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Abstract. Nonlinear source separation can be performed by inferring
the state of a nonlinear state-space model. We study and improve the
inference algorithm in the variational Bayesian blind source separation
model introduced by Valpola and Karhunen in 2002. As comparison
methods we use extensions of the Kalman filter that are widely used in-
ference methods in tracking and control theory. The results in stability,
speed, and accuracy favour our method especially in difficult inference
problems.

1 Introduction

Many applications of source separation methods involve data with some kind of
relations between consecutive observations. Examples include relations between
neighbouring pixels in images and time series data. Using information on these
relations improves the quality of separation results, especially in difficult non-
linear separation problems. Nonlinear modelling of relations may also be useful
in linear mixing problems as the dynamics of the time series, for instance, may
well be nonlinear.

A method for blind source separation using a nonlinear state-space model
is described in [1]. In this paper we study and improve ways of estimating the
sources or states in this framework. Efficient solution of the state estimation
problem requires taking into account the nonlinear relations between consecutive
samples, making it significantly more difficult than source separation in static
models. Standard algorithms based on extensions of the Kalman smoother work
rather well in general, but may fail to converge when estimating the states over
a long gap or when used together with learning the model. We propose solving
the problem by improving the variational Bayesian technique proposed in [1] by
explicitly using the information on the relation between consecutive samples to
speed up convergence.

To tackle just the state estimation (or source separation) part, we will sim-
plify the blind problem by fixing the model weights and other parameters. In [2],
linear and nonlinear state-space models are used for blind and semi-blind source
separation. Also there the problem is simplified by fixing part of the model.



2 Nonlinear State-Space Models

In nonlinear state-space models, the observation vectors x(t), t = 1, 2, . . . , T , are
assumed to have been generated from unobserved state (or source) vectors s(t).
The model equations are

x(t) = f(s(t)) + n(t) (1)

s(t) = g(s(t − 1)) + m(t), (2)

Both the mixing mapping f and the process mapping g are nonlinear. The noise
model for both mixing and dynamical process is often assumed to be Gaussian

p(n(t)) = N [n(t);0;Σx] (3)

p(m(t)) = N [m(t);0;Σs] , (4)

where Σx and Σs are the noise covariance matrices. In blind source separation,
the mappings f and g are assumed to be unknown [1] but in this paper we
concentrate on the case where they are known.

2.1 Inference Methods

The task of estimating a sequence of sources s(1), . . . , s(T ) given a sequence
of observations x(1), . . . ,x(T ) and the model is called inference. In case f and
g in Eqs. (1) and (2) are linear, the state can be inferred analytically with
an algorithm called the Kalman filter [3]. In a filter phase, evidence from the
past is propagated forward, and in a smoothing phase, evidence from the future
is propagated backwards. Only the most recent state can be inferred using the
Kalman filter, otherwise the algorithm should be called the Kalman smoother. In
[4], the Kalman filter is extended for blind source separation from time-varying
noisy mixtures.

The idea behind iterated extended Kalman smoother [3] (IEKS) is to linearise
the mappings f and g around the current state estimates using the first terms
of the Taylor series expansion. The algorithm alternates between updating the
state estimates by Kalman smoothing and renewing the linearisation. When the
system is highly nonlinear or the initial estimate is poor, the IEKS may diverge.

The iterative unscented Kalman smoother [5, 6] (IUKS) replaces the local
linearisation of IEKS by a deterministic sampling technique. The sampled points
are propagated through the nonlinearities, and a Gaussian distribution is fitted
to them. The use of nonlocal information improves convergence and accuracy at
the cost of doubling the computational complexity1. Still there is no guarantee
of convergence.

A recent variant called backward-smoothing extended Kalman filter [8] searches
for the maximum a posteriori solution to the filtering problem by a guarded

1 An even better way of replacing the local linearisation when a multilayer perceptron
network is used as a nonlinearity, is described in [7].



Gauss-Newton method. It increases the accuracy further and guarantees conver-
gence at the cost of about hundredfold increase in computational burden.

Particle filter [9] uses a set of particles or random samples to represent the
state distribution. It is a Monte Carlo method developed especially for sequences.
The particles are propagated through nonlinearities and there is no need for
linearisation nor iterating. Given enough particles, the state estimate approaches
the true distribution. Combining the filtering and smoothing directions is not
straightforward but there are alternative methods for that. In [10], particle filters
are used for non-stationary ICA.

2.2 Variational Bayesian method

Nonlinear dynamical factor analysis (NDFA) [1] is a variational Bayesian method
for learning nonlinear state-space models. The mappings f and g in Eqs. (1) and
(2) are modelled with multilayer perceptron (MLP) networks whose parame-
ters can be learned from the data.The posterior distribution over the sources
S = [s(1), . . . , s(T )] and the parameters θ is approximated by a Gaussian distri-
bution q(S, θ) with some further independency assumptions. Both learning and
inference are based on minimising a cost function CKL

CKL =

∫

θ

∫

S

q(S, θ) ln
q(S, θ)

p(X,S, θ)
dSdθ, (5)

where p(X,S, θ) is the joint probability density over the data X = [x(1), . . . ,x(T )],
sources S, and parameters θ. The cost function is based on Kullback-Leibler di-
vergence between the approximation and the true posterior. It can be split into
terms, which helps in studying only a part of the model at a time. The varia-
tional approach is less prone to overfitting compared to maximum a posteriori
estimates and still fast compared to Monte Carlo methods. See [1] for details.

The variational Bayesian inference algorithm in [1] uses the gradient of the
cost function w.r.t. state in a heuristic manner. We propose an algorithm that
differs from it in three ways. Firstly, the heuristic updates are replaced by a
standard conjugate gradient algorithm [11]. Secondly, the linearisation method
from [7] is applied. Thirdly, the gradient is replaced by a vector of approximated
total derivatives, as described in the following section.

2.3 Total Derivatives

When updates are done locally, information spreads around slowly because the
states of different time slices affect each other only between updates. It is possible
to predict this interaction by a suitable approximation. We get a novel update
algorithm for the posterior mean of the states by replacing partial derivatives of
the cost function w.r.t. state means s(t) by (approximated) total derivatives

dCKL

ds(t)
=

T∑

τ=1

∂CKL

∂s(τ)

∂s(τ)

∂s(t)
. (6)



They can be computed efficiently using the chain rule and dynamic program-

ming, given that we can approximate the terms ∂s(t)
∂s(t−1) and ∂s(t)

∂s(t+1) .

Before going into details, let us go through the idea. The posterior distri-
bution of the state s(t) can be factored into three potentials, one from s(t − 1)
(the past), one from s(t + 1) (the future), and one from x(t) (the observation).
We will linearise the nonlinear mappings so that the three potentials become
Gaussian. Then also the posterior of s(t) becomes Gaussian with a mean that is
the weighted average of the means of the three potentials, where the weights are
the inverse (co)variances of the potentials. A change in the mean of a potential
results in a change of the mean of the posterior inversely proportional to their
(co)variances.

The terms of the cost function (See Equation (5.6) in [1], although the nota-
tion is somewhat different) that relate to s(t) are

CKL(s(t)) =
m∑

i=1

(
−

1

2
ln s̃ii(t) +

1

2
Σ−1

sii

{
[si(t) − gi(s(t − 1))]2 + s̃i(t)

})

+

m∑

j=1

1

2
Σ−1

sjj

{[
gj(s(t)) − sj(t + 1)

]2
+ g̃j(s(t))

}

+

n∑

k=1

1

2
Σ−1

xkk

{[
fk(s(t)) − xk(t)

]2
+ f̃k(s(t))

}
,

(7)

where α and α̃ denote the mean and (co)variance of α over the posterior ap-
proximation q respectively and n and m are the dimensionalities of x and s

respectively. Note that we assume diagonal noise covariances Σ. Nonlinearities
f and g are replaced by the linearisations

f̂(s(t)) = f(scur(t)) + Jf (t) [s(t) − scur(t)] (8)

ĝ(s(t)) = g(scur(t)) + Jg(t) [s(t) − scur(t)] , (9)

where the subscript cur denotes a current estimate that is constant w.r.t. further
changes in s(t). The minimum of (7) with linearisations can be found at the zero
of the gradient:

s̃opt(t) =
[
Σ−1

s + Jg(t)
TΣ−1

s Jg(t) + Jf (t)TΣ−1
x Jf (t)

]
−1

(10)

sopt(t) = s̃opt(t)
{
Σ−1

s [g(scur(t − 1)) + Jg(t − 1)(s(t − 1) − scur(t − 1))]

+ Jg(t)
TΣ−1

s [s(t + 1) − g(scur(t))] (11)

+Jf (t)TΣ−1
x

[
x(t) − f(scur(t))

]}
.

The optimum mean reacts to changes in the past and in the future by

∂sopt(t)

∂s(t − 1)
= s̃opt(t)Σ

−1
s Jg(t − 1) (12)

∂sopt(t)

∂s(t + 1)
= s̃opt(t)Jg(t)

TΣ−1
s . (13)



Finally, we assume that the Equations (12) and (13) apply approximately even
in the nonlinear case when the subscripts opt are dropped out. The linearisation
matrices J need to be computed anyway [7] so the computational overhead is
rather small.

3 Experiments

To experimentally measure the performance of our proposed new method, we
used two different data sets. The first data set was generated using a simulated
double inverted pendulum system with known dynamics. As the second data set
we used real-world speech data with unknown dynamics.

In all the experiments, IEKS and IUKS were run for 50 iterations and NDFA
algorithm for 500 iterations. In most cases this was long enough for the algo-
rithms to converge to a local minimum. For comparison purposes, the NDFA
experiments were also repeated without using the total derivatives.

Even with a relatively high number of particles, particle smoother performed
poorly compared to the iterative algorithms. The results for particle smoother
are therefore omitted from the figures. They are however discussed where appro-
priate. Even though the particle smoother performed relatively poorly, it should
be noted that many different schemes exists to improve the performance of par-
ticle filters [9], and therefore direct comparison between the iterative algorithms
and the plain particle filter algorithm used in these experiments may be some-
what unjustified. The experiments were also repeated with the original NDFA
algorithm presented in [1]. The results were quite poor, as was to be excepted,
as the heuristic update rules are optimized for learning.

3.1 Double Inverted Pendulum

The double inverted pendulum system [6] (see Figure 1) is a standard benchmark
in the field of control. The system consists of a cart and a two-part pole attached
to the cart. The system has six states which are cart position on a track, cart
velocity, and the angles and the angular velocities of the two attached pendulums.
The single control signal is the lateral force applied to the cart. The dynamical
equations for the double inverted pendulum system can be found e.g. in [6], in
this experiment a discrete system with a time step of ∆t = 0.05 s was simulated
using the MATLAB ordinary differential equation solver ode23.

To make sure that the learning scheme did not favour the proposed algorithm,
standard backpropagation algorithm was used to learn an MLP network to model
the system dynamics using a relatively small sample of 2000 input-output pairs.
To make this problem more challenging, only the velocity and position of the
cart and the angle of the upper pendulum were available as observations, and
the rest of the state had to be inferred from these. Experiments were run on
ten different data sets with 50 samples each using 5 different initialisations. The
final results can be seen in Figure 1.
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Fig. 1. Inference with the double inverted pendulum system. On the left the schematic
of the system, on the right root mean square error plotted against computation time.

IEKS suffered from quite serious convergence problems with this data set.
These problems were especially bad during the early iterations, but several runs
failed to converge to a meaningful result even after the iteration limit was
reached. IUKS performed somewhat better, but suffered from some stability
problems too. The proposed method was much more robust and did not suffer
from stability issues and also performed better on average than the two Kalman
filter based algorithms. It should be noted, however, that in some experiments
both IEKS and IUKS converged in only a few iterations, resulting in a superior
performance compared to the proposed method. Therefore the problem with
IEKS and IUKS may at least partially be related to poor choice of initialisa-
tions.

3.2 Speech Spectra

As a real world data set we used speech spectra. The data set consisted of 11200
21 dimensional samples which corresponds to 90 seconds of continuous human
speech. The first 10000 samples were used to train a seven dimensional state-
space model with the method from [1] and the rest of the data was used in
the experiments. This data set poses a somewhat different problem from the
double inverted pendulum system. The nonlinearities are not as strong as in the
first experiment but the dimensionality of the observation and state spaces are
higher, which emphasises the scalability of the methods.

The test data set was divided into three parts each consisting of 300 samples
and all the algorithms were run for each data set with four random initialisations.
The final results represent an average over both the different data sets and
initialisations.

Since the true state is unknown in this experiment, the mean square error of
the reconstruction of missing data was used to compare the different algorithms.
Experiments were done with sets of both 3 and 30 consecutive missing samples.
The ability to cope with missing values is very important when only partial
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Fig. 2. Inference with the speech data and missing values. On the top one of the data
sets used in the experiments (missing values marked in black), on the bottom root
mean square error plotted against computation time. Left side figures use a small gap
size, right side figures a large gap size.

observations are available or in the case of failures in the observation process. It
also has interesting applications in the field of control as reported in [12].

Results can be seen in Figure 2. When missing values are present, especially
in the case of the large gap size, the proposed algorithm performs clearly better
than the rest of the compared algorithms. Compared to the double inverted
pendulum data set, the stability issues with IEKS and IUKS were not as severe,
but neither method could cope very well with long gaps of missing values.

4 Discussion and Conclusions

We proposed an algorithm for inference in nonlinear state-space models and
compared it to some of the existing methods. The algorithm is based on min-
imising a variational Bayesian cost function and the novelty is in propagating
the gradient through the state sequence. The results were slightly better than
any of the comparison methods (IEKS and IUKS). The difference became large
in a high-dimensional problem with long gaps in observations.

Our current implementation requires that the nonlinear mappings are mod-
elled as multilayer perceptron networks. Part of the success of our method is due
to a linearisation that is specialised to that case [7]. The idea presented in this
paper applies in general.

When an algorithm is based on minimising a cost function, it is fairly easy
to guarantee convergence. While the Kalman filter is clearly the best choice for
inference in linear Gaussian models, the problem with many of the nonlinear
generalisation (e.g. IEKS and IUKS) is that they cannot guarantee convergence.
Even when the algorithms converge, convergence can be slow. A recent fix for
convergence comes with a large computational cost [8] but this paper shows that
stable inference can be fast, too.



While this paper concentrates on the case where nonlinear mappings and
other model parameters are known, we aim at the case where they should be
learned from the data [1]. Blind source separation involves a lot more iterations
than the basic source separation. The requirements of a good inference algorithm
change, too: There is always the previous estimate of the sources available and
most of the time it is already quite accurate.
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