sweep for allowing the consecutive updates to become fairly linear again.

176

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Learning a model typically takes thousands of sweeps before convergence. The cost function
decreases monotonically after every update. Typically this decrease gets smaller with time, but not
always monotonically. Therefore care should be taken in selecting the stopping criterion. We have
chosen to stop the learning process when the decrease in the cost during the previous 200 sweeps is
lower than some predefined threshold.

6.2 Structural Learning and Local Minima

The chosen model has a pre-specified structure which, however, has some flexibility. The number
of nodes is not fixed in advance, but their optimal number is estimated using variational Bayesian
learning, and unnecessary connections can be pruned away.

A factorial posterior approximation, which is used in this paper, often leads to automatic prun-
ing of some of the connections in the model. When there is not enough data to estimate all the
parameters, some directions remain ill-determined. This causes the posterior distribution along
those directions to be roughly equal to the prior distribution. In variational Bayesian learning with a
factorial posterior approximation, the ill-determined directions tend to get aligned with the axes of
the parameter space because then the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance sparsely connected models, because
the learning algorithm automatically selects a small amount of well-determined parameters. But
at the early stages of learning, pruning can be harmful, because large parts of the model can get
pruned away before a sensible representation has been found. This corresponds to the situation
where the learning scheme ends up into a local minimum of the cost function (MacKay, 2001). A
posterior approximation which takes into account the posterior dependences has the advantage that
it has far less local minima than a factorial posterior approximation. It seems that Bayesian learning
algorithms which have linear time complexity cannot avoid local minima in general.

However, suitable choices of the model structure and countermeasures included in the learning
scheme can alleviate the problem greatly. We have used the following means for avoiding getting
stuck into local minima:

• Learning takes place in several stages, starting from simpler structures which are learned first
before proceeding to more complicated hierarchic structures. An example of this technique
was presented in Section 5.3.

• New parts of the network are initialised appropriately. One can use for instance principal
component analysis (PCA), independent component analysis (ICA), vector quantisation, or
kernel PCA (Honkela et al., 2004). The best option depends on the application. Often it is
useful to try different methods and select the one providing the smallest value of the cost
function for the learned model. There are two ways to handle initialisation: either to fix
the sources for a while and learn the weights of the model, or to fix the weights for a while
and learn the sources corresponding to the observations. The fixed variables can be released
gradually (Valpola et al., 2003c, Section 5.1).

• Automatic pruning is discouraged initially by omitting the term

2Var{s2}
∂C

∂Var{s1s2}
〈s1〉

177

RAIKO, VALPOLA, HARVA AND KARHUNEN

in the multiplication nodes (Eq. (23)). This effectively means that the mean of s1 is optimisti-
cally adjusted as if there were no uncertainty about s2. In this way the cost function may
increase at first due to overoptimism, but it may pay off later on by escaping early pruning.

• New sources si(t) (components of the source vector s(t) of a layer) are generated, and pruned
sources are removed from time to time.

• The activations of the sources are reset a few times. The sources are re-adjusted to their places
while keeping the mapping and other parameters fixed. This often helps if some of the sources
are stuck into a local minimum.

7. Experimental Results

The Bayes Blocks software (Valpola et al., 2003a) has been applied to several problems.

Valpola et al. (2004) considered several models of variance. The main application was the
analysis of MEG measurements from a human brain. In addition to features corresponding to brain
activity the data contained several artifacts such as muscle activity induced by the patient biting
his teeth. Linear ICA applied to the data was able to separate the original causes to some degree
but still many dependencies remained between the sources. Hence an additional layer of so-called
variance sources was used to find correlations between the variances of the innovation processes of
the ordinary sources. These were able to capture phenomena related to the biting artifact as well as
to rhythmic activity.

An astrophysical problem of separating young and old star populations from a set of elliptical
galaxy spectra was studied by one of the authors in Nolan et al. (2006). Since the observed quantities
were energies and thus positive and since the mixing process was also known to be positive, it was
necessary for the subsequent astrophysical analysis to be feasible to include these constraints to
the model as well. The standard technique of putting a positive prior on the sources was found
to have the unfortunate technical shortcoming of inducing sparsely distributed factors, which was
deemed inappropriate in that specific application. To get rid of the induced sparsity but to still
keep the positivity constraint, the nonnegativity was forced by rectification nonlinearities (Harva
and Kabán, 2007). In addition to finding an astrophysically meaningful factorisation, several other
specifications were needed to be met related to handling of missing values, measurements errors
and predictive capabilities of the model.

In Raiko (2005), a nonlinear model for relational data was applied to the analysis of the board
game Go. The difficult part of the game state evaluation is to determine which groups of stones are
likely to get captured. A model similar to the one that will be described in Section 7.2, was built for
features of pairs of groups, including the probability of getting captured. When a learned model is
applied to new game states, the estimates propagate through a network of such pairs. The structure
of the network is thus determined by the game state. The approach can be used for inference in
relational databases.

The following three sets of experiments are given as additional examples. The first one is a
difficult toy problem that illustrates hierarchy and variance modelling, the second one studies the
inference of missing values in speech spectra, and the third one has a dynamical model for image
sequences.

178

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Figure 9: Samples from the 1000 image patches used in the extended bars problem. The bars
include both standard and variance bars in horizontal and vertical directions. For instance,
the patch at the bottom left corner shows the activation of a standard horizontal bar above
the horizontal variance bar in the middle.

7.1 Bars Problem

The first experimental problem studied was testing of the hierarchical nonlinear variance model in
Figure 7 in an extension of the well-known bars problem (Dayan and Zemel, 1995). The data set
consisted of 1000 image patches each having 6× 6 pixels. They contained both horizontal and
vertical bars. In addition to the regular bars, the problem was extended to include horizontal and
vertical variance bars, characterised and manifested by their higher variance. Samples of the image
patches used are shown in Figure 9.

The data were generated by first choosing whether vertical, horizontal, both, or neither orienta-
tions were active, each with probability 1/4. Whenever an orientation is active, there is a probability
1/3 for a bar in each row or column to be active. For both orientations, there are 6 regular bars, one
for each row or column, and 3 variance bars which are 2 rows or columns wide. The intensities (grey
level values) of the bars were drawn from a normalised positive exponential distribution having the
pdf p(z) = exp(−z),z ≥ 0, p(z) = 0,z < 0. Regular bars are additive, and variance bars produce
additive Gaussian noise having the standard deviation of its intensity. Finally, Gaussian noise with
a standard deviation 0.1 was added to each pixel.

The network was built up following the stages shown in Figure 7. It was initialised with a single
layer with 36 nodes corresponding to the 36 dimensional data vector. The second layer of 30 nodes
was created at the sweep 20, and the third layer of 5 nodes at the sweep 100. After creating a layer
only its sources were updated for 10 sweeps, and pruning was discouraged for 50 sweeps. New
nodes were added twice, 3 to the second layer and 2 to the third layer, at sweeps 300 and 400.
After that, only the sources were updated for 5 sweeps, and pruning was again discouraged for 50
sweeps. The source activations were reset at the sweeps 500, 600 and 700, and only the sources
were updated for the next 40 sweeps. Dead nodes were removed every 20 sweeps. The multistage
training procedure was designed to avoid suboptimal local solutions, as discussed in Section 6.2.
Note that a large part of the presented procedure could be automated for application to any problem.

Figure 10 demonstrates that the algorithm finds a generative model that is quite similar to the
generation process. The two sources on the third layer correspond to the horizontal and vertical
orientations and the 18 sources on the second layer correspond to the bars. Each element of the

179

RAIKO, VALPOLA, HARVA AND KARHUNEN

weight matrices is depicted as a pixel with the appropriate grey level value in Fig. 10. The pixels
of A2 and B2 are ordered similarly as the patches of A1 and B1, that is, vertical bars on the left
and horizontal bars on the right. Regular bars, present in the mixing matrix A1, are reconstructed
accurately, but the variance bars in the mixing matrix B1 exhibit some noise. The grouping of
horizontal and vertical orientations is clearly visible in the mixing matrix A2. For instance, the first
patch in A2 has non-zero (black) weights to all the vertical features, that is, left side pixels in A2

activate sources corresponding to the left side patches in A1 and B1.

A2 (18×2) B2 (18×2)

A1 (36×18) B1 (36×18)

Figure 10: Results of the extended bars problem: Posterior means of the weight matrices after
learning. The sources of the second layer have been ordered for visualisation purposes
according to the weight (mixing) matrices A2 and B2. The elements of the matrices
have been depicted as pixels having corresponding grey level values. The 18 pixels in
the weight matrices A2 and B2 correspond to the 18 patches in the weight matrices A1

and B1.

A comparison experiment with a simplified learning procedure was run to demonstrate the im-
portance of local optima. The creation and pruning of layers were done as before, but other methods
for avoiding local minima (addition of nodes, discouraging pruning and resetting of sources) were
disabled. The resulting weights can be seen in Figure 11. This time the learning ends up in a subop-
timal local optimum of the cost function. One of the bars was not found (second horizontal bar from
the bottom), some were mixed up in a same source (most variance bars share a source with a regular
bar), fourth vertical bar from the left appears twice, and one of the sources just suppresses variance
everywhere. The resulting cost function (4) is worse by 5292 compared to the main experiment.
The ratio of the model evidences is thus roughly exp(5292).

Figure 12 illustrates the formation of the posterior distribution of a typical single variable. It is
the first component of the variance source u1(1) in the comparison experiment. The prior means
here the distribution given its parents (especially s2(1) and B1) and the likelihood means the po-

180

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

0 500 1000 1500
1

1.5

2

2.5

3

3.5

4
x 10

4 A2 (14×2) B2 (14×2)

A1 (36×14) B1 (36×14)

Figure 11: Left: Cost function plotted against the number of learning sweeps. Solid curve is the
main experiment and the dashed curve is the comparison experiment. The peaks appear
when nodes are added. Right: The resulting weights in the comparison experiment are
plotted like in Figure 10.

prior
likelihood
posterior
approximation

Figure 12: A typical example illustrating the posterior approximation of a variance source.

tential given its children (the first component of x(1)). Assuming the posteriors of other variables
accurate, we can plot the true posterior of this variable and compare it to the Gaussian posterior
approximation. Their difference is only 0.007 measured by Kullback-Leibler divergence.

7.2 Missing Values in Speech Spectra

In hierarchical nonlinear factor analysis (HNFA) (Valpola et al., 2003c), there are a number of layers
of Gaussian variables, the bottom-most layer corresponding to the data. There is a nonlinearity and
a linear mixture mapping from each layer to all the layers below it.

HNFA resembles the model structure in Section 5.3. The model structure is depicted in the left
subfigure of Fig. 13. Model equations are

h(t) = As(t)+a+nh(t),

x(t) = Bφ[h(t)]+Cs(t)+b+nx(t) ,

181

RAIKO, VALPOLA, HARVA AND KARHUNEN

s(t)

x(t)

h(t)

C

A

B

Generalisation
4.

2.1.

3.

dimensionality
High

Memorisation
(permuted)

Nonlinearity
(patches)

Figure 13: Left: The model structure for hierarchical nonlinear factor analysis (HNFA). Right: Four
different experimental settings with the speech data used for measuring different prop-
erties of the algorithms.

where nh(t) and nx(t) are Gaussian noise terms and the nonlinearity φ(ξ) = exp(−ξ2) again operates
on each element of its argument vector separately. Note that we have included a short-cut mapping
C from sources to observations. This means that hidden nodes only need to model the deviations
from linearity.

HNFA is compared against three other methods. Factor analysis (FA) is a linear method de-
scribed in Section 5.2. It is a special case of HNFA where the dimensionality of h(t) is zero. Non-
linear factor analysis (NFA) (Lappalainen and Honkela, 2000; Honkela and Valpola, 2005) differs
from HNFA in that it does not use mediating variables h(t):

x(t) = B tanh[As(t)+a]+b+nx(t).

Note that NFA has multiple computational paths between s(t) and x(t), which leads to a higher
computational complexity compared to HNFA.

The self-organising map SOM (Kohonen, 2001) differs most from the other methods. A rect-
angular map has a number of map units with associated model vectors that are points in the data
space. Each data point is matched to the closest map unit. The model vectors of the best-matching
unit and its neighbours in the map are moved slightly towards the data point. See Kohonen (2001);
Haykin (1998) for details.

The data set consisted of speech spectrograms from several Finnish subjects. Short term spec-
tra were acquired by using Fourier transformation and their dimensionality was reduced to 30 by
triangular windowing with window centres uniformly spaced on the Mel scale. It is clear that a
dynamic source model would give better reconstructions, but in this case the temporal information
was left out to ease the comparison of the models. Half of the about 5000 samples were used as test

182

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Data with missing values Original data

HNFA reconstruction NFA reconstruction

FA reconstruction SOM reconstruction

Figure 14: Some speech data with and without missing values (Setting 1) and reconstructions by
HNFA and by comparison models.

data with some missing values. Missing values were set in four different ways to measure different
properties of the algorithms (right subfigure of Fig. 13):

1. 38 percent of the values are set to miss randomly in 4×4 patches. (Figure 14)

2. The data samples are randomly permuted before setting missing values in 4×4 patches as in
Setting 1.

3. 10 percent of the values are set to miss randomly independent of any neighbours. This is an
easier setting, since simple smoothing using nearby values would give fine reconstructions.

4. The data samples are permuted and 10 percent of the values are set to miss independently of
any neighbours.

With permutation, data samples from a single spoken word end up in both training and testing data.
This setting emphasises memorisation, while testing with new speech emphasises generalisation.
When values are missing one by one, they could be reconstructed quite well even by linear inter-
polation of their neighbours. Thus, this setting emphasises the models ability to work accurately in
high dimensions rather than its capability of modelling nonlinear effects.

We tried to optimise each method and in the following, we describe how we got the best results.
The self-organising map was run using the SOM Toolbox (Vesanto et al., 1999) with long learning
time, 2500 map units and random initialisations. In other methods, the optimisation was based on
minimising the cost function or its approximation. NFA was learned for 5000 sweeps through data
using a Matlab implementation. Varying number of sources were tried out and the best ones were
used as the result. The optimal number of sources was around 12 to 15 and the size used for the
hidden layer was 30. A large enough number should do, since the algorithm can effectively prune
out parts that are not needed.

In factor analysis (FA), the number of sources was 28. In hierarchical nonlinear factor analysis
(HNFA), the number of sources at the top layer was varied and the best runs according to the cost

183

RAIKO, VALPOLA, HARVA AND KARHUNEN

function were selected. In those runs, the size of the top layer varied from 6 to 12 and the size of
the middle layer, which is determined during learning, turned out to vary from 12 to 30. HNFA
was run for 5000 sweeps through data. Each experiment with NFA or HNFA took about 8 hours of
processor time, while FA and SOM were faster.

Several runs were conducted with different random initialisations but with the same data and the
same missing value pattern for each setting and for each method. The number of runs in each cell
is about 30 for HNFA, 4 for NFA and 20 for the SOM. FA always converges to the same solution.
The mean and the standard deviation of the mean square reconstruction error of missing values are:

FA HNFA NFA SOM
Setting 1 1.87 1.80±0.03 1.74±0.02 1.69±0.02
Setting 2 1.85 1.78±0.03 1.71±0.01 1.55±0.01
Setting 3 0.57 0.55± .005 0.56± .002 0.86±0.01
Setting 4 0.58 0.55± .008 0.58± .004 0.87±0.01

The order of results of the Setting 1 follow our expectations on the nonlinearity of the models.
The SOM with highest nonlinearity gives the best reconstructions, while NFA, HNFA and finally
FA follow in that order. Example reconstructions are shown in Figure 14. The results of HNFA vary
the most - there is potential to develop better learning schemes to find better solutions more often.
The sources h(t) of the hidden layer did not only emulate computation nodes, but they were also
active themselves. Avoiding this situation during learning could help to find more nonlinear and
thus perhaps better solutions.

In the Setting 2, due to the permutation, the test set contains vectors very similar to some in the
training set. Therefore, generalisation is not as important as in the Setting 1. The SOM is able to
memorise details corresponding to individual samples better due to its high number of parameters.
Compared to the Setting 1, SOM benefits a lot and makes clearly the best reconstructions, while the
others benefit only marginally.

The Settings 3 and 4, which require accurate expressive power in high dimensionality, turned
out not to differ from each other much. The basic SOM has only two intrinsic dimensions3 and
therefore it was clearly poorer in accuracy. Nonlinear effects were not important in these settings,
since HNFA and NFA were only marginally better than FA. HNFA was better than NFA perhaps
because it had more latent variables when counting both s(t) and h(t).

To conclude, HNFA lies between FA and NFA in performance. HNFA is applicable to high di-
mensional problems and the middle layer can model part of the nonlinearity without increasing the
computational complexity dramatically. FA is better than SOM when expressivity in high dimen-
sions is important, but SOM is better when nonlinear effects are more important. The extensions
of FA, NFA and HNFA, expectedly performed better than FA in each setting. It may be possible to
enhance the performance of NFA and HNFA by new learning schemes whereas especially FA is al-
ready at its limits. On the other hand, FA is best if low computational complexity is the determining
factor.

7.3 Variance Model of Image Sequences

In this section an experiment with a dynamical model for variances applied to image sequence
analysis is reported. The motivation behind modelling variances is that in many natural signals,

3. Higher dimensional SOMs become quickly intractable due to exponential number of parameters.

184

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

there exists higher order dependencies which are well characterised by correlated variances of the
signals (Parra et al., 2001). Hence we postulate that we should be able to better catch the dynamics
of a video sequence by modelling the variances of the features instead of the features themselves.
This indeed is the case as will be shown.

The model considered can be summarised by the following set of equations:

x(t)∼N (As(t),diag(exp[−vx])),

s(t)∼N (s(t−1),diag(exp[−u(t)])),

u(t)∼N (Bu(t−1),diag(exp[−vu])).

We will use the acronym DynVar in referring to this model. The linear mapping A from sources
s(t) to observations x(t) is constrained to be sparse by assigning each source a circular region on the
image patch outside of which no connections are allowed. These regions are still highly overlapping.
The variances u(t) of the innovation process of the sources have a linear dynamical model. It should
be noted that modelling the variances of the sources in this manner is impossible if one is restricted
to use conjugate priors.

The sparsity of A is crucial as the computational complexity of the learning algorithm depends
on the number of connections from s(t) to x(t). The same goal could have been reached with a
different kind of approach as well. Instead of constraining the mapping to be sparse from the very
beginning of learning it could have been allowed to be full for a number of iterations and only
after that pruned based on the cost function as explained in Section 6.2. But as the basis for image
sequences tends to get sparse anyway, it is a waste of computational resources to wait while most
of the weights in the linear mapping tend to zero.

For comparison purposes, we postulate another model where the dynamical relations are sought
directly between the sources leading to the following model equations:

x(t)∼N (As(t),diag(exp[−vx])),

s(t)∼N (Bs(t−1),diag(exp[−vs])).

We shall refer to this model as DynSrc.
The data x(t) was a video image sequence (van Hateren and Ruderman, 1998) of dimensions

16×16×4000. That is, the data consisted of 4000 subsequent digital images of the size 16×16. A
part of the data set is shown in Figure 15.

Both models were learned by iterating the learning algorithm 2000 times at which stage a suffi-
cient convergence was attained. The first hint of the superiority of the DynVar model was provided
by the difference of the cost between the models which was 28 bits/frame (for the coding inter-
pretation, see Honkela and Valpola, 2004). To further evaluate the performance of the models,
we considered a simple prediction task where the next frame was predicted based on the previous
ones. The predictive distributions, p(x(t + 1)|x(1), ...,x(t)), for the models can be approximately
computed based on the posterior approximation. The means of the predictive distributions are very
similar for both of the models. Figure 16 shows the means of the DynVar model for the same se-
quence as in Figure 15. The means themselves are not very interesting, since they mainly reflect
the situation in the previous frame. However, the DynVar model provides also a rich model for
the variances. The standard deviations of its predictive distribution are shown in Figure 17. White
stands for a large variance and black for a small one. Clearly, the model is able to increase the
predicted variance in the area of high motion activity and hence provide better predictions. We can

185

RAIKO, VALPOLA, HARVA AND KARHUNEN

offer quantitative support for this claim by computing the predictive perplexities for the models.
Predictive perplexity is widely used in language modelling and it is defined as

perplexity(t) = exp

{
−

1
256

256

∑
i=1

log p(xi(t +1)|x(1), ...,x(t))

}
.

The predictive perplexities for the same sequence as in Figure 15 are shown in Figure 18. Naturally
the predictions get worse when there is movement in the video. However, DynVar model is able to
handle it much better than the compared DynSrc model. The same difference can also be directly
read by comparing the cost functions (2).

The possible applications for a model of image sequences include video compression, motion
detection, early stages of computer vision, and making hypotheses on biological vision.

8. Discussion

One of the distinctive factors between different Bayesian approaches is the type of posterior approx-
imation. We have concentrated on large unsupervised learning tasks, where point estimates are too
prone to overfitting and sampling used in MCMC methods and particle filters, is often too slow. The
problems tackled with particle filters in Doucet et al. (2001) vary from 1 to 10 in dimensionality,
whereas the latent space in Section 7.3 is 128 dimensional. The variational Bayesian learning seems
to provide a good compromise between point estimates and sampling methods.

Often the posterior distribution consists of clusters or solution modes. It depends on the pos-
terior approximation again, whether only one of the clusters, or all of them are modelled. In our
case, the expectation in JKL(q ‖ p) is taken over the approximate distribution q, which in practice
leads to modelling a single mode. In expectation propagation (Minka, 2001), the Kullback-Leibler
divergence is formed differently, leading to modelling of all the modes. Also, sampling is supposed
to take place in all the modes. For the purpose of finding a single good representative of the pos-
terior probability mass, the first approach should be better. In fact, the expectation over the true
posterior, also known as the Bayes estimate, is often degenerate due to symmetry. For instance in
factor analysis type models, the posterior is symmetric to the permutation of factors. The number
of permutations also gives a hint of the infeasibility of accurately modelling all the modes in a high-
dimensional problem. Perhaps it would be best to find one mode for the parameters, but all modes
for the time-dependent variables when feasible.

The variational Bayesian methods vary further depending on the posterior approximation. In
this paper, all variables are assumed to be independent a posteriori. We have chosen to model
individual distributions as Gaussians. Often different conjugate distributions are used instead, for
instance, the variance of a Gaussian variable is modelled with a Gamma distribution. Conjugate
distributions are accurate and in some sense practical, but by restricting to Gaussians, the nodes can
be connected more freely allowing for example hierarchical modelling of variances. It should be
noted that the effect of assuming independencies is far more significant compared to the effect of
approximations in modelling individual distributions.

The scope of this paper has been restricted to models which can be learned using purely local
computations. This is possible, if the parents of each node are independent a posteriori. This can
be accomplished by using a factorial posterior approximation and by not allowing multiple compu-
tational paths between variables. Purely local computations result in a computational complexity
that is linear w.r.t. the number of connections in the model. In small models, one could afford to

186

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Figure 15: A sequence of 80 frames from the data used in the experiment.

Figure 16: The means of the predictive distribution for the DynVar model.

187

RAIKO, VALPOLA, HARVA AND KARHUNEN

Figure 17: The standard deviations of the predictive distribution for the DynVar model.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Frame

P
re

d.
 P

er
pl

ex
ity

DynSrc
DynVar

Figure 18: Predictive perplexities. Perplexity means that the model is as perplexed as if it were
choosing between perplexity(t) equally likely options. Low perplexity means high com-
pression.

188

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

take all the dependencies into account. In larger models, it might be desirable to model posterior
dependencies within disjoint groups of variables, but to assume the groups statistically independent,
as is done by Winn and Bishop (2005).

According to our experience, almost maximally factorial posterior pdf approximation q(θ) suf-
fices in many cases. It seems that a good model structure is usually more important than a good
approximation of the posterior pdf of the model. Therefore the available computation time is of-
ten better invested in a larger model using a simple posterior approximation. In any case, density
estimates of continuous valued latent variables offer an important advantage over point estimates,
because they are robust against overfitting and provide a cost function suitable for learning model
structures. With variational Bayesian learning employing a factorial posterior pdf approximation
q(θ) the density estimates are almost as efficient as point estimates. Moreover, latent variable mod-
els often exhibit rotational and other invariances of which variational Bayesian learning can take
advantage by choosing a solution where the factorial approximation is most accurate.

The basic algorithm for learning and inference is based on updating a variable at a time while
keeping other variables fixed. It has the benefits of being completely local and guaranteed to con-
verge. A drawback is that the flow of information through time can be slow while performing
inference in a dynamical model. There are alternative inference algorithms, where updates are car-
ried out in forward and backward sweeps. These include particle smoothing (Doucet et al., 2001),
extended Kalman smoothing (Anderson and Moore, 1979), and expectation propagation (Minka,
2001). Raiko et al. (2006) propose an algorithm that combines guaranteed convergence with faster
flow of information in variational Bayesian inference that could be applied here as well. When
the model needs to be learned at the same time, one needs to iterate a lot anyway, so the varia-
tional Bayesian algorithm that makes small but consistent improvements at every sweep might be
preferable.

It is an important design choice that each node is updated while keeping the other nodes fixed.
If new node types are added later on, there is no need to change the global learning algorithm, but
it suffices to design an update rule for the new node type. Also, there is an option to update some
nodes more often than others. When different parameters are coupled and cyclic updating is slow,
it can be sped up by line search as described by Honkela et al. (2003). Note that all the updates
are done in order to minimise a global cost function, that is, a cost function over all the variables.
Expectation propagation (Minka, 2001) updates one approximation at a time, too. An important
difference is that there updates are done using a local cost function, that is, the local approximation
is fitted to the local true posterior assuming that the rest of the approximation is accurate. This is
the reason why expectation propagation may diverge.

Large nonlinear problems often have numerous suboptimal local solutions that should be avoided.
We have used many tricks to avoid them, as discussed in Section 6.2. It depends on the application
which tricks work best. It is an important aspect of future work to make the procedure as simple as
possible for the user.

9. Conclusions

In this paper, we have introduced standardised nodes (blocks) for constructing generative latent
variable models. These nodes include a Gaussian node, addition, multiplication, a nonlinearity
following directly a Gaussian node, and a delay node. The nodes have been designed so that they
fit together, allowing construction of many types of latent variable models, including both known

189

RAIKO, VALPOLA, HARVA AND KARHUNEN

and novel structures. Constructing new prototype models is rapid since the user does not need to
take care of the learning formulas. The nodes have been implemented in an open source software
package called the Bayes Blocks (Valpola et al., 2003a).

The models built from these blocks are taught using variational Bayesian (ensemble) learning.
This learning method essentially uses as its cost function the Kullback-Leibler information between
the true posterior density and its approximation. The cost function is used for updating the un-
known variables in the model, but it also allows optimisation of the number of nodes in the chosen
model type. By using a factorial posterior density approximation, all the required computations can
be carried out locally by propagating means, variances, and expected exponentials instead of full
distributions. In this way, one can achieve a linear computational complexity with respect to the
number of connections in the chosen model. However, initialisation to avoid premature pruning of
nodes and local minima require special attention in each application for achieving good results.

In this paper, we have tested the introduced method experimentally in three separate unsuper-
vised learning problems with different types of models. The results demonstrate the good perfor-
mance and usefulness of the method. First, hierarchical nonlinear factor analysis (HNFA) with
variance modelling was applied to an extension of the bars problem. The presented algorithm could
find a model that is essentially the same as the complicated way in which the data were generated.
Secondly, HNFA was used to reconstruct missing values in speech spectra. The results were con-
sistently better than with linear factor analysis, and were generally best in cases requiring accurate
representation in high dimensionality. The third experiment was carried out using real-world video
image data. We compared the linear dynamical model for the means and for the variances of the
sources. The results demonstrate that finding strong dependencies between different sources was
considerably easier when the variances were modelled, too.

Acknowledgments

We thank Antti Honkela, Tomas Östman, and Alexander Ilin for work on Bayes blocks software
library and for useful comments, and Hans van Hateren for supplying the video data (van Hateren
and Ruderman, 1998) used in the experiments. This research has been funded by the European
Commission project BLISS and the Finnish Centre of Excellence Programme (2000-2005) under
the project New Information Processing Principles.

Appendix A. Updating q(s) for the Gaussian Node

Here we show how to minimise the function

C (m,v) = Mm+V [(m−m0)
2 + v]+E exp(m+ v/2)−

1
2

lnv,

where M,V ,E, and m0 are scalar constants. A unique solution exists when V > 0 and E ≥ 0. This
problem occurs when a Gaussian posterior with mean m and variance v is fitted to a probability
distribution whose logarithm has both a quadratic and exponential part resulting from Gaussian prior
and log-Gamma likelihoods, respectively, and Kullback-Leibler divergence is used as the measure
of the misfit.

In the special case E = 0, the minimum of C (m,v) can be found analytically and it is m =
m0 −

M
2V , v = 1

2V . In other cases where E > 0, minimisation is performed iteratively. At each

190

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

iteration, one Newton iteration for the mean m and one fixed-point iteration for the variance v are
carried out as explained in more detail in the following.

A.1 Newton Iteration for the Mean m

The Newton iteration for m is obtained by

mi+1 = mi−
∂C (mi,vi)/∂mi

∂2C (mi,vi)/∂m2
i

= mi−
M +2V (mi−m0)+E exp(m+ v/2)

2V +E exp(m+ v/2)
. (38)

The Newton iteration converges in one step if the second derivative remains constant. The step is
too short if the second derivative decreases and too long if the second derivative increases. For
stability, it is better to take too short than too long steps.

In this case, the second derivative always decreases if the mean m decreases and vice versa. For
stability it is therefore useful to restrict the growth of m because it is consistently over-estimated.

A.2 Fixed-Point Iteration for the Variance v

A simple fixed-point iteration rule is obtained for the variance v by solving the zero of the derivative:

0 =
∂C (m,v)

∂v
= V +

E
2

exp(m+ v/2)−
1
2v
⇔

v =
1

2V +E exp(m+ v/2)

def
= g(v),

vi+1 = g(vi). (39)

In general, fixed-point iterations are stable around the solution vopt if |g′(vopt)| < 1 and converge
best when the derivative g′(vopt) is near zero. In our case g′(vi) is always negative and can be less
than −1. In this case the solution can be an unstable fixed-point. This can be avoided by taking a
weighted average of (39) and a trivial iteration vi+1 = vi:

vi+1 =
ξ(vi)g(vi)+ vi

ξ(vi)+1
def
= f (vi). (40)

The weight ξ should be such that the derivative of f is close to zero at the optimal solution vopt

which is achieved exactly when ξ(vopt) =−g′(vopt).
It holds

g′(v) =−
(E/2)exp(m+ v/2)

[2V +E exp(m+ v/2)]2
= g2(v)

[
V −

1
2g(v)

]
= g(v)

[
V g(v)−

1
2

]
⇒

g′(vopt) = vopt

[
V vopt−

1
2

]
⇒ ξ(vopt) = vopt

[
1
2
−V vopt

]
.

The last steps follow from the fact that vopt = g(vopt) and from the requirement that f ′(vopt) = 0. We
can assume that v is close to vopt and use

ξ(v) = v

[
1
2
−V vopt

]
. (41)

191

RAIKO, VALPOLA, HARVA AND KARHUNEN

Note that the iteration (39) can only yield estimates with 0 < vi+1 < 1/2V which means that
ξ(vi+1) > 0. Therefore the use of ξ always shortens the step taken in (40). If the initial estimate
v0 > 1/2V , we can set it to v0 = 1/2V .

There is potential for a speedup by doing a joint Newton’s iteration on both m and v at the same
time. Another option would be to allow m to be updated more often than v.

A.3 Summary of the Updating Method for q(s)

1. Set v0←min(v0,1/2V).

2. Iterate:

(a) Solve the new estimate of the mean m from Eq. (38) under the restriction that the maxi-
mum step is 4;

(b) Solve the new estimate of the variance v from Eqs. (41) and (40) under the restriction
that the maximum step is 4.

3. Stop the iteration after the corrections become small enough, being under some suitable pre-
defined threshold value.

Appendix B. Addition and Multiplication Nodes

Equations (15)–(19) for the addition and multiplication nodes are proven in the following section.
Only the Equation (15) applies in general, the others assume that the incoming signals are inde-
pendent a posteriori. That is, q(s1,s2, . . . ,sn) = q(s1)q(s2) . . .q(sn). Also the proof of the form of
the cost function mostly concerns propagation through addition and multiplication nodes, so it is
presented here. Finally, the formulas of propagating the gradients of the cost function w.r.t. the
expectations are derived.

B.1 Expectations

Equation (15) follows directly from the linearity of the expectation operation, or can be proven
analogously to the proof of Equation (18):

〈
n

∏
i=1

si

〉
=

Z

(
n

∏
i=1

si

)
q(s1,s2, . . . ,sn)ds

=
Z n

∏
i=1

siq(si)ds =
n

∏
i=1

Z

siq(si)dsi =
n

∏
i=1

〈si〉 .

Equation (16) states that the variance of a sum of independent variables is the sum of their
variances. This fact can be found in basic probability theory books. It can be proven with simple
manipulation by using Equations (15) and (18).

Equation (17) can be proven by applying (18) to expsi:

〈
exp

(
n

∑
i=1

si

)〉
=

〈
n

∏
i=1

expsi

〉
=

n

∏
i=1

〈expsi〉 .

192

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

Equation (19) can be proven by applying Equation (18) to both si and s2
i :

Var

{
n

∏
i=1

si

}
=

〈(
n

∏
i=1

si

)2〉
−

〈
n

∏
j=1

s j

〉2

=

〈
n

∏
i=1

s2
i

〉
−

(
n

∏
j=1

〈
s j
〉
)2

=
n

∏
i=1

〈
s2

i

〉
−

n

∏
j=1

〈
s j
〉2

=
n

∏
i=1

[
〈si〉

2 +Var{si}
]
−

n

∏
j=1

〈
s j
〉2

.

B.2 Form of the Cost Function

The form of the part of the cost function that an output of a node affects is shown to be of the form

Cp = M 〈·〉+V [(〈·〉−〈·〉current)
2 +Var{·}]+E 〈exp ·〉+C. (42)

where 〈·〉 denotes the expectation of the quantity in question. If the output is connected directly to
another variable, this can be seen from Eq. (8) by substituting

M = 〈expv〉(〈s〉current−〈m〉),

V =
1
2
〈expv〉 ,

E = 0,

C =
1
2

[
〈expv〉

(
Var{m}+ 〈m〉2−〈s〉2current

)
−〈v〉+ ln2π

]
.

If the output is connected to multiple variables, the sum of the affected costs is of the same form.
Now one has to prove that this form remains the same when the signals are fed through the addition
and multiplication nodes.4

If the cost function is of the predefined form (42) for the sum s1 + s2, it has the same form for
s1, when s2 is regarded as a constant. This can be shown using Eqs. (15), (16), and (17):

Cp = M 〈s1 + s2〉+V
[
(〈s1 + s2〉−〈s1 + s2〉current)

2 +Var{s1 + s2}
]

+E 〈exp(s1 + s2)〉+C (43)

= M 〈s1〉+V
[
(〈s1〉−〈s1〉current)

2 +Var{s1}
]

+(E 〈exps2〉)〈exps1〉+(C +M 〈s2〉+V Var{s2}) .

It can also be seen from (43) that when E = 0 for the sum s1 + s2, it is zero for the addend s1, that is
E ′ = E 〈exps2〉= 0. This means that the outputs of product and nonlinear nodes can be fed through
addition nodes.

If the cost function is of the predefined form (42) with E = 0 for the product s1s2, it is similar
for the variable s1, when the variable s2 is regarded as a constant. This can be shown using Eqs. (18)

4. Note that delay node only rewires connections so it does not affect the formulas.

193

RAIKO, VALPOLA, HARVA AND KARHUNEN

and (19):

Cp = M 〈s1s2〉+V
[
(〈s1s2〉−〈s1s2〉current)

2 +Var{s1s2}
]
+C

= (M 〈s2〉+2V Var{s2}〈s1〉current)〈s1〉

+
[
V
(
〈s2〉

2 +Var{s2}
)][

(〈s1〉−〈s1〉current)
2 +Var{s1}

]

+
(

C−V Var{s2}〈s1〉
2
current

)
.

Appendix C. Updating q(s) for the Gaussian Node Followed by a Nonlinearity

A Gaussian variable has its own terms in the cost function and it affects the cost function of its
children. In case there is a nonlinearity attached to it, only the latter is changed. The cost function
of the children can be written in the form

Cch(s),p = M 〈 f (s)〉+V [(〈 f (s)〉−〈 f (s)〉current)
2 +Var{ f (s)}]

where 〈 f (s)〉current stands for the expectation using the current posterior estimate q(s), and M and V
are constants.

The posterior q(s) = N (s;s, s̃) is updated to minimise the cost function. For s̃ we get a fixed
point iteration for the update candidate:

s̃new =

[
〈expv〉+

4V
(
1−2s2 +2s̃

)
(〈 f (s)〉− M

2V)〈 f (s)〉

(2s̃+1)2

−
4V
(
1−4s2 +4s̃

)〈
[f (s)]2

〉

(4s̃+1)2

]−1

.

And for s we have an approximated Newton’s iteration update candidate

snew = s− s̃new

[
〈expv〉(s−〈m〉)+4V s

(
(〈 f (s)〉− M

2V)〈 f (s)〉

2s̃+1
−

〈
[f (s)]2

〉

4s̃+1

)]
.

These candidates guarantee a direction, in which the cost function decreases locally. As long as the
cost function is about to increase in value, the step size is halved. This guarantees the convergence
to a stable point.

Appendix D. Example Where Point Estimates Fail

The following example illustrates what can go wrong with point estimates. Three dimensional data
vectors x(t) are modelled with the linear factor analysis model x(t) = as(t)+ n(t), using a scalar
source signal s(t) and a Gaussian noise vector n(t) with zero mean and parameterised variance
p(nk) = N (0,σ2

k). Here a is a three-dimensional weight vector.
The problem is to estimate a and s(t) by maximising the likelihood p(x(t) | a,s(t)). The weight

vector a might get a value a = [1 0 0]T , while the source can just copy the values of the first
dimension of x(t), that is, s(t) = x1(t). When the reconstruction error or the noise term is evaluated:
n(t) = x(t)− as(t) = [0 x2(t) x3(t)]

T , one can see that problems will arise with the first variance

194

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

parameter σ2
1. The likelihood goes to infinity as σ2

1 goes to zero. The same applies to the posterior
density, since it is basically just the likelihood multiplied by a finite factor.

The found solution is completely useless and still, it is rated as infinitely good using point
estimates. These problems are typical for models with estimates of the noise level or products.
They can be sometimes avoided by fixing the noise level or using certain normalisations (Attias,
2001). When the noise model is nonstationary (see Section 5.1), the problem becomes even worse,
since the infinite likelihood appears if the any of the variances goes to zero.

References

B. Anderson and J. Moore. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.

H. Attias. ICA, graphical models and variational methods. In S. Roberts and R. Everson, editors,
Independent Component Analysis: Principles and Practice, pages 95–112. Cambridge University
Press, 2001.

H. Attias. Independent factor analysis. Neural Computation, 11(4):803–851, 1999.

H. Attias. A variational Bayesian framework for graphical models. In T. Lee et al., editor, Advances
in Neural Information Processing Systems 12, pages 209–215, Cambridge, 2000. MIT Press.

D. Barber and C. M. Bishop. Ensemble learning in Bayesian neural networks. In C. M. Bishop,
editor, Neural Networks and Machine Learning, pages 215–237. Springer, Berlin, 1998.

M. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, University of
London, UK, 2003.

M. Beal and Z. Ghahramani. The variational Bayesian EM algorithm for incomplete data: with
application to scoring graphical model structures. Bayesian Statistics 7, pages 453–464, 2003.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

C. M. Bishop. Latent variable models. In M. I. Jordan, editor, Learning in Graphical Models, pages
371–403. The MIT Press, Cambridge, MA, USA, 1999.

J.-F. Cardoso. Multidimensional independent component analysis. In Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP’98), pages 1941–1944, Seattle, Washington,
USA, May 12–15, 1998.

K. Chan, T.-W. Lee, and T. Sejnowski. Variational learning of clusters of undercomplete nonsym-
metric independent components. In Proc. Int. Conf. on Independent Component Analysis and
Signal Separation (ICA2001), pages 492–497, San Diego, USA, 2001.

R. Choudrey, W. Penny, and S. Roberts. An ensemble learning approach to independent component
analysis. In Proc. of the IEEE Workshop on Neural Networks for Signal Processing, Sydney,
Australia, December 2000, pages 435–444. IEEE Press, 2000.

195

RAIKO, VALPOLA, HARVA AND KARHUNEN

P. Dayan and R. Zemel. Competition and multiple cause models. Neural Computation, 7(3):565–
579, 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. J. of the Royal Statistical Society, Series B (Methodological), 39(1):1–38, 1977.

A. Doucet, N. de Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in Practice. Springer
Verlag, 2001.

B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural
Computation, 11(1):193–214, 1999.

A. Gelfand and A. Smith. Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association, 85(410):398–409, 1990.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC
Press, Boca Raton, Florida, 1995.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In T. Leen,
T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages
507–513. The MIT Press, Cambridge, MA, USA, 2001.

Z. Ghahramani and G. E. Hinton. Hierarchical non-linear factor analysis and topographic maps. In
M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing
Systems 10, pages 486–492. The MIT Press, Cambridge, MA, USA, 1998.

Z. Ghahramani and S. Roweis. Learning nonlinear dynamical systems using an EM algorithm. In
M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems
11, pages 431–437. The MIT Press, Cambridge, MA, USA, 1999.

A. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic derivation of statistical algorithms:
The EM family and beyond. In Advances in Neural Information Processing Systems 15, 2002.
URL http://www.hiit.fi/u/buntine/nips2002.htm.

M. Harva. Hierarchical Variance Models of Image Sequences. Helsinki Univ. of Technology, Dept.
of Computer Science and Eng., Espoo, Finland, March 2004. Master of Science (Dipl.Eng.)
thesis. Available at http://www.cis.hut.fi/mha.

M. Harva and A. Kabán. Variational learning for rectified factor analysis. Signal Processing, 87(3):
509–527, 2007.

M. Harva, T. Raiko, A. Honkela, H. Valpola, and J. Karhunen. Bayes Blocks: An implementation
of the variational Bayesian building blocks framework. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, UAI 2005, pages 259–266, Edinburgh, Scotland, July 2005.

S. Haykin, editor. Kalman Filtering and Neural Networks. Wiley, New York, 2001.

S. Haykin. Neural Networks – A Comprehensive Foundation, 2nd ed. Prentice-Hall, 1998.

196

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description
length of the weights. In Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory,
pages 5–13, Santa Cruz, CA, USA, 1993.

P. Højen-Sørensen, O. Winther, and L.K. Hansen. Mean-field approaches to independent component
analysis. Neural Computation, 14(4):889–918, 2002.

A. Honkela. Speeding up cyclic update schemes by pattern searches. In Proc. of the 9th Int. Conf.
on Neural Information Processing (ICONIP’02), pages 512–516, Singapore, 2002.

A. Honkela and H. Valpola. Variational learning and bits-back coding: an information-theoretic
view to Bayesian learning. IEEE Transactions on Neural Networks, 15(4):800–810, 2004.

A. Honkela and H. Valpola. Unsupervised variational Bayesian learning of nonlinear models. In
L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems
17, pages 593–600. MIT Press, Cambridge, MA, USA, 2005.

A. Honkela, H. Valpola, and J. Karhunen. Accelerating cyclic update algorithms for parameter
estimation by pattern searches. Neural Processing Letters, 17(2):191–203, 2003.

A. Honkela, S. Harmeling, L. Lundqvist, and H. Valpola. Using kernel PCA for initialisation of
variational Bayesian nonlinear blind source separation method. In C. Puntonet and A. Prieto,
editors, Proc. of the Fifth Int. Conf. on Independent Component Analysis and Blind Signal Sepa-
ration (ICA 2004), volume 3195 of Lecture Notes in Computer Science, pages 790–797, Granada,
Spain, 2004. Springer-Verlag, Berlin.

A. Honkela, T. Östman, and R. Vigário. Empirical evidence of the linear nature of magnetoen-
cephalograms. In Proc. 13th European Symposium on Artificial Neural Networks (ESANN 2005),
pages 285–290, Bruges, Belgium, 2005.

A. Hyvärinen and P. Hoyer. Emergence of phase and shift invariant features by decomposition
of natural images into independent feature subspaces. Neural Computation, 12(7):1705–1720,
2000a.

A. Hyvärinen and P. Hoyer. Emergence of topography and complex cell properties from natural
images using extensions of ICA. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances
in Neural Information Processing Systems 12, pages 827–833. The MIT Press, Cambridge, MA,
USA, 2000b.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. J. Wiley, 2001.

A. Ilin and H. Valpola. On the effect of the form of the posterior approximation in variational
learning of ICA models. In Proc. of the 4th Int. Symp. on Independent Component Analysis and
Blind Signal Separation (ICA2003), pages 915–920, Nara, Japan, 2003.

A. Ilin, H. Valpola, and E. Oja. Nonlinear dynamical factor analysis for state change detection.
IEEE Trans. on Neural Networks, 15(3):559–575, May 2003.

T. Jaakkola and M. I. Jordan. A variational approach to Bayesian logistic regression models and
their extensions. In Proceedings of the Sixth International Workshop on Artificial Intelligence
and Statistics, Fort Lauderdale, Florida, January 1997.

197

RAIKO, VALPOLA, HARVA AND KARHUNEN

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for
graphical models. In M. Jordan, editor, Learning in Graphical Models, pages 105–161. The MIT
Press, Cambridge, MA, USA, 1999.

T. Kohonen. Self-Organizing Maps. Springer, 3rd, extended edition, 2001.

T. Kohonen, S. Kaski, and H. Lappalainen. Self-organized formation of various invariant-feature
filters in the Adaptive-Subspace SOM. Neural Computation, 9(6):1321–1344, 1997.

H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by multi-
layer perceptrons. In M. Girolami, editor, Advances in Independent Component Analysis, pages
93–121. Springer-Verlag, Berlin, 2000.

H. Lappalainen and J. Miskin. Ensemble learning. In M. Girolami, editor, Advances in Independent
Component Analysis, pages 75–92. Springer-Verlag, Berlin, 2000.

D. J. C. MacKay. Local minima, symmetry-breaking, and model pruning in variational free energy
minimization. Available at http://www.inference.phy.cam.ac.uk/mackay/, 2001.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

D. J. C. MacKay. Developments in probabilistic modelling with neural networks – ensemble learn-
ing. In Neural Networks: Artificial Intelligence and Industrial Applications. Proc. of the 3rd
Annual Symposium on Neural Networks, pages 191–198, 1995.

D. J. C. MacKay. Ensemble learning for hidden Markov models. Available at
http://wol.ra.phy.cam.ac.uk/mackay/, 1997.

T. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence, UAI 2001, pages 362–369, Seattle, Washing-
ton, USA, 2001.

J. Miskin and D. J. C. MacKay. Ensemble learning for blind source separation. In S. Roberts and
R. Everson, editors, Independent Component Analysis: Principles and Practice, pages 209–233.
Cambridge University Press, 2001.

K. Murphy. The Bayes net toolbox for Matlab. Computing Science and Statistics, 33:331–350,
2001.

K. Murphy. A variational approximation for Bayesian networks with discrete and continuous latent
variables. In Proc. of the 15th Annual Conf. on Uncertainty in Artificial Intelligence (UAI–99),
pages 457–466, Stockholm, Sweden, 1999.

R. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, April 2001.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355–368. The MIT
Press, Cambridge, MA, USA, 1999.

198

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

L. Nolan, M. Harva, A. Kabán, and S. Raychaudhury. A data-driven Bayesian approach for finding
young stellar populations in early-type galaxies from their UV-optical spectra. Monthly Notices
of the Royal Astronomical Society, 366(1):321–338, 2006.

H.-J. Park and T-W. Lee. A hierarchical ICA method for unsupervised learning of nonlinear de-
pendencies in natural images. In C. Puntonet and A. Prieto, editors, Proc. of the 5th Int. Conf.
on Independent Component Analysis and Blind Signal Separation (ICA2004), pages 1253–1261,
Granada, Spain, 2004.

L. Parra, C. Spence, and P. Sajda. Higher-order statistical properties arising from the non-
stationarity of natural signals. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13, pages 786–792. The MIT Press, Cambridge, MA,
USA, 2001.

J. Pearl, editor. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Francisco, California, 1988.

D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of nonstationary sources.
IEEE Trans. on Signal Processing, 49(9):1837–1848, 2001.

T. Raiko. Partially observed values. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’04), pages
2825–2830, Budapest, Hungary, 2004.

T. Raiko. Nonlinear relational Markov networks with an application to the game of Go. In Pro-
ceedings of the International Conference on Artificial Neural Networks (ICANN 2005), pages
989–996, Warsaw, Poland, September 2005.

T. Raiko and M. Tornio. Learning nonlinear state-space models for control. In Proc. Int. Joint Conf.
on Neural Networks (IJCNN’05), pages 815–820, Montreal, Canada, 2005.

T. Raiko, H. Valpola, T. Östman, and J. Karhunen. Missing values in hierarchical nonlinear fac-
tor analysis. In Proc. of the Int. Conf. on Artificial Neural Networks and Neural Information
Processing (ICANN/ICONIP 2003), pages 185–189, Istanbul, Turkey, 2003.

T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State inference in variational Bayesian non-
linear state-space models. In Proceedings of the 6th International Conference on Independent
Component Analysis and Blind Source Separation (ICA 2006), pages 222–229, Charleston, South
Carolina, USA, March 2006.

S. Roberts and R. Everson, editors. Independent Component Analysis: Principles and Practice.
Cambridge Univ. Press, 2001.

S. Roberts, E. Roussos, and R. Choudrey. Hierarchy, priors and wavelets: structure and signal
modelling using ICA. Signal Processing, 84(2):283–297, February 2004.

D. Rowe. Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing.
Chapman & Hall/CRC, Medical College of Wisconsin, 2003.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

199

RAIKO, VALPOLA, HARVA AND KARHUNEN

D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. BUGS: Bayesian inference using
Gibbs sampling, version 0.50. Available at http://www.mrc-bsu.cam.ac.uk/bugs/, 1995.

T. Swartz and M. Evans. Approximating Integrals Via Monte Carlo and Deterministic Methods.
Oxford University Press, 2000.

L. Tierney and J.B. Kadane. Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81(393):82–86, 1986.

H. Valpola and J. Karhunen. An unsupervised ensemble learning method for nonlinear dynamic
state-space models. Neural Computation, 14(11):2647–2692, 2002.

H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical latent variable models.
In Proc. 3rd Int. Conf. on Independent Component Analysis and Signal Separation (ICA2001),
pages 710–715, San Diego, USA, 2001.

H. Valpola, A. Honkela, and J. Karhunen. An ensemble learning approach to nonlinear dynamic
blind source separation using state-space models. In Proc. Int. Joint Conf. on Neural Networks
(IJCNN’02), pages 460–465, Honolulu, Hawaii, USA, 2002.

H. Valpola, A. Honkela, M. Harva, A. Ilin, T. Raiko, and T. Östman. Bayes Blocks software library,
2003a. Available at http://www.cis.hut.fi/projects/bayes/software/.

H. Valpola, E. Oja, A. Ilin, A. Honkela, and J. Karhunen. Nonlinear blind source separation by vari-
ational Bayesian learning. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E86-A(3):532–541, 2003b.

H. Valpola, T. Östman, and J. Karhunen. Nonlinear independent factor analysis by hierarchical
models. In Proc. 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation
(ICA2003), pages 257–262, Nara, Japan, 2003c.

H. Valpola, M. Harva, and J. Karhunen. Hierarchical models of variance sources. Signal Processing,
84(2):267–282, 2004.

J. H. van Hateren and D. L. Ruderman. Independent component analysis of natural image sequences
yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the
Royal Society of London B, 265(1412):2315–2320, 1998.

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. Self-organizing map in Matlab: the
SOM toolbox. In Proceedings of the Matlab DSP Conference, pages 35–40, Espoo, Finland,
November 1999. Available at http://www.cis.hut.fi/projects/somtoolbox/.

C. Wallace. Classification by minimum-message-length inference. In S. G. Aki, F. Fiala, and W. W.
Koczkodaj, editors, Advances in Computing and Information – ICCI ’90, volume 468 of Lecture
Notes in Computer Science, pages 72–81. Springer, Berlin, 1990.

S. Waterhouse, D. MacKay, and T. Robinson. Bayesian methods for mixtures of experts. In D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Process-
ing Systems, volume 8, pages 351–357. The MIT Press, 1996.

200

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN LEARNING

J. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning Research, 6:
661–694, April 2005.

201

