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Abstract. A deep Boltzmann machine (DBM) is a recently introduced Markov
random field model that has multiple layers of hidden units. It has been shown
empirically that it is difficult to train a DBM with approximate maximum-
likelihood learning using the stochastic gradient unlike its simpler special case,
restricted Boltzmann machine (RBM). In this paper, we propose a novel pretrain-
ing algorithm that consists of two stages; obtaining approximate posterior distri-
butions over hidden units from a simpler model and maximizing the variational
lower-bound given the fixed hidden posterior distributions. We show empirically
that the proposed method overcomes the difficulty in training DBMs from ran-
domly initialized parameters and results in a better, or comparable, generative
model when compared to the conventional pretraining algorithm.
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1 Introduction

Deep Boltzmann machine (DBM), proposed in [14], is a recently introduced variant of
Boltzmann machines which extends widely used restricted Boltzmann machines (RBM)
to a model that has multiple hidden layers. It differs from the popular deep belief net-
work (DBN) [5] in that every edge in the DBM model is undirected. In this way, DBMs
facilitate propagating uncertainties across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using a varia-
tional approximation and stochastic maximum likelihood method, recent research (see,
for example, [14,4]) has shown that learning the parameters of DBMs is not trivial. Es-
pecially the generative performance of the trained model, commonly measured by the
variational lower-bound of log-probabilities of test samples, tends to degrade as more
hidden layers are added.

In [14] a greedy layer-wise pretraining algorithm was proposed to be used to initial-
ize parameters of DBMs, and it was shown that it largely overcomes the difficulty of
learning a good generative model.

Along this line of research, we propose another way to approach pretraining DBMs
in this paper. The proposed scheme is based on an observation that training DBMs
consists of two separate stages; approximating a posterior distribution over hidden units
and updating parameters to maximize the lower-bound of log-likelihood given those
states.
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Based on this observation, our proposed method pretrains a DBM in two stages.
During the first stage we train a simpler, directed deep model such as DBNs or stacked
denoising autoencoders (sDAE) to obtain an approximate posterior distribution over
hidden units. With this fixed approximate posterior distribution, we train an RBM that
learns a distribution over a combination of data samples and their corresponding poste-
rior distributions of hidden units. Finetuning the model is then trivial as one only needs
to free hidden variables from the approximate posterior distribution computed during
the first stage.

We show that the proposed algorithm helps learning a good generative model which
is empirically comparable to the pretraining method proposed in [14]. Furthermore, we
discuss the potential degrees of freedom in extending the proposed approach.

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [14]. A DBM with L layers
of hidden neurons is defined by the following energy function:
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are Nv binary visible units and Nl

binary hidden units in the l-th hidden layer. W = [wi,j ] is the set of weights between

the visible neurons and the first layer hidden neurons, while U(l) =
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]
is the set of

weights between the l-th and l + 1-th hidden neurons. bi and c
(l)
j are a bias to the i-th

visible neuron and the j-th hidden neuron in the l-th hidden layer, respectively. We use
θ to denote a set of all these parameters.

With the energy function, a DBM can assign a probability to each state vector x =
[v;h(1); · · · ;h(L)] using a Boltzmann distribution p(x | θ) = 1

Z(θ) exp {−E(x | θ)} .
Based on this property the parameters can be learned by maximizing the log-likelihood
L =

∑N
n=1 log

∑
h p(v(n),h | θ) given N training samples {v(n)}n=1,...,N , where

h =
[
h(1); · · · ;h(L)

]
.

The gradient computed by taking the partial derivative of the log-likelihood function
with respect to each parameter is used in most cases with a mini-batch per update. It
is then used to update the parameters, effectively forming a stochastic gradient ascent
method. A standard way of computing gradient results in the following update rule for
each parameter θ:
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where 〈·〉d and 〈·〉m denote the expectation over the data distribution P (h | {v(n)}, θ)
and the model distribution P (v,h | θ), respectively [3].
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3 Training Deep Boltzmann Machines

Although the update rules in Eq. (2) are well defined, it is intractable to compute them
exactly. Hence, an approach that uses variational approximation together with Markov
chain Monte Carlo (MCMC) sampling was proposed in [14].

First, the variational approximation is used to compute the expectation over the data
distribution. It starts by approximating p(h | v, θ), which is intractable unless L = 1,

by a factorial distribution Q(h) =
∏L

l=1

∏Nl

j=1 μ
(l)
j . The variational parameters μ(l)

j can
then be estimated by the following fixed-point equation:
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where f(x) = 1
1+exp{−x} . Note that μ(0)

i = vi and the update rule for the top layer
does not contain the second summation term, that is NL+1 = 0.

This variational approximation provides the values of variational parameters that
maximize the following lower-bound with respect to the current parameters:

p(v | θ) ≥ EQ(h) [−E(v,h)] +H(Q)− logZ(θ), (4)

where
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is an entropy functional. Hence, each gradient update step does not increase the exact
log-likelihood but its variational lower-bound.

Second, the expectation over the model distribution is computed by persistent sam-
pling. The simplest approach is to use Gibbs sampling.

This approach closely resembles variational expectation-maximization (EM) algo-
rithm (see, for example, [2]). Learning proceeds by alternating between finding the
variational parameters μ and updating the DBM parameters to maximize the given vari-
ational lower-bound using the stochastic gradient method. However, it has been known
and will be shown in the experiments in this paper that training a DBM using this ap-
proach starting from randomly initialized parameters is not trivial [14,4].

Hence, in [14] a pretraining algorithm to initialize the parameters of DBMs was
proposed. The pretraining algorithm greedily trains each layer of a DBM by considering
each layer as an RBM, following a pretraining approach used for training deep belief
networks (DBN) [5]. However, due to the undirectedness of edges in DBMs it has been
proposed to use the first layer RBM with two duplicate copies of visible units with tied
weights and the last layer RBM with two duplicate copies of hidden units with tied
weights. Once one layer has been trained, another layer can be trained on the aggregate
posterior distribution of the hidden units of the lower layer to extend the depth. After
the pretraining, learned weights are used as initializations of weights of DBMs.
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Fig. 1. Illustration of the two-stage pretraining algorithm followed by finetuning of all parameters.
Shaded nodes indicate clamped variables whereas white nodes are free variables.

4 A Two-Stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM com-
pared with the one described at the end of Section 3. We employ an approach that
separately obtains posterior distributions over hidden units and initializes parameters.

Before proceeding to the description of the proposed algorithm, we first divide the
hidden layers of a DBM into two sets. Let us denote a vector of hidden units in the
odd-numbered layers as h+ and the respective vector in the even-numbered layers as
h−. In this sense we may define μ+ and μ− as variational parameters of the hidden
units in the odd-numbered layers and the even-number layers, respectively.

Stage 1: We focus on finding a good set of variational parametersμ− of Q(h−) that has
a potential to give a reasonably high variational lower-bound in Eq. (4). In other words,
we propose to first find a good posterior distribution over hidden units given a visible
vector regardless of parameter values of a DBM. Although it might sound unreasonable
to find a good set of variational parameters without any fixed parameter values, we can
do this by borrowing posterior distributions over latent variables from other models.

DBNs and sDAE’s, described in [5] and [16], are natural choices to find a good
approximate posterior distribution over units in the even-numbered hidden layers. One
justification for using either of them is that they can be trained efficiently and well (see,
e.g., [1] and references therein). It becomes a trivial task as one can iteratively train each
even-numbered layer as either an RBM or a DAE on top of each other, as is a common
practice when a DBN or a sDAE is trained.

Stage 2: Once a set of initial variational parameters μ− is found from a DBN or an
sDAE, we train a model that has predictive power of the variational parameters given a
visible vector. It can be simply done by letting an RBM learn a joint distribution of v
and μ−.

The structure of the RBM can be directly derived from the DBM such that its visible
layer corresponds to the visible layer and the even-numbered hidden layers of the DBM
and its hidden layer to the odd-numbered hidden layers of the DBM. The connections
between them can also follow those of the DBM. This corresponds to finding a set of
DBM parameters that fit the variational parameters obtained in the first stage.

Once an RBM has been trained, we can use the learned parameters as initializations
for training the DBM, which corresponds to freeing h− from its variational posterior
distribution obtained in the first stage.

A simple illustration of the two-stage pretraining algorithm is given in Fig. 1.
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4.1 Discussion

It is quite easy to see that the proposed algorithm has high degree of freedom to plug in
alternative algorithms and models in both stages.

The most noticeable flexibility can be found in Stage 1. Any other machine learning
model that gives reasonable posterior distributions over multiple layers of binary hidden
units can be used instead of RBMs or DAEs. Also, instead of stacking each layer at a
time, one could opt to train deep autoencoders at once using advanced backpropagation
algorithms (see, for instance, [10]).

In Stage 2, one may opt to use a DAE instead of an RBM. It will make learning
faster and therefore leave more time for finetuning the model afterward. Also, the use
of different algorithms for training an RBM can be considered. For quicker pretraining,
one may use contrastive divergence [6] , or for better initial models, advanced MCMC
sampling methods could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm pro-
posed in [14] during the first stage. This approach gives approximate posterior distribu-
tions over all hidden units as well as initial values of the parameters. In this way, one
may use either an RBM or a fully visible BM (FVBM) during the second stage starting
from the initialized parameters. When an RBM is used in the second stage, one could
simply discard μ+.

One important point of the proposed algorithm is that it provides another research
perspective in training DBMs. The existing pretraining scheme developed in [14,11]
was based on the observation that under certain assumptions the variational lower-
bound could be increased by learning weight parameters layer wise. However, the suc-
cess of the proposed scheme suggests that it may not be the set of parameters that need
to be directly pretrained, but the set of variational parameters that determine how tight
the variational lower-bound is and their corresponding parameters.

5 Experiments

In the experiments, we train DBMs on two datasets which are a handwritten digit dataset
(MNIST) [7] and Caltech-101 Silhouettes dataset [8]. We used the MNIST and Caltech-
101 Silhouettes datasets because experimental results of using DBMs for both datasets
are readily available for direct comparison [13,12,9].

We train DBMs with varying numbers of units in the hidden layers; 500-1000, 500-
500-1000, 500-500-500-1000. The first two architectures were used in [13,12], which
enables us to directly compare our proposed algorithm with the conventional pretraining
algorithm.

For learning algorithms, we extensively tried various combinations. They are pre-
sented in Table 1. In summary, a DBMstage1

stage2 denotes a deep Boltzmann machine in
which its superscript and subscript denote the algorithms used during the first and sec-
ond stages, respectively.

We used contrastive divergence (CD) to train RBMs in the first stage, and the persis-
tent CD [15] with coupled adaptive simulated annealing (CAST) was used in the second
stage. DAEs were trained using stochastic backpropagation algorithm.
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Fig. 2. Performance of the trained DBMs. Best performing models are in bottom right corners of
each plot.

When a DBM was finetuned, we estimated the variational parameters by running at
most 30 mean-field fixed-point updates. The model statistics, the negative part of the
gradient, was computed by CAST.

Table 1. Algorithms used in the experiment.
(S) – the pretraining algorithm from [14]

Stage 1 Stage 2 Finetuning

DBM × × DBM
DBMsDAE

RBM sDAE RBM DBM
DBMDBN

RBM DBN RBM DBM
DBMS&H (S) × DBM
DBMS&H

RBM (S) RBM DBM
DBMS&H

FVBM (S) FVBM DBM

We evaluated the resulting models with
the variational lower-bound of log-
probabilities and the classification error of
test samples. The variational lower-bounds
reflect the generative performance of the
model. The classification accuracy com-
puted from a linear support vector machine
(SVM) tells us the discriminative property of
the hidden units. We trained a linear SVM
for each hidden layer l using μl as its fea-
tures. This is expected to show how much

information about input samples is captured by each hidden layer of the model.
All models were trained five times starting from different random initializations. We

report medians over these random trials.

5.1 Result and Analysis

Fig. 2 presents the result using both the lower-bound of log-probabilities and the clas-
sification error of the test samples. As has already been expected, none of the models
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Fig. 3. Layer-wise Discriminative Performance. Lower is better.

trained without pretraining have been able to perform well enough to be presented in-
side the boundaries of the boxes in Fig. 2.

It is clear from the figures that the proposed two-stage pretraining algorithm out-
performs, in all cases, the conventional pretraining algorithm (DBMS&H). On MNIST,
the DBMs pretrained with the proposed algorithm using the conventional pretraining
algorithm in the first stage achieved the best performance. In the case of Caltech-101
Silhouettes, DBMsDAE

RBM was able to achieve superior performance in both generative and
discriminative modeling. It is notable that without any pretraining (DBM) we were not
able to achieve any reasonable performance.

Fig. 3 presents layer-wise classification errors. It is clear from the significantly lower
accuracies in the higher hidden layers of the DBMs trained without pretraining that
pretraining is essential to allow upper layers to capture structures of data. DBMDBN

RBMand
DBMS&H

RBMwere most effective in ensuring the upper hidden layers to have better dis-
criminative property.

6 Conclusions

The experimental success of the proposed two-stage pretraining algorithm in training
DBMs suggests that the difficulty of DBM learning might be due to the fact that the es-
timated variational lower-bound at the initial stage of learning is too crude, or too loose.
Once one initializes the variational parameters well enough by utilizing another deep
hierarchical model, the parameters of a DBM can be fitted to give a tighter variational
lower-bound which facilitates jointly estimating all parameters.
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The proposed two-stage pretraining algorithm provides a general framework in which
many hierarchical deep learning models can be used. It even makes possible to include
the conventional pretraining algorithm as a part of the proposed algorithm and improve
upon it. This is a significant step in developing and improving a training algorithm for
DBMs, as it allows us to fully utilize other learning algorithms that have been exten-
sively studied previously.
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