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Abstract

A deep Boltzmann machine (DBM) is a recently introduced Markov random field
model that has multiple layers of hidden units. It has been shown empirically
that it is difficult to train a DBM with approximate maximum-likelihood learning
using the stochastic gradient unlike its simpler special case, restricted Boltzmann
machines (RBM). In this paper, we propose a novel pretraining algorithm that
consists of two stages; obtaining approximate posterior distributions over hidden
units from a simpler model and maximizing the variational lower-bound given
the fixed hidden posterior distributions. We show empirically that the proposed
method overcomes the difficulty in training DBMs from randomly initialized pa-
rameters and results in a better, or comparable, generative model when compared
to the conventional pretraining algorithm.

1 Introduction

Deep Boltzmann machine (DBM), proposed by Salakhutdinov and Hinton [2009], is a recently in-
troduced variant of Boltzmann machines which extends widely used restricted Boltzmann machines
(RBM) to a model that has multiple hidden layers. It differs from the popular deep belief network
(DBN) which is built by stacking multiple layers of RBMs [Hinton and Salakhutdinov, 2006] in that
every edge in the DBM model is undirected. In this way, DBMs facilitate propagating uncertainties
across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using a variational
approximation and stochastic maximum likelihood method, recent research [see for example
Salakhutdinov and Hinton, 2009] has shown that learning the parameters of DBMs is not trivial.
Especially the generative performance of the trained model, commonly measured by the variational
lower-bound of log-probabilities of test samples, tends to degrade as more hidden layers are added.

Salakhutdinov and Hinton [2009] proposed a greedy layer-wise pretraining algorithm that could be
used to initialize parameters of DBMs, and showed that it largely overcomes the difficulty of learning
a good generative model.

Along this line of research, we propose another way to approach pretraining DBMs in this paper.
The proposed scheme is based on an observation that training DBMs consists of two separate stages;
approximating a posterior distribution over the states of hidden units and updating parameters to
maximize the lower-bound of log-likelihood given those states.

Based on this observation, our proposed method pretrains a DBM in two stages. During the first
stage we train a simpler, directed deep model such as DBNs or stacked denoising autoencoders
(sDAE) to obtain an approximate posterior distribution over hidden units. With this fixed approx-
imate posterior distribution, we train an RBM that learns a distribution over a combination of data
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samples and their corresponding posterior distributions of hidden units. Finetuning the model is
then trivial as one only needs to free hidden variables from the approximate posterior distribution
computed during the first stage.

We show that the proposed algorithm helps learning a good generative model which is empirically
comparable to the pretraining method proposed by Salakhutdinov and Hinton [2009]. Furthermore,
we discuss the potential degrees of freedom in extending the proposed approach.

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [Salakhutdinov and Hinton, 2009]. A
DBM with L layers of hidden neurons is defined by the following energy function:
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With the energy function, a DBM can assign a probability to each state vector x =
[v;h(1); · · · ;h(L)] using a Boltzmann distribution:

p(x | θ) =
1

Z(θ)
exp {−E(x | θ)} .

Based on this property the parameters can be learned by maximizing the log-likelihood
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The gradient computed by taking the partial derivative of the log-likelihood function with respect
to each parameter is used in most cases with a mini-batch per update. It is then used to update the
parameters, effectively forming a stochastic gradient ascent method. A standard way of computing
gradient results in the following update rule for each parameter θ:
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where 〈·〉d and 〈·〉m denote the expectation over the data distribution P (h | {v(t)},θ) and the model
distribution P (v,h | θ), respectively.

3 Training Deep Boltzmann Machines

Although the update rules (2) are well defined, it is intractable to exactly compute them. Hence,
an approach that uses variational approximation together with Markov chain Monte Carlo (MCMC)
sampling was proposed by Salakhutdinov and Hinton [2009].

First, the variational approximation is used to compute the expectation over the data distribution. It
starts by approximating p(h | v,θ), which is intractable unless L = 1, by a factorial distribution
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Figure 1: Illustration of the two-stage pretraining algorithm followed by finetuning of all parameters.

where f(x) = 1
1+exp{−x} . Note that µ

(0)
i = vi and the update rule for the top layer does not contain

the second summation term, that is Nl+1 = 0.

This variational approximation provides the values of variational parameters that maximize the fol-
lowing lower-bound with respect to the current parameters:

p(v | θ) ≥ EQ(h) [−E(v,h)]−H(Q)− logZ(θ), (4)
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is an entropy functional. Hence, each gradient update step does not increase the exact log-likelihood
but its variational lower-bound. A tighter lower-bound could be used by explicitly summing out the
hidden units in the odd numbered hidden layers.

Second, the expectation over the model distribution is computed by persistent sampling. By per-
sistent sampling, we mean that we do not wait for a sampling chain to converge before computing
each update direction, but run the chain for only a few steps and continue using the same chain over
consecutive updates. The most naive approach is to use Gibbs sampling, while there have been some
work in applying more advanced sampling methods [Salakhutdinov, 2010, 2009, Desjardins et al.,
2010, Cho et al., 2010]. In this paper, we use coupled adaptive simulated tempering (CAST) recently
proposed in [Salakhutdinov, 2010].

This approach closely resembles variational expectation-maximization (EM) algorithm [see for ex-
ample Bishop, 2007]. Learning proceeds by alternating between finding the variational parametersµ
and updating the DBM parameters to maximize the given variational lower-bound using the stochas-
tic gradient method. However, it has been known and will be shown in the experiments in this paper
that training a DBM using this approach starting from randomly initialized parameters is not trivial
[Salakhutdinov and Hinton, 2009, Desjardins et al., 2012, Cho et al., 2011a].

Hence, Salakhutdinov and Hinton [2009] proposed a pretraining algorithm to initialize the parame-
ters of DBMs. The pretraining algorithm greedily trains each layer of a DBM by considering each
layer as an RBM, following a pretraining approach used for training deep belief networks (DBN)
[Hinton and Salakhutdinov, 2006]. However, due to the undirectedness of edges in DBMs it has
been proposed to use the first layer RBM with two duplicate copies of visible units with tied weights
and the last layer RBM with two duplicate copies of hidden units with tied weights. Once one
layer has been trained, another layer can be trained on the aggregate prior distribution of the hid-
den units of the lower layer to extend the depth. After the pretraining, learned weights are used as
initializations of weights of DBMs.

4 Restricted Boltzmann Machines and Denoising Autoencoders

Here we briefly discuss restricted Boltzmann machines (RBM) and single-layer denoising autoen-
coders (DAE) which will constitute an important part of the two-stage pretraining algorithm that
will be described in the next section.

An RBM is a special case of DBMs, where the number of hidden layers is restricted to one, L =
1. Due to this restriction it is possible to compute the posterior distribution over the hidden units
conditioned on the visible neurons exactly and tractably. The conditional probability of each hidden
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Hence, the positive part of the gradient in (2) can be computed exactly and efficiently. However, the
negative part, which is computed over the model distribution, still relies on persistent sampling, or
more approximate methods such as contrastive divergence (CD) [Hinton, 2002].

A single-layer DAE is a special form of multi-layer perception network [Haykin, 2009] with a single
hidden layer and a tied set of weights. A DAE tries to learn a network that reconstructs an input
vector optimally by minimizing the following cost function:
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where gh(·) and gv(·) are component-wise nonlinear functions, usually logistic sigmoid functions.
Unlike an ordinary autoencoder, a DAE explicitly sets some of the components of an input vector
randomly to zero during learning via φ(·) which explicitly adds noise to an input vector.

There is an important difference in training DAEs compared with training RBMs. In DAEs, the
objective of learning is not to learn a distribution but to minimize the reconstruction error. It usually
leads to easier learning.

These two models are significant because they can be stacked to form more powerful models that
learn hierarchical features. A deep belief network (DBN) is constructed by stacking multiple layers
of RBMs, and a stacked denoising autoencoder (sDAE) can be built by stacking DAEs on top of each
other. With probabilistic interpretation, one may consider these stacked models as having multiple
layers of latent random variables where their posterior distributions can be computed by iteratively
obtaining (approximate) posterior means of the hidden units layerwise.

5 A Two-stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM compared with
the one described at the end of Sec. 3. Unlike the conventional pretraining strategy described at the
end of the previous section, we employ an approach that separates obtaining (approximate) posterior
distributions over hidden units and initializing parameters.

Before proceeding to the description of the proposed algorithm, we first divide the hidden layers of a
DBM into two sets. Let us denote a vector of hidden units in the odd-numbered layers as h+ and the
respective vector in the even-numbered layers as h−. Note that due to the structure of DBMs, it is
possible to explicitly sum out h+, which reduces the space of variational parameters to half. In this
sense we may define µ− and µ+ as variational parameters of the hidden units in the odd-numbered
layers and the even-number layers, respectively.

5.1 Stage 1

We focus on finding a good set of variational parameters µ− of Q(h−) that has a potential to give a
reasonably high variational lower-bound in Eq. (4). In other words, we propose to first find a good
posterior distribution over hidden units given a visible vector regardless of parameter values of a
DBM. Although it might sound unreasonable to find a good set of variational parameters without
any fixed parameter values, we can do this by borrowing (approximate) posterior distributions over
latent variables from other models.

DBNs and sDAEs described in Sec. 4 are natural choice to find a good approximate posterior distri-
bution over units in the even-numbered hidden layers. One justification for using either of them is
that they can be trained efficiently and well [see, e.g. Bengio et al., 2012, and references therein]. It
becomes a trivial task as one can iteratively train each even-numbered layer as either an RBM or a
DAE on top of each other, as is a common practice when a DBN or a sDAE is trained.
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5.2 Stage 2

Once a set of initial variational parameters µ− is found from a DBN or an sDAE, we train a model
that has predictive power of the variational parameters given a visible vector. It can be simply done
by learning a joint distribution of v and µ− using an RBM.

The structure of the RBM can be directly derived from the DBM such that its visible layer corre-
sponds to the visible layer and the even-numbered hidden layers of the DBM and its hidden layer to
the odd-numbered hidden layers of the DBM. The connections between them can also follow those
of the DBM. This corresponds to finding a set of DBM parameters that fit the variational parameters
obtained in the first stage.

Another way to look at what happens during the second stage is to consider what an RBM has been
trained for. It is easy to see that training the RBM at the second stage maximizes

log
∑

h+

exp
{

−E(v,µ−,h+)
}

− logZ(θ).

which corresponds to maximizing the variational lower-bound of a DBM given in (4) given the
variational parameters µ− which were found in the first stage.

Once an RBM has been trained, we can use the learned parameters as initializations for training
the DBM, which corresponds to freeing h− from its variational posterior distribution obtained in
the first stage. Finetuning of the initialized parameters can be performed according to the standard
procedure given in Sec. 3.

A simple illustration of the two-stage pretraining algorithm is given in Fig. 1.

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H DBMS&H
RBM DBMS&H

FVBM

L2s - -90.60 -90.49 -259.06 -305.49 -301.78
L2 - -91.60 -92.06 -237.61 -296.88 -269.46
L3 - -90.91 -93.50 -230.00 -291.14 -264.68
L4 - -101.61 -103.35 -230.46 -302.05 -265.37

Table 1: Log-probabilities of the test samples of MNIST after pretraining.

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H DBMS&H
RBM DBMS&H

FVBM (S)

L2s -131.07 -84.49 -87.58 -93.98 -79.28 -80.28
L2 -143.59 -85.44 -86.17 -92.03 -79.03 -80.45 -84.62
L3 -128.72 -81.84 -86.03 -93.83 -82.28 -83.86 -85.10
L4 -128.70 -83.25 -91.19 -96.20 -85.23 -86.44

Table 2: Log-probabilities of the test samples of MNIST after finetuning. (S) - reported by

Salakhutdinov and Hinton [2010].

5.3 Discussion

It is quite easy to see that the proposed algorithm has high degree of freedom to plug-in alternative
algorithms and models in both stages.

The most noticeable flexibility can be found in stage 1. Any other machine learning model that gives
reasonable posterior distributions over multiple layers of binary hidden units can be used instead of
RBMs or DAEs. For instance, recently proposed variants of RBMs such as spike-and-slab RBMs
[Courville et al., 2011] could directly be applied. Also, instead of stacking each layer at a time,
one could opt to train a deep autoencoders at once using advanced backpropagation algorithms
[Raiko et al., 2012, Martens, 2010, Schulz and Behnke, 2012].

In stage 2, one may opt to use a DAE instead of an RBM. It will make learning faster and therefore
leaves more time for finetuning the model afterward. Also, the use of different kinds of algorithms
for training an RBM can be considered. For quicker pretraining, one may use CD with only a small
number of Gibbs sampling steps per update, or for better initial models, tempering-based MCMC
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sampling methods such as parallel tempering [Desjardins et al., 2010, Cho et al., 2010] or tempered
transition [Salakhutdinov, 2009] could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm proposed by
Salakhutdinov and Hinton [2009] during the first stage. This approach gives approximate poste-
rior distributions over all hidden units [h−;h+] as well as initial values of the parameters that can be
used during the second stage. In this way, one may use either an RBM or a fully visible Boltzmann
machine (FVBM) during the second stage starting from the parameter values obtained during the
first stage. When an RBM is used in the second stage, one could simply discard µ+.

Another important point of the proposed algorithm is that it provides another research perspective
in training DBMs. The existing pretraining scheme developed by Salakhutdinov and Hinton [2009]
was based on the observation that with some assumptions the variational lower-bound could be
increased by learning weight parameters layerwise. However, the success of the proposed scheme
suggests that it may not be the set of parameters that need to be directly pretrained, but the set of vari-
ational parameters that determine how tight the variational lower-bound is and their corresponding
parameters. This way of approaching the problem of training DBMs enables us to potentially find
another explanation on why training large DBMs without pretraining is not trivial, if not impossible.

6 Experiments

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H DBMS&H
RBM DBMS&H

FVBM

L2s - -117.94 -118.46 -2731.18 -2471.42 -2525.74
L2 - -117.78 -130.04 -2878.03 -2571.00 -2614.64
L3 - -118.16 -132.91 -2943.63 -2618.30 -2648.74
L4 - -121.04 -142.86 -2937.42 -2620.88 -2650.02

Table 3: Log-probabilities of the test samples of Caltech-101 Silhouettes after pretraining.

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H DBMS&H
RBM DBMS&H

FVBM

L2s -161.26 -115.47 -115.48 -129.47 -124.36 -125.55
L2 -156.97 -113.32 -120.11 -130.57 -128.84 -129.52
L3 -158.82 -110.85 -120.69 -131.50 -133.68 -137.61
L4 -156.68 -111.22 -130.01 -126.60 -130.68 -130.81

Table 4: Log-probabilities of the test samples of Caltech-101 Silhouettes after finetuning.

In the experiments, we train DBMs on two datasets which are a handwritten digit dataset
(MNIST) [LeCun et al.] and Caltech-101 Silhouettes dataset [Marlin et al., 2010]. Despite the cri-
tique that MNIST has been overly misused we have decided once again to use MNIST, since
the experimental result of using DBMs for MNIST is readily available for direct comparison
[Salakhutdinov and Hinton, 2010, Salakhutdinov, 2010, Montavon and Müller, 2012]. Caltech-101
Silhouettes is another binary dataset that is more difficult to learn by Boltzmann machines, which
could be used to analyze the effect of the depth of DBMs.

We train DBMs with varying numbers of units in the hidden layers; 500-1000, 500-500-1000, 500-
500-500-1000 (denoted by L2, L3 and L4, respectively). We also trained a smaller DBM with
400-100 hidden units (denoted by L2s) which was the one that was used by Montavon and Müller
[2012] without any pretraining algorithm.

For learning algorithms, we extensively tried various combinations. They are presented in Tab. 5.

In summary, a DBM
stage1
stage2 denotes a deep Boltzmann machine in which its superscript and subscript

denote the algorithms used during the first and second stages, respectively.

During the first stage of the proposed algorithm, we learned the parameters of RBMs by CD and the
enhanced gradient [Cho et al., 2011b]. DAEs were trained by setting 20% of input pixels to 0 on
every update and regularizing the sparsity of hidden units to be close to 0.1. Large RBMs in stage 2
were trained using the stochastic approximation procedure [SAP, Tieleman and Hinton, 2009] with
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Stage 1 Stage 2 Finetuning

DBM × × ◦
DBMS&H (S) × ◦
DBMsDAE

RBM sDAE RBM ◦
DBMDBN

RBM DBN RBM ◦
DBMS&H

RBM (S) RBM ◦
DBMS&H

FVBM (S) FVBM ◦

Table 5: Algorithms used in the experiment. (S) denotes the pretraining algorithm proposed by
Salakhutdinov and Hinton [2009].

CAST and the enhanced gradient, except for when the conventional pretraining algorithm was used
during the first stage. Then we used the traditional gradient during the second stage.

We trained each model for 200 epochs in the case of MNIST and 2000 epochs in the case of Caltech-
101 Silhouettes with a learning rate scheduled by η0

1+ n

5000

where n is the number of updates. η0 was

set to 0.01 and 0.0005 for pretraining and finetuning, respectively. When we did not pretrain a DBM,
we trained each DBM for twice more epochs and set η0 to 0.001. In all cases, we used a minibatch
of size 128 to compute a stochastic gradient update direction.

When training RBMs with CAST, we formed equally spaced 21 tempered fast chains from 0.9 to 1
with a single Gibbs sampling step on each update. When DAEs were trained, at every update we
dropped off a randomly chosen set of hidden units with probability 0.1 [Hinton et al., 2012].

For finetuning, we again used the SAP with CAST with the same 21 tempered fast chains equally
spaced between 0.9 and 1. At each update we iterated at most 30 fixed-point updates starting from
uniform random values to compute variational parameters and performed 5-step Gibbs sampling for
sampling.

We evaluated the resulting models with the variational lower-bound of log-probabilities of test sam-
ples. In order to estimate the normalizing constant Z(θ), annealed importance sampling (AIS) has
been used with 20001 equally spaced temperatures from 0 to 1 with 128 independent runs. This en-
ables us to directly compare our result with that reported by Salakhutdinov and Hinton [2010] and
Salakhutdinov [2010].

Additionally, we checked the effect of pretraining on the discriminative property of the approximate
posterior distribution Q(h). For each final model of each algorithm and structure, we trained a sim-
ple multinomial logistic regression classifier for each hidden layer l using the variational parameters
µl as features. This is expected to show how much information about input samples is captured by
each hidden layer of the model.

We trained each model with each learning algorithm five times starting from different random ini-
tializations. All the performance values including log-probabilities and classification accuracies
presented are medians over those random trials.

6.1 Result and Analysis

Tables 1-2 present the lower-bound of log-probabilities of the test samples of MNIST computed from
the trained DBMs after pretraining and after finetuning are presented. It is clear that initializing the
parameters of the DBMs using the proposed pretraining scheme significantly facilitates finetuning.
It is observed by the much higher log-probabilities achieved by the models that were initialized with
the proposed two-stage algorithm. Furthermore, it is notable that no good generative model could
be learned without pretraining1.

A similar trend can also be found in Tab. 3-4 where the lower-bounds computed from the DBMs
trained on Caltech-101 Silhouettes are presented. It is clear that the proposed algorithm, especially
when DAEs are used during the first stage, outperforms the DBMs trained without any pretrain-

1The result reported by Salakhutdinov and Hinton [2010] is different from the performance obtained by
DBMS&Hin this paper due to the difference in training procedures. For instance, in this paper, we have trained
the model for fewer epochs.
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µ1 µ2 µ3 µ4 µall

L2s 95.42 71.08 - - 95.45
L2 93.81 76.82 - - 93.09
L3 95.75 66.79 11.35 - 95.12
L4 95.73 83.12 18.62 11.35 95.24

(a) DBM

µ1 µ2 µ3 µ4 µall

96.19 94.38 - - 96.82
96.97 97.90 - - 97.98
96.62 96.42 84.47 - 97.31
96.64 95.83 91.56 84.25 97.29

(b) DBMsDAE
RBM

µ1 µ2 µ3 µ4 µall

L2s 95.91 94.15 - - 96.59
L2 96.63 97.88 - - 98.06
L3 96.28 96.79 92.81 - 97.45
L4 96.12 96.28 92.69 85.09 97.14

(c) DBMDBN
RBM

µ1 µ2 µ3 µ4 µall

97.14 92.60 - - 97.29
97.55 95.44 - - 97.79
97.65 97.22 95.09 - 97.92
97.62 97.24 96.49 94.47 98.07

(d) DBMS&H

µ1 µ2 µ3 µ4 µall

L2s 97.34 93.33 - - 97.50
L2 97.70 95.57 - - 97.93
L3 97.86 97.68 96.23 - 98.24
L4 97.80 97.49 96.33 91.94 98.21

(e) DBMS&H
RBM

µ1 µ2 µ3 µ4 µall

97.26 93.60 - - 97.57
97.70 95.86 - - 98.00
97.85 97.42 95.25 - 98.14
97.84 97.38 96.54 94.50 98.15

(f) DBMS&H
FVBM

Table 6: Classification accuracy on MNIST. For each structure, the best accuracies are bold-faced.

ing as well as those with the conventional pretraining scheme or any other approach considered
significantly.

Table 6 shows the layer-wise classification accuracies of test samples of MNIST. It is clear from the
significantly lower accuracies in the higher hidden layers of the DBMs trained without pretraining
that pretraining is essential to allow upper layers to capture discriminative structures of data samples.
This phenomenon could be observed regardless of the configuration used for the proposed two-stage
algorithm2. It is noticeable that the DBMs trained with the proposed two-stage algorithm using
the conventional pretraining during the first stage consistently outperform those trained with the
conventional pretraining only consistently over all structures, especially when the RBMs were used
for the second stage. A similar trend was observed for Caltech-101 Silhouettes, but the results are
not shown here due to the space limitation.

7 Conclusion

The experimental success of the proposed two-stage pretraining algorithm in training DBMs sug-
gests that the difficulty of DBM learning might be due to the fact that the estimated variational
lower-bound at the initial stage of learning is too crude, or too loose. Once one initializes the vari-
ational parameters well enough by utilizing another deep hierarchical model, the parameters of a
DBM can be fitted to give a tighter variational lower-bound which facilitates jointly estimating all
parameters. From then on, one can learn a good generative model by following the standard DBM
training procedure.

The proposed two-stage pretraining algorithm provides a general framework in which many of pre-
viously successful hierarchical deep learning models such as DBNs and sDAEs can be used. It even
makes possible to include the conventional pretraining algorithm as a part of the proposed algorithm
and improve upon it. This is a significant step in developing and improving a training algorithm for
DBMs, as it allows us to fully utilize other learning algorithms that have been extensively studied
previously.

2 It should be noted that these accuracies were computed purely to illustrate the effect of generative training
of DBMs, and they are lower than other state-of-the-art accuracies (see, [Hinton et al., 2012]).
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