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Abstract— Variable selection is a crucial part of building
regression models, and is preferably done as a filtering method
independently from the model training. Mutual information
is a popular relevance criterion for this, but it is not trivial
to estimate accurately from a limited amount of data. In this
paper, a method is presented where a Gaussian mixture model
is used to estimate the joint density of the input and output
variables, and subsequently used to select the most relevant
variables by maximising the mutual information which can be
estimated using the model.

I. INTRODUCTION

In machine learning, variable selection (or feature se-
lection) is an important phase, since discarding irrelevant
variables not only results in a simpler model, but often also
leads to improved generalisation accuracy [1].

Mutual information (MI) is a measure of dependence
between variables. Applied to regression problems, estimat-
ing the mutual information between inputs and outputs is
an effective procedure for identifying useful variable sets
[2]. In general, mutual information accounts for all forms
of dependence between variables, and is as such an ideal
criterion for variable selection in machine learning. Its use
is only restricted by the practical difficulties in estimating it
accurately from data.

A multivariate Gaussian mixture model (GMM) [3] is
a parametric model of a probability density, and with a
sufficient number of components can be used to approximate
any arbitrary continuous distribution. The EM algorithm is
an efficient and accurate method to fit the model to a given
set of data.

There are several reasons which make Gaussian mixtures
an appealing method for estimating mutual information for
feature selection:

1) After fitting the mixture model to the full set of
variables, the model can directly be used to calculate
the mutual information for any subset of variables. This
is useful in variable selection.

2) Estimates for different variable sets seem to behave
more consistently than with using other estimators.
In particular, the estimate of the mutual information
always increases when adding variables, as it should.
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3) As the Gaussian mixture can be fit to data with missing
values, the estimator works for such incomplete data
sets as well.

Mutual information estimators based on density estimates
have generally been discouraged in the literature due to the
difficulty of obtaining accurate estimates, but should not be
ignored entirely. This paper shows that Gaussian mixture
models can be used very effectively for this purpose.

This paper is structured as follows: after reviewing related
work on the topic in Section II, the proposed approach
for mutual information estimation by Gaussian mixtures is
detailed in Section III. Experimental results on synthetic data
with missing values and on several benchmark regression
tasks are presented in Section IV with comparisons to other
methods.

II. RELATED WORK

A. Estimating mutual information

Early attempts to estimate mutual information from data
with an unknown structure have been based on binning and
histograms. That approach is not feasible for more than
a couple of variables, as the amount of data required for
accurate estimation grows exponentially.

More recently, Kraskov et al [4] proposed a method to
estimate mutual information by considering nearest neigh-
bours of each point in the input and output spaces separately
and together. This approach has proven effective, and gained
popularity.

Maximum Likelihood Mutual Information (MLMI) [5], [6]
is another recent development promising accurate estimates.

B. Variable selection by mutual information

The seminal work on feature selection with mutual infor-
mation [2] formulates the problem as follows: find the subset
with k features that maximises the mutual information, for
some a priori fixed value k. The MI is only estimated from
histograms and binning.

For classification problems, a method involving kernel
density estimation for the conditional distribution of each
class has been used to estimate mutual information for
variable selection [7], and later extended to dimensionality
reduction [8].

A suggestion for regression problems is to find variables
which maximise Kraskov’s mutual information estimator
[9]. To gauge the uncertainty of Kraskov’s estimator, a
resampling strategy has been proposed which can also help in
determining how many variables to select in a forward search
[10]. Extending variable selection to datasets with missing



values, the partial distance strategy (PDS) has been used to
find nearest neighbours for Kraskov’s estimator [11].

While optimising mutual information generally leads to
accurate models in more concrete performance measures
(classification rate, mean squared error), it has been shown
that pathological examples exist where this is not true [12].
The adequacy of mutual information for estimating predic-
tion accuracy is more precisely detailed in [13].

C. Gaussian mixture models and mutual information

Gaussian mixture models have previously been used to
estimate mutual information in a speech processing applica-
tion [14]. The joint density of the variables is estimated by
GMM, and separate GMMs for the marginal distributions.
For estimating the mutual information, the authors interpret
the integral as an expectation, and estimate it as the sample
mean over the available data. In another example from speech
recognition [15], a low-order Gaussian mixture model of
the distribution is used to derive MI estimates by numerical
integration.

A method for dimensionality reduction [16] uses a Gaus-
sian mixture with only two components to find an expression
for the mutual information which can then be used as the
target function for an optimisation scheme.

For classification, the GMM-MI method [17] conducts
feature selection with MI, by using GMMs to model the
conditional distributions of each class. A new mixture model
is estimated whenever considering new features. The same
idea has also been applied to image classification in computer
vision [18].

In contrast with all previous approaches, we suggest to
train only one Gaussian mixture model on the joint space of
the output and all input variables, and the mutual information
for any combination of variables can be extracted from that.

III. MUTUAL INFORMATION BY MIXTURE OF GAUSSIANS

A. Definition

The mutual information is a measure of dependence be-
tween two random variables. It can be defined through the
Shannon entropy:

I(X;Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )
(1)

where the entropy H is the expected information content
which can be written in terms of a random variable’s prob-
ability density function px(X):

H(X) = E[− log(px(X))] (2)

For continuous random variables X , Y with a joint dis-
tribution described by the density p(x, y), the definition is
equivalent to the integral below.

I(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

px(x)py(y)

)
dx dy (3)

Here px and py are the marginal probability densities of the
random variables.

Another interpretation of mutual information is that it
is the Kullback–Leibler (KL) divergence of the product
of the marginal distributions (px(x)py(y)) from the joint
distribution p(x, y). The KL divergence is a measure of the
difference between the distributions. If X and Y are indepen-
dent random variables, the joint density is separable as the
product p(x, y) = px(x)py(y), and the divergence is 0. The
more dependent the variables are, the larger the divergence,
and the higher the value of the mutual information is.

B. Estimating Mutual Information

The main idea is to use a Gaussian mixture model to
estimate the densities of the variables. However, instead of
directly calculating Eq. 3, we consider Eq. 2, and interpret
the integral as an expectation.

I(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

px(x)py(y)

)
dx dy (4)

= E [log p(x, y)− log px(x)− log py(y)] (5)

Given a sample of data {xi, yi}Ni=1, the expectation can be
approximated by the arithmetic mean over the data:

Î(X;Y ) =
1

N

N∑
i=1

(log p(xi, yi)− log px(xi)− log py(yi))

(6)

The proposed approach is based on this expression, requiring
only estimates of the density and marginal density at each
point of data. By fitting a Gaussian mixture model to the
joint space X × Y , the resulting model directly provides an
estimate of p(xi, yi). To calculate the marginal probability
densities, the same Gaussian model is used, restricted to the
appropriate variables. The marginal model is easily acquired
by only including the appropriate elements from the means
and covariances of each Gaussian component.

As the goal is to evaluate differences between the joint
density p(x, y) and the product px(x)py(y), the same model
should be used to estimate all the quantities. It might seem
reasonable to separately optimise another mixture model in
the space for X to estimate px instead, and this could result
in a more accurate estimate for px itself, but could also lead
to spurious differences causing an inflated KL divergence.
Having consistent estimates is particularly important for
variable selection, where mutual information estimates for
different variable sets are compared to each other.

C. Feature selection

In machine learning, the goal is to find a model that can
predict an output variable Y from several input variables X .
As X can be high-dimensional, discarding redundant and
irrelevant parts both simplifies the model and increases its
interpretability

When selecting variables for a machine learning task, the
mutual information with the output is an intuitive choice
for a relevance criterion. However, the mutual information
never decreases when adding irrelevant variables. Thus an
exhaustive search over all feature sets is meaningless, as the



criterion is maximised when all variables are included. The
forward search is a more practical approach; here variables
are added one by one, at each step selecting the variable
which leads to the largest increase in MI when considered
together with the previously selected variables. The order of
successive selection then leads to a ranking of variables: the
first selected variable can be seen as the most important, and
so on.

In the present approach, the first step is to fit a Gaussian
mixture model to the joint space X × Y . Then, for a given
subset of variables of X , the marginal mixture model for
those variables is easily realised. Having a GMM with K
components in the X×Y space with mixing coefficients πk,
means µk, and covariances Σk for each component k (0 <
πk < 1,

∑K
k=1 πk = 1), the parameters can be partitioned as

below:

µk =

[
µXk
µYk

]
, Σk =

[
ΣXX
k ΣXY

k

ΣY X
k ΣY Y

k

]
. (7)

The marginal model for X is directly determined as a GMM
of K components with the same mixing coefficients πk,
but means µXk and covariance matrices ΣXX

k . The marginal
GMM is similarly found for Y , and for any subspaces of X
corresponding to different sets of selected variables.

D. Fitting the Gaussian mixture model

The EM algorithm can be used to fit a Gaussian mixture
model to a given dataset. The only parameter to determine
beforehand is the number of components to use. A low
number of components is unable to retain all the relevant
properties of the distribution, whereas using too many com-
ponents often leads to exaggerating spurious features of the
data.

The number of components can be selected according to
the Akaike information criterion (AIC) [19], expressed as a
function of the log-likelihood L(θ) of the converged mixture
model:

AIC =− 2 logL(θ) + 2P , (8)

where P is the number of free parameters. Several alternative
criteria are discussed in [20, Ch. 6].

E. High-dimensional data

A limitation of the conventional Gaussian mixture model
is that the number of parameters grows quadratically with
the number of dimensions. However, cases with high-
dimensional data is precisely when variable selection is most
crucial.

High-dimensional data clustering (HDDC) [21] is a variant
of Gaussian mixture models for high-dimensional data that
works by restricting the structure of the covariance matrices.
In essence, HDDC retains the shape of a cluster in directions
corresponding to the largest eigenvalues of its covariance
matrix, and assumes it is spherical in other directions.
Thereby the number of free parameters to learn is reduced
significantly.

The extension makes it possible to still use the EM
algorithm to fit a mixture model on data with a large number
of variables, and the model is directly usable for feature
selection through MI estimation.

F. Missing values

Datasets with missing values are a common occurrence
in machine learning tasks. The EM algorithm for fitting a
Gaussian mixture model has been extended to handle such
data in a natural way [22], [23], [24].

An assumption here is that data are Missing-at-Random
(MAR) [25]:

P (M | xobs, xmis) = P (M | xobs) , (9)

i.e., the event M of a measurement being missing is inde-
pendent from the value it would take (xmis), conditional on
the observed data (xobs).

This implies that samples with partial information can still
be included in the estimation, and need not be discarded.
Making maximal use of all available data is important for
accurately finding the most relevant set of variables.

G. MI and mean squared error

While concerns have been raised over the use of MI as
representative of prediction error [12], [13], there is a clear
connection between the two measures. In the general case,
MI implies a lower bound for the mean squared error (MSE)
of an arbitrary estimator Ŷ (X):

E[(Y − Ŷ (X))2] ≥ 1

2πe
e2H(Y |X) (10)

[26, Thm. 8.6.6] if the entropy H is in nats (base e log-
arithm). Here equality is achievable only for the optimal
estimator Ŷ (X) = E(Y |X) and if the residual Y − Ŷ (X)
is Gaussian.

Since H(Y |X) = H(Y )− I(X;Y ) we have that

E[(Y − Ŷ (X))2] ≥ 1

2πe
e2(H(Y )−I(X;Y ))

= Ce−2I(X;Y )
(11)

where C = 1
2π e

2H(Y )−1 is a constant that does not depend
on the chosen variables X . Increasing the MI reduces the
lowest achievable error.

IV. EXPERIMENTS

A. Synthetic experiment with missing values

In this section, we study the use of the mutual information
estimator as a variable selection method in the presence of
missing values in the data set. In order to accurately assess
the quality of the selection, a synthetic data set is generated.
Following [10], [11], a dataset of 100 samples with 10 input
variables is generated. The input variables Xi for i ∈ {1, 10}
are independently uniformly distributed between 0 and 1, and
the output Y uses only the first five variables:

Y = sin(X1X2) + 20(X3− 0.5)2 +10X4 +5X5 + ε, (12)
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Fig. 1. Comparison of the ratio of correct variable selection between the
Gaussian Mixture Model (solid blue), LARS (dashed green) and two variants
of Kraskov’s MI estimator (dash-dot red, dotted cyan) on Eq. 12 with 100
samples.

where ε is Gaussian noise with zero mean and unit variance.
Obviously, only the first five variables are useful for estimat-
ing the output, and variables 6–10 are irrelevant. Missing val-
ues are introduced by randomly and independently removing
values from the input variables until a certain fraction of the
data is missing, for values from 0% up to 90%.

The quality of a ranking of variables is then determined by
the fraction of cases when the “correct” variables are found.
In this case, correct means that features 1–5 are ranked as
the first five variables in any order.

The Gaussian mixture model for mutual information es-
timation is compared to three other methods for variable
selection with missing data:

1) LARS: Least angle regression [27]. Missing data are
imputed by the mean of each variable.

2) Kraskov1: Following [11], the algorithm of [4] using
Euclidean distance and PDS to deal with missing data.

3) Kraskov2: Following the software of [4], this is using
the maximum norm to determine nearest neighbours.
Missing data are imputed by the mean of each variable.

For LARS, imputation by the mean is justified since values
equal to the mean of a variable do not contribute to the
estimation of linear correlations. In the method Kraskov2,
imputation by the mean is reasonable, considering this has a
conservative effect on the maximum norm.

Results with 100 samples are shown in Fig. 1 for a missing
value ratio ranging from 0–90%. The lines represents the
ratio of cases where all five relevant variables are correctly
identified. Both variants of Kraskov’s method display good
accuracy with no or few missing values, but the quality
quickly deteriorates when the ratio is increased. The Gaus-
sian mixture model is more consistent, but the low number
of samples is an issue as it occasionally leads to too few
components being used.

As all methods display disappointing performance with
such a low number of samples, the amount is increased to
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Fig. 2. Comparison of the ratio of correct variable selection between the
Gaussian Mixture Model (solid blue), LARS (dashed green) and two variants
of Kraskov’s MI estimator (dash-dot red, dotted cyan) on Eq. 12 with 500
samples.

500. The results are displayed in Fig. 2, and the accuracy has
improved as expected. In particular, the Gaussian mixture
model can here identify all variables correctly with a high
certainty even with 50–60% of missing data.

The relatively low performance of LARS is explained by it
being unable to identify the importance of variable X3, as it
only considers linear dependencies. The other four variables
are reliably identified.

In both experiments, the maximum norm variant of
Kraskov’s estimator consistently outperforms the Euclidean
version. Increasing the ratio of missing values rapidly reduces
the accuracy of both variants. While MI using estimators
based on nearest neighbours can work well, there is a risk
that they focus too strongly on local effects, ignoring strong
global trends.

B. Real-world data regression problems

To assess the performance on more realistic problems as
well, several benchmark regression tasks are studied. The
datasets are presented in Table I, and the proposed approach
is compared with four other methods for variable selection:

1) LARS: Least angle regression [27].
2) RReliefF: a method to rank variables, based on nearest

neighbours and how local differences in each variable
correspond to changes in the output [28].

3) Mutual Information by Kraskov’s estimator [4] with
the maximum norm.

4) Variable selection by Maximum Likelihood Mutual
Information (MLMI) estimation [5], [6].

The comparison criterion is the mean squared error of
a least squares support vector machine (LS-SVM) [31]
regression model, as this model is known to be sensitive to
redundant variables. The model is trained using the selected
variable set, and the median (over repeated runs of optimising
hyperparameters) leave-one-out error is calculated. This can
be considered a fair criterion for comparing the selections



TABLE I
DATA SETS USED FOR THE EXPERIMENTS, WITH THE NUMBER OF

SAMPLES (N ), NUMBER OF VARIABLES (d), AND SOURCE.

Name N d Source

Auto-price 159 15 [29]
Stocks 950 9 [29]
Housing 506 13 [30]
Breast Cancer Wisconsin (Prognostic) 194 32 [30]
Tecator 240 100 1

Triazines 186 60 [29]
Anthrokids 1019 53 2

1 http://www.dm.unibo.it/∼simoncin/tecator
2 http://ovrt.nist.gov/projects/anthrokids/

TABLE II
THE SELECTED INPUTS AND LOO ERRORS FOR THE AUTO-PRICE DATA.

BOLD VALUES REPRESENT OPTIMAL CHOICES IN THE SENSE OF THE

LOWEST ERROR WITH THE SMALLEST SET OF VARIABLES.

LARS RReliefF Kraskov MLMI GMM

7 0.1638 8 0.2734 7 0.1638 8 0.2734 7 0.1638
5 0.1581 5 0.1690 5 0.1581 10 0.2774 12 0.1522
8 0.1205 7 0.1205 12 0.1136 2 0.2563 5 0.1136

12 0.0994 12 0.0994 14 0.1065 4 0.2099 2 0.1184
2 0.1226 2 0.1226 4 0.1278 7 0.1694 6 0.0993

11 0.1281 3 0.1179 15 0.1315 14 0.1616 4 0.1060
3 0.1261 10 0.1405 8 0.1329 13 0.1437 9 0.1089

13 0.1255 9 0.1432 10 0.1342 6 0.1292 3 0.1174
10 0.1484 13 0.1278 9 0.1397 15 0.1306 11 0.1074

9 0.1427 15 0.1245 11 0.1503 1 0.1471 14 0.1255
4 0.1420 6 0.1172 3 0.1601 5 0.1218 13 0.1046
1 0.1370 4 0.1090 13 0.1377 9 0.1088 10 0.1273
6 0.1262 11 0.1317 6 0.1141 11 0.1185 8 0.1218

14 0.1171 14 0.1219 2 0.1219 12 0.1235 1 0.1171
15 0.1183 1 0.1183 1 0.1183 3 0.1183 15 0.1183

of variables. As a preprocessing step, all variables including
the target variable are standardised to zero mean and unit
variance before the variable selection process.

The HDDC method [21] is used for fitting the Gaussian
mixture model on data with twenty or more variables.

All the criteria are used with a forward search approach
for selecting variables. This results in a ranking of variables,
and the variable sets formed by successively selecting the
selected variables are evaluated by the resulting LS-SVM
accuracy.

Results on each data set for up to 30 selected variables
are presented in Tables II–VIII, where values typeset in bold
represent optimal choices in the sense of achieving the lowest
error with the smallest set of variables among the presented
methods.

For the Auto-price data (Table II) it is clear that only
a few of the 15 variables are relevant for the prediction.
The variables selected by GMM generally lead to a lower
prediction error than those selected by the other methods.

Table III presents results on the Stocks data, which is an
example of a problem where all variables are important for
predicting the target. GMM and Kraskov’s method perform
the best in finding smaller sets leading to reasonable predic-
tion accuracy.

TABLE III
THE SELECTED INPUTS AND LOO ERRORS FOR THE STOCKS DATA.
BOLD VALUES REPRESENT OPTIMAL CHOICES IN THE SENSE OF THE

LOWEST ERROR WITH THE SMALLEST SET OF VARIABLES.

LARS RReliefF Kraskov MLMI GMM

1 0.1714 1 0.1714 1 0.1714 1 0.1714 1 0.1714
6 0.0824 4 0.0717 2 0.0719 2 0.0719 5 0.0699
9 0.0228 9 0.0296 7 0.0259 6 0.0194 9 0.0172
5 0.0133 3 0.0153 5 0.0119 5 0.0130 6 0.0133
7 0.0109 7 0.0124 4 0.0096 4 0.0109 2 0.0112
2 0.0096 8 0.0121 6 0.0092 9 0.0091 3 0.0110
8 0.0094 5 0.0094 3 0.0085 8 0.0096 7 0.0095
4 0.0090 2 0.0086 9 0.0084 7 0.0090 4 0.0084
3 0.0083 6 0.0083 8 0.0083 3 0.0083 8 0.0083

TABLE IV
THE SELECTED INPUTS AND LOO ERRORS FOR THE HOUSING DATA.
BOLD VALUES REPRESENT OPTIMAL CHOICES IN THE SENSE OF THE

LOWEST ERROR WITH THE SMALLEST SET OF VARIABLES.

LARS RReliefF Kraskov MLMI GMM

13 0.3236 6 0.4257 13 0.3236 13 0.3236 13 0.3236
6 0.2323 13 0.2323 6 0.2323 11 0.2416 6 0.2323

11 0.2037 5 0.1901 10 0.1516 5 0.2018 11 0.2037
12 0.1909 8 0.1739 5 0.1476 10 0.1918 8 0.1531
4 0.1772 4 0.1829 9 0.1305 9 0.1946 5 0.1359
1 0.1544 10 0.1571 1 0.1158 3 0.1893 4 0.1434
8 0.1435 12 0.1379 12 0.1205 6 0.1167 12 0.1366
5 0.1331 2 0.1316 7 0.1176 8 0.1129 2 0.1395
2 0.1360 9 0.1150 8 0.0964 7 0.1094 1 0.1360
3 0.1290 11 0.1067 3 0.0892 4 0.1148 9 0.1237
9 0.1161 3 0.1054 4 0.0991 12 0.0956 10 0.1062

10 0.1048 7 0.0953 2 0.0982 2 0.0953 3 0.1048
7 0.0926 1 0.0926 11 0.0926 1 0.0926 7 0.0926

For the Housing data in Table IV, performance is improved
by adding new variables in nearly all cases, and including all
the variables leads to an accurate model. The only exception
is found by Kraskov’s estimator, which manages to find a
better performing set of variables by excluding 2, 4, and 11.

The results for the Breast cancer data in Table V reveal that
only a few of the 32 variables are relevant, and the variables
selected by GMM lead to the most accurate model.

Tecator is the most high-dimensional data set studied here,
and the results in Table VI show that GMM again finds the
best variables.

The Triazines data set (Table VII) represents a challenging
regression problem with varying success for each variable
selection method. The lowest prediction error is eventually
achieved by RReliefF. Due to some collinearity between the
variables, our implementation of LARS identified only 16
variables.

The Anthrokids data contains several variables which are
irrelevant for the prediction task, but many of them are
still useful, as evidenced by the best result in Table VIII
being achieved with a set of 21 variables. Both GMM and
Kraskov’s estimator successfully identify useful variables at
first, but in the end GMM leads to the best performance.

C. Computational times

The computational times for each method are shown in
Table IX. The experiments are conducted in MATLAB on a



TABLE V
THE SELECTED INPUTS AND LOO ERRORS FOR THE BREAST CANCER

DATA. BOLD VALUES REPRESENT OPTIMAL CHOICES IN THE SENSE OF

THE LOWEST ERROR WITH THE SMALLEST SET OF VARIABLES.

LARS RReliefF Kraskov MLMI GMM

4 0.8968 3 0.9425 5 0.8972 2 0.8975 4 0.8968
31 0.8732 26 0.9168 3 0.8466 25 0.8895 3 0.8429

3 0.8342 23 0.9223 30 0.8410 24 0.8846 31 0.8342
30 0.8330 30 0.9041 21 0.8450 16 0.8978 28 0.8223
13 0.8253 31 0.8887 2 0.8446 13 0.8537 13 0.8145
11 0.8270 27 0.8538 27 0.8509 3 0.8432 10 0.8081

1 0.8262 11 0.8597 20 0.8299 18 0.8493 16 0.8106
10 0.8304 7 0.8402 4 0.8284 15 0.8541 22 0.8051
18 0.8303 10 0.8461 31 0.8291 5 0.8490 15 0.8060
28 0.8255 28 0.8362 32 0.8314 22 0.8473 1 0.8061
16 0.8172 16 0.8430 24 0.8344 14 0.8504 27 0.8124
32 0.8180 22 0.8529 25 0.8331 19 0.8548 26 0.8307

6 0.8217 24 0.8574 22 0.8319 7 0.8495 6 0.8115
19 0.8263 2 0.8464 15 0.8339 23 0.8537 18 0.8338

8 0.8202 6 0.8516 12 0.8367 11 0.8389 8 0.8292
7 0.8236 4 0.8467 9 0.8417 32 0.8406 32 0.8252

26 0.8271 21 0.8507 19 0.8491 29 0.8444 19 0.8356
20 0.8258 29 0.8539 17 0.8495 10 0.8396 14 0.8327
25 0.8303 20 0.8443 14 0.8504 6 0.8430 9 0.8388
22 0.8306 18 0.8475 16 0.8483 12 0.8448 20 0.8501
27 0.8339 8 0.8429 7 0.8512 9 0.8444 12 0.8435

5 0.8402 19 0.8510 18 0.8474 20 0.8492 23 0.8544
17 0.8354 25 0.8468 26 0.8614 27 0.8536 17 0.8536
15 0.8412 5 0.8475 10 0.8609 4 0.8508 7 0.8554
14 0.8615 9 0.8476 1 0.8638 17 0.8543 11 0.8583
21 0.8542 17 0.8486 23 0.8618 8 0.8519 21 0.8625

9 0.8584 32 0.8584 11 0.8650 21 0.8464 24 0.8598
23 0.8455 12 0.8690 8 0.8479 30 0.9402 25 0.8506
29 0.8584 14 1.0052 13 0.8654 28 1.0052 2 1.0052
24 0.8602 13 1.0052 28 1.0052 31 0.8998 5 1.0052

workstation with a quad-core Intel Xeon E3–1230 processor
at a clock rate of 3.20 GHz. No particular effort was made to
optimise the code for fast computation, so the reported times
should be considered tentative and only roughly indicative of
relative performance. Some parts of some methods may run
as parallel threads, due to several built-in MATLAB functions
being multi-threaded.

LARS is the fastest method here, which is not surprisingly
since it is also the simplest. RReliefF is the second fastest by
a clear margin. Of the MI estimators, MLMI is clearly the
slowest, whereas Kraskov’s method and GMM are roughly
equivalent; GMM is faster for the datasets with many vari-
ables and few samples.

The computational load for GMM can be separated in two
parts: fitting the mixture model (including finding the number
of components), and using it to determine the ranking of
variables. The second part tends to be fast, whereas fitting
the model can be time-consuming for data sets with a large
number of samples, since this allows more components to be
used and requires more iterations to converge.

D. Selected GMM components

The number of components selected for each data set is:
Auto price (2), Stocks (11), Housing (1), Breast cancer (1),
Tecator (4), Triazines (2), Anthrokids (3). It can be seen that
for the Housing and Triazines data sets where the GMM
procedure performance was poor, only 1 and 2 components

TABLE VI
THE SELECTED INPUTS AND LOO ERRORS FOR THE TECATOR DATA.
BOLD VALUES REPRESENT OPTIMAL CHOICES IN THE SENSE OF THE

LOWEST ERROR WITH THE SMALLEST SET OF VARIABLES.

LARS RReliefF Kraskov MLMI GMM

41 0.7137 41 0.7137 40 0.7149 1 0.8643 99 0.7146
7 0.0914 40 0.6625 8 0.0855 98 0.4214 7 0.4224
8 0.0882 42 0.0488 53 0.0513 61 0.3906 36 0.0688

63 0.0403 39 0.2505 41 0.0459 72 0.2547 28 0.0359
62 0.0524 38 0.0433 42 0.0479 59 0.2546 50 0.0143
56 0.0512 43 0.1812 52 0.0158 65 0.2548 27 0.0131

100 0.0247 37 0.0454 51 0.0216 31 0.1619 29 0.0141
59 0.0348 44 0.0958 43 0.0170 35 0.0176 53 0.0147
55 0.0357 36 0.1486 44 0.0158 69 0.0178 55 0.0181
64 0.0378 35 0.1451 47 0.0164 73 0.0183 51 0.0163
9 0.0161 45 0.0384 45 0.0188 53 0.0186 67 0.0158

54 0.0295 34 0.1214 46 0.0166 23 0.0172 56 0.0135
99 0.0157 33 0.1206 48 0.0157 74 0.0180 49 0.0130
53 0.0150 32 0.1196 7 0.0154 57 0.0179 57 0.0158
15 0.0190 46 0.0610 49 0.0190 32 0.0184 26 0.0163
42 0.0139 9 0.0141 50 0.0163 3 0.0178 52 0.0146
17 0.0141 10 0.0142 6 0.0179 5 0.0189 54 0.0173
5 0.0144 8 0.0148 54 0.0164 93 0.0274 24 0.0242

16 0.0178 11 0.0146 36 0.0166 58 0.0241 25 0.0250
52 0.0178 7 0.0153 5 0.0170 30 0.0289 58 0.0298
18 0.0194 100 0.0172 39 0.0186 81 0.0314 65 0.0329
21 0.0213 6 0.0167 37 0.0195 60 0.0431 23 0.0348
22 0.0221 12 0.0232 38 0.0226 11 0.0502 59 0.0758
51 0.0278 99 0.0311 4 0.0333 17 0.0606 22 0.0750
98 0.0484 98 0.0416 56 0.0352 46 0.0689 60 0.0892
91 0.0647 5 0.0733 55 0.0477 79 0.0842 64 0.1096
40 0.0691 13 0.0863 2 0.0747 85 0.1073 63 0.1569
19 0.1611 97 0.0994 3 0.0804 6 0.2136 61 0.3081
20 0.2143 4 0.1161 1 0.1309 41 0.1421 62 0.4833
43 0.2786 14 0.4118 66 0.2435 49 0.7466 66 0.7237

were used, respectively. Perhaps better results could have
been obtained by having more components, suggesting that
using AIC for model selection might be unnecessarily re-
strictive in these cases.

V. CONCLUSIONS

The Gaussian mixture model is shown to be an effective
and versatile method for estimating mutual information.
Using a single mixture of Gaussians to derive estimates
for different sets of variables leads to a useful method for
variable selection for regression problems.

The experiments show that the proposed method works
well overall, at least on par with all the other methods.
Particularly for some data sets with a larger number of
variables (Breast cancer, Tecator, Anthrokids), the GMM
approach leads to the best performance by a clear margin.

In the context of variable selection with missing data, it
outperforms competing methods clearly in cases with a high
number of missing values.
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