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A new instantaneous-gradient search algorithm for computing a principal component or minor component
type solution is proposed. The algorithm can use normalized Hebbian or anti-Hebbian learning in a unified
formula. Starting from one-unit rule, a multi-unit algorithm is developed -which can simultaneously
extract several robust counterparts of the principal or minor eigenvectors of the data covariance matrix.
Standard principal or minor components emerge as special cases from the general non-quadratic criterion.
The learning rule is analyzed mathematically, and the theoretical results are verified by simulations. The
proposed bigradient approach can be applied to blind separation of independent source signals from their

linear mixtures.

1. Introduction

Principal Component Analysis (PCA) is an essen-
tial technique in data analysis. PCA subspace, to
be defined later, provides for high-dimensional sig-
nals or data the best lower dimensional approxima-
tion in the mean-square error sense. Standard PCA
emerges as the optimal solution of several other rele-
vant information representation problems, too.%:10:11
Therefore, PCA in various forms has many useful ap-
plications in signal and image filtering, compression
and analysis, as well as in pattern recognition.

Let x be an n-dimensional data or input vec-
tor coming from some statistical distribution cen-
tralized to zero: E{x} = 0. The ith principal
component xTc(i) of x is defined by the normal-
ized eigenvector c(¢) of the data covariance matrix
C = E{xxT} associated with the ith largest eigen-
value A(¢). The subspace spanned by the principal
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eigenvectors c(1),..., ¢(m) (m < n) is called the
PCA subspace (of dimensionality m).

Recently, there has been a growing interest in
the connection between PCA and neural networks.
The Multi-Layer Perceptron (MLP) network, learn-
ing by the backpropagation algorithm in unsuper-
vised autoassociation mode, has been shown to be
closely connected to PCA by Baldi and Hornik,! and
Bourlard and Kamp.? Another class of models, initi-
ated by the PCA neuron proposed by Oja,!” are one-
layer feedforward networks which compute the PCA
by unsupervised Hebbian learning rules. The weight
vectors of the neurons converge either to an orthonor-
mal basis of the PCA subspace of the input vec-
tors or to the principal eigenvectors c(i) themselves,
depending on the structure of the network. Since
then, many gradient type algorithms have been in-
troduced for unsupervised learning of standard PCA
solutions in linear neural networks; see Refs. 4, 8, 14
and 21.

Minor components are defined quite similarly
as the principal components in terms of the minor
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eigenvectors, which correspond to the smallest eigen-
values of the data covariance matrix. In 1979,
Thompson?® presented a neural-like gradient algo-
rithm for adaptive computation of the minor eigen-
vector with application to sinusoidal frequency esti-
mation. More generally, PCA subspace (called the
signal subspace in signal processing) and MCA sub-
space (noise subspace) often provide a very good
characterization of noisy signals, which has promi-
nent applications in modern signal processing.?”
Recently Xu, Oja, and Suen®® showed that the
total least squares solution defined by the minor
eigenvector is often much better than the stan-
dard least squares solution in curve and surface fit-
ting. Because the minor components describe mainly
noise, the corresponding gradient algorithms usu-
ally converge slower than their principal component
counterparts.?! Therefore computing a large num-
ber of minor eigenvectors using stochastic gradient
algorithms is not reasonable in practice.

It is interesting and meaningful to study nonlin-
ear extensions of standard PCA or MCA learning al-
gorithms and networks. The neural approaches be-
come much more competitive for such algorithms,
and the nonlinearities implicitly take into account
higher-order statistics in the solutions.®!! It is of-
ten possible to derive such nonlinear algorithms by
reconsidering the information representation prob-
lems leading to a standard PCA or MCA solution
for nonquadratic criterion functions. Nonlinear PCA
(or MCA) is discussed more thoroughly in the recent
papers.®-11,22

In this paper, we propose a new stochastic bigra-
dient algorithm for extracting the principal eigen-
vectors or the minor eigenvectors using a unified
approach. In fact, the algorithm is presented for
the more general case which can be used for esti-
mating the robust counterparts of the principal or
minor components or eigenvectors. Interestingly,
the new algorithm is stable as such in both the
PCA and the MCA case. Usually some additional
terms are needed for ensuring the stability when a
PCA algorithm is converted to the respective MCA
algorithm.?! The possible convergence points of the
algorithm are analyzed mathematically.

Quite recently, we have shown!?!3 that various
robust or nonlinear PCA type learning algorithms
can be successfully applied to blind separation of
independent sources from their linear mixtures. This

problem is important in certain applications of signal
processing and communications, and it cannot be
solved using standard PCA or MCA. The bigradient
algorithm suits well to blind separation because of
its flexibility and good performance. It can also be
used as a part in the related Independent Component
Analysis,!? which is a recently developed useful
extension of standard PCA. In this paper, we do not
discuss these matters in detail, because the emphasis
is here on the general derivation and analysis of
various forms of the bigradient algorithm.

The remainder of the paper has the following con-
tents. In the next section, we propose a novel opti-
mization criterion consisting of two cost functions.
Using an alternating stochastic gradient approach,
it leads to a new algorithm which has almost the
same form in estimating either the first principal or
the first minor eigenvector. The only difference is the
sign of the update (gradient) term. The algorithm is
presented for a more general nonquadratic criterion,
allowing the estimation of the robust counterparts of
the principal or minor eigenvector.

In Sec. 3, the proposed algorithm is extended
from one-unit (neuron) case to several neurons. De-
pending on the form of the constraints, the resulting
algorithm can be used for learning several principal
or minor eigenvectors, the respective PCA or MCA
subspaces, or their robust counterparts. The simu-
lations in Sec. 4 show that the bigradient algorithm
learns the true PCA or MCA solution in the linear
case. Applying a computationally attractive hard-
limiting nonlinearity, the algorithm converges faster
and yields results that are almost identical with
standard linear algorithms when the input data are
Gaussian. Generally, a suitably chosen nonlinearity
increases the robustness of the bigradient algorithm
against long-tailed noise and outliers in the data.
We also provide an example of blind source separa-
tion using speech data. Section 5 presents the con-
clusions and mentions some potential applications
of the bigradient algorithm. In Appendix A, the
asymptotic solutions of the algorithms are studied
theoretically.

2. The Bigradient Algorithm
for One Neuron

We first derive and study the new bigradient
algorithm in the relatively simple case of a single
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neuron (unit), and then in the next section extend
the results to a network of several neurons.

2.1. The optimization problem

Assume that the single artificial neuron receives n
input signals. At each time instant k, these can con-
veniently be represented as the m-dimensional col-
umn vector Xi. The input vectors x have a common
probability density that is usually unknown. The
weight vector w of the neuron is also n-dimensional,
and the response of the neuron to the input x is the
inner product of the two vectors: y = w’x. This
is also the output of the neuron in the linear case.
More generally, the output can be a nonlinear func-
tion g(y) = g(wTx) of the response. For stability
reasons, the function g(#) is usually assumed to be
at least positive for ¢ > 0 and negative for ¢t < 0 in
the gradient learning algorithms.

The first principal component of the input data
is defined as the direction which represents “best”
the input data. More specifically, the input data
are required to have the largest average squared
projection E{(wTx)?} onto this direction w. This
maximization problem is not well defined unless the
(Euclidean) norm ||w|| is constrained somehow; typ-
ically ||w]| = 1, which is equivalent to wT'w = 1. Us-
ing the standard Lagrangian technique, it is rather
easy to see that the optimal w must be the first nor-
malized principal eigenvector c(1) (or —c(1)) of the
data covariance matrix C.°

Naturally, one can in a similar manner look for
a direction that represents “worst” the input data.
The criterion E{(wTx)?} must then be minimized
under the constraint ||w| = 1. The optimal w
now becomes the (first) normalized minor eigenvec-
tor ¢(n) of C, which corresponds to the smallest
eigenvalue \(n) of C.23

Maximization of the squared projection magni-
tude is just one possibility of defining the direc-
tion representing in some sense best the input data.
Squared measures are by far the most popular in op-
timization, problems arising in different applications,
because they are mathematically tractable, leading
often to convenient solutions. In this case, the op-
timal direction is found from a standard eigenprob-
lem, which can be efficiently solved using well-known
numerical procedures. However, quadratic criteria
are generally sensitive to outliers in the data and to

long-tailed noise distributions, because they weight
large values heavily. Another drawback is that the
corresponding optimal solution is based on the first-
and second-order statistics only. This is adequate
for Gaussian data, but for other types of data the
information contained in the higher-order moments
is missed in computing the optimum.10:!!

It is noteworthy that neural optimization sig-
nificantly differs from standard techniques in that
nonquadratic criteria become much more compet-
itive compared with quadratic ones. This is be-
cause gradient type neural learning algorithms are
anyway iterative by nature, and a suitably chosen
nonlinearity, for example a sigmoid function, may be
implemented via analog hardware almost as easily as
linear functions.

Therefore we consider optimization of the more
general criterion:

Ji(w) = E{f(w"x)} (1)

under the same normalization constraint ||w| = 1.
For achieving robustness, the function f(t) is re-
quired to be a valid cost function that grows less
than quadratically at least for large values of t. More
specifically, we assume that f(¢) is even, nonnega-
tive, continuously differentiable almost everywhere,
and f(t) < t?/2 for large values of |t|. Further-
more, its only minimum is attained at ¢ = 0, and
f(t1) < f(t2) if |t1]| < |t2]. Examples of such func-
tion are f(t) = Incosh(t) and f(t) = |t|; see also
Refs. 4 and 9. If f(t) = t?/2, the generalized cri-

terion coincides with the average squared projection °

measure (the scaling constant 0.5 is insignificant).
Some of the assumptions made on f(t) are not al-
ways necessary. In blind separation applications, the
cost function f(t) = t*/4 may be used for achieving
separation, but special attention must then be paid
to the stability of the learning algorithm.

2.2. Derivation of the bigradient
algorithm

In optimization tasks, the possible constraints are
usually appended to the criterion via Lagrange mul-
tipliers. This approach has been applied to the
criterion J;(w) in Ref. 9. The resulting robust gen-
eralization of Oja’s rule is analyzed in the single-unit
case in Ref. 23. Following the basic idea presented in
Ref. 3, we here adopt a different approach and take
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the normalization constraint into account in terms of
another criterion function:

To(w) = %(1 —wTw)?, @)

The robust counterparts of the minor eigenvector
c(n) or the principal eigenvector c(1) are obtained
by minimizing or maximizing the criterion Jy(w),
respectively. In both the cases the constraint con-
dition can be satisfied by minimizing Jo(w) simul-
taneously. Recently, a somewhat similar approach
has been independently introduced for estimating
the MCA eigenvectors in Ref. 16.

The gradients of J;(w) and Jz(w) with respect
to the weight vector w are:

dJi(w)

W = E{g(wTx)x} (3)

where g(t) is the derivative df(t)/dt of the cost
function f(¢), and
sz(W)

The optimal value of w can be searched iteratively
by inserting the estimated gradients into the general
algorithm:

oJ )
Wil = Wi + 0 as:,v) (5)

where the sign of the gain parameter oy is chosen
positive in the case of maximization (gradient ascent)
and negative in minimization (gradient descent).

The simplest, practical stochastic gradient algo-
rithms are obtained by omitting the expectations.
They are replaced by the respective instantaneous
values everywhere in the algorithms. We form such
an algorithm from Egs. (5) and (3) or Eq. (4) for
both the criteria, and apply them alternately for op-
timizing the criteria simultaneously. This yields the
following combined algorithm which we call bigradi-
ent algorithm for obvious reasons.

Bigradient algorithm

Choose the initial weight vector wj, e.g. randomly.
Perform the following three steps for k = 1, 2,...,
until the’ weight vector has converged with a suffi-
cient accuracy. If necessary, the sample vectors xj
can be used several times for achieving convergence.

1. Compute the instantaneous output:

9(yr) = g(wi xx). (6)

2. Compute a new weight vector estimate for
optimizing Jj (w):

Wil = Wi+ arg(ye)Xy . (7

Here the learning parameter o is chosen pos-
itive in maximizing J;(w) and negative in
minimizing it.

3. Normalize w}_; by trying to minimize Jz(w):

Wil =Whyg +7kwlt+1(1—wlt{1wlt+1) . (8)

Here v, > 0 is another positive learning
parameter.

In this algorithm, the last two steps can be
combined by substituting wf, ; from Eq. (7) to
Eq. (8), which gives:

Wit1 = Wi + g (ye) Xk + 1 wi(l — wiwg)

+o(aryk) + o(a}) + o(ad). (9)

Assuming that the gain parameters a; and «y, are
small (as they usually are in gradient algorithms for
stability reasons), the higher-order terms o(oy7y),
o(a?), and o(c3) can be ignored as a reasonable ap-
proximation. This yields the simpler approximative
algorithm:

Wit1 = Wk + akg(Ye)Xk + VWi (1 — wi wi) . (10)

Note that the second term g(yx)x)x on the right
hand side is a Hebbian or anti-Hebbian term (prod-
uct of the input and output of the neuron), depend-
ing on the sign of learning parameter ay. This term
is essentially responsible for learning the direction of
the weight vector wy, from the input data. The third
term wy(1 — wi'wy) normalizes the weight vector
wy,, so that the constraint condition wiw = 1 is
satisfied at least approximately. For achieving con-
vergence, the learning parameter o, should approach
zero as the number of iterations k grows large. In
practice, ay, is often a small constant after initial con-
vergence. If ay is negative, the algorithm (10) will
estimate the robust counterpart of the minor eigen-
vector c¢(n), otherwise the robust counterpart of the
principal eigenvector c(1).

It is difficult to analyze the accuracy of the bi-
gradient algorithm (10) exactly. Generally, in gra-
dient algorithms like this the final accuracy of the
weight vector estimate wy, is the better the smaller
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the learning parameters ay, and «, are. On the other
hand, for small learning parameters the convergence
speed is slow. The analysis in the next subsection,
especially the proof of Theorem 1 in Appendix A,
gives some insight into the properties of the algo-
rithm (10).

2.3. Asymptotic solutions

The convergence points of the discrete stochastic al-
gorithm (10) can be studied by forming the corre-
sponding averaged ordinary differential equation. It
can be shown that under some assumptions concern-
ing the input vectors and the learning rate sequence,
the weight vector will converge to an asymptoti-
cally stable solution of this differential equation.l®
For simplicity, we perform the analysis in the lin-
ear case g(t) = t only, and assume that the ratio
of the gain parameters is constant 8 = v, /|ax| at
least asymptotically. Then the averaged differential
equation corresponding to positive ay in Eq. (10) is:

dz

—_— = f— T
7 Cz + fBz(1 —z" 2) (11)
and that corresponding to negative ¢y, is
d
Ej— = —Cz + fz(1 - 272). (12)

Here z = z(t) denotes the continuous time t counter-
part of the weight vector wy, and C is the covariance
matrix of the input vectors.

In the Appendix A, the following result will be
shown:

Theorem 1

In Eq. (11) (respectively Eq. (12)), assume that the
largest (resp. the smallest) eigenvalue of the data co-
variance matrix C is positive and distinct from the
other eigenvalues. Assume that the initial vector
z(0) is not orthogonal to the normalized principal
eigenvector c(1) (resp. the normalized minor eigen-
vector ¢(n)) of C. Then the solution z(t) of Eq. (11)
(resp. Eq. (12)) will tend to the direction of ¢(1) or
—c(1) (resp. to the direction of ¢(n) or —c(n)), pro-
vided that 8 > A(n) in the MCA case. If 8 — oo
when ¢ — 00, z(t) converges to the respective unit-
norm eigenvector.

Theorem 1 says that in the linear case g(t) =
t, the approximative bigradient algorithm (10) in-

deed estimates the first principal eigenvector c(1) if
ar > 0, and the first minor eigenvector c(n) if
ap < 0. Simulations in Sec. 4 confirm the results
of this asymptotic analysis. A complete convergence
theorem would, however, require in addition showing
that the discrete computation algorithm (10) itself
remains bounded, and a global convergence analy-
sis of the associated differential Eqs. (11) and (12).
These tasks are usually very difficult for this kind of
gradient algorithms.

3. The Bigradient Algorithm
for Several Neurons

It is rather straightforward to generalize the criteria
Ji(w) and Jy(w) and the resulting approximative
bigradient algorithm (10) for a true neural network
that has several neurons in the output layer. We
assume that the input vector x is common to all the
m neurons in the network, and that x as well as the
weight vectors w(1),..., w(m) of the neurons are
n-dimensional column vectors (m < n). The weight
vectors can be compactly represented as the columns
of the n x m weight matrix W. Then the elements
of the m-dimensional column vector y = WTx are
the linear responses y(i) = w(i)Tx of the neurons.
The outputs of the neurons are generally nonlinear
g[y(?)]. They comprise in a similar manner the
output vector g(y) = g(WTx).

The criterion (1) measuring the output power
remains the same as for a single neuron. It is
now applied for each neuron weight vector w(j)
separately. Thus:

S w(i)] = E{f[xTw(j)]} . (13)

Again, the weight vectors w(j) are constrained to
have unit norm: w(j)Tw(j) =1, j = 1,..., m.
However, additional constraints must be imposed,
because otherwise the weight vectors of the differ-
ent neurons would converge to the same solution.
It is most natural to require that different weight
vectors should be mutually orthonormal, because
this makes them maximally different and leads to the
PCA or MCA solutions in the linear case g(t) = t.
The orthogonality constraints can be realized in dif-
ferent ways, leading either to symmetric or hierar-
chic learning algorithms and network structures. We
consider these two basic cases separately in the next
subsections.
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3.1. The symmetric case

Consider first the case where the orthogonality con-
straints are fully symmetric. This leads to a bigra-
dient algorithm that estimates in the linear special
case g(t) =t either the PCA or MCA subspace, and
more generally their robust counterparts. The con-
straint criterion (2) now takes for the jth neuron the
form:

Tlw(i)] = 31 = w() WG
5 Y WOTWEP. (4
i=1,i#j
Clearly, this is minimized when all the squared quan-
tities are zero. This happens only if the weight vector
w(j) has unit norm and is orthogonal to the weight
vectors w(i) of all the other neurons.

One can now proceed quite similarly as in the
single neuron case by first computing the gradients
of Ji[w(j)] and Jo[w(j)] with respect to w(s), then
forming the bigradient algorithm, and finally the
approximative version of it. This procedure yields
for the instantaneous gradient of Ja[w(j)]:

vi(i) = 22l

= —wi(§)[1 — wi () Wi (5)]
+ D [wi(8) Wi ()] wi () (15)
i#j
and for the final approximative bigradient algorithm
of jth neuron:

Wit1(7) = wi(f) + arglye()]xk — wvie(s) . (16)

The criteria J;, Jo, and the algorithm (16) can
be written compactly in matrix form to cover all the
neurons simultaneously as follows:

Ji(W) = Z E{f[xTw(j)]} = E{1Tf(y)}
= E{|h(y)II*} (17)
To(W) = %tr(l — WTW) (18)

and

Wit = Wi + axxkg(yr) + % Wi (I - W Wy).
(19)

In Eq. (17), 1 = [1,..., 1]T is the m-dimensional
vector that has ones as its elements, and [h(t))2 =
f(t). The vectors f(y) and h(y) are defined simi-
larly as g(y). If the learning parameter oy is pos-
itive in Eq. (19), corresponding to the maximiza-
tion of Eq. (17) under the orthonormality constraints
Eq. (18), the columns of W), span the robust coun-
terpart of the PCA subspace after convergence. If ay,
is negative, Eq. (19) converges to an orthonormal ba-
sis of the robust counterpart of the MCA subspace.
In both cases 4 > 0, ensuring that the criterion (18)
is simultaneously minimized. In the linear special
case g(t) = t, the algorithm (19) can in principle at
least converge to any orthonormal basis of the PCA
or MCA subspace. Thus the final weight matrix W
is not unique, but the projection operator ww7?
defined by it is unique.

We note here that in the MCA case the algorithm
(19) can be derived in a straightforward manner by
minimizing the (suitably weighted) sum of the crite-
ria J;(W) and J,(W). However, this ‘penalty func-
tion method of optimization is not directly applicable
to the PCA case, because then the criterion J; (W) is
maximized whereas the other criterion Jo(W) should
be minimized.

3.2. The hierarchic case

If one needs the principal or minor eigenvectors
themselves or more generally their robust counter-
parts, the criterion Jp[w(j)] must be modified so
that the weight vectors of different neurons are or-
thonormalized against each other in sequential or-
der. Such a hierarchic Gram-Schmidt type procedure
could naturally be defined for any ordering (permu-
tation) of the weight vectors, but is usually done in
the standard order of growing indices. Then Eq. (14)
is replaced by the criterion (5 =1,..., m):

N PR o = R
Rlw(i)) = 511 = wGTWG)E + 5 3w TP
=1

(20)

which leads in a similar way as before to the learning
algorithm:

Wit = Wi + axxee(yi)
+7 W, x upper[I - Wi W]. (21)

Here the upper[A] operator sets all the elements of
its matrix argument that are below the diagonal to

-
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zero, thereby making the matrix A upper triangu-
lar. The constraint set (Eq. (20)) could again be ex-
pressed in matrix form, but in the hierarchic case it
is better to define the constraints separately for each
neuron, because this uniquely fixes the structure of
the network and the learning algorithm.

The hierarchic bigradient algorithm (21) resem-
bles somewhat the robust generalization!®'!:

Wi = Wi + axxig(yi)
—ax Wy, x upperlyxg(yi)]  (22)

of the well-known Generalized Hebbian Algorithm
(GHA).?* These algorithms differ in the way of re-
alizing the orthonormality constraints. The robust
GHA algorithm (22) is derived in Refs. 10 and 11
using the Lagrange multiplier approach.

3.3. Choice of the nonlinearity

We now discuss more closely some possible choices
of the criterion function f(t) and its derivative g(t),
which is sometimes called the learning function.2
The algorithms are presented in the hierarchic case;
the respective subspace versions are obtained simply
by dropping the upper operator out.

An important special case is learning of standard
eigenvectors, which corresponds to the quadratic cri-
terion function f(t) = ¢2/2 and to the linear learning
function g(t) = t. In the PCA case, the bigradient al-
gorithm (21) becomes then the normalized Hebbian
learning rule:

Wiy = Wi + aeXeyi
+7x Wy x upper[I - WIW,]  (23)

while in the MCA case, Eq. (21) yields the normal-
ized anti-Hebbian learning rule:

Wig1 = Wi — aiXeyi
+7 W, x upper[I - Wi Wi].  (24)

In both cases, the learning parameter oy, is assumed
to be positive.

Another interesting special case arises from the
mean absolute value criterion f(t) = |¢|, which yields
the following algorithm in the PCA case:

Wit = Wi + axxp sign(yi )
+v, Wy, x upper[l — WIw]. (25)

Because the hard-limiting learning function g(t) =
sign(t) is not linear, the algorithm (25) does gener-
ally not estimate the principal eigenvectors c(1),.. .,
c(m) exactly for ax > 0 or the minor eigenvectors
c(n),..., c(n —m+1) for ay < 0. However, simula-
tions in Sec. 4 show that the nonlinear algorithm
(25) often approximates well PCA or MCA, and
extracts the approximative PCA or MCA basis
vectors faster than its linear counterparts. Sirat?®
proposed an algorithm called SOP (Self-Organized
Perceptron) which is otherwise similar but does not
contain the normalizing term.

The sigmoidal learning function g(t) = tanh(St)
is often used in neural algorithms. Here 8 is a
suitable scaling constant matched to the properties
of the input data. It is a sensible choice in our
robust PCA or MCA algorithms, too, since the
corresponding criterion function f(t) = Incosh(t)
behaves roughly quadratically for small values of |£|
and roughly linearly for large values of |t|.° Thus
this choice tries to optimize a kind of combination of
the standard mean-square and mean absolute value
criteria. Some other possible criterion and learning
functions are discussed in Refs. 4 and 20.

3.4. Asymptotic analysis

Exact mathematical analysis of the introduced bigra-
dient algorithms is very difficult if g(¢)-is a nonlin-
ear function. Their properties can be understood to
some extent by considering the optimization criteria
from which the algorithms have been derived. This
is a great advantage of optimization approaches over
such algorithms that have been suggested using some
heuristic reasoning only. However, if learning is lin-
ear, i.e. g(t) = t, the asymptotic convergence points
can again be analyzed in terms of the respective av-
eraged differential equation in a similar manner as in
the single neuron case.

The continuous time averaged differential equa-
tion corresponding to the bigradient PCA algorithm
(23) and MCA algorithm (24) now becomes:

22X = £CZ(t) + PZ(t) x upper(I — ZT(£)Z(2)].

dZ(t)
dt

(26)

Here the n x m matrix Z(¢) is the continuous time

counterpart of the weight matrix Wy. The positive

sign in Eq. (26) corresponds to the PCA case, while
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the negative sign is associated with the MCA case.
The column vectors z;(t), i+ = 1,..., m, of Z(t)
correspond to the weight vectors wy(z) of the m
neurons.

In Appendix A, we prove the following result on
the convergence points of the differential equation
(26).

Theorem 2

In Eq. (26), assume that the sign is chosen positive
(respectively negative), and the m largest eigenval-
ues A(1),..., A(m) of the data covariance matrix C
(resp. the m smallest eigenvalues A(n),..., A(n—m+
1)) are positive and distinct from each other and the
remaining eigenvalues. Assume that the initial vec-
tors z;(0), i = 1,..., m, are not orthogonal to the
corresponding normalized principal eigenvectors c(z)
(resp. the minor eigenvectors ¢(n—i+1)) of C. Then
the column z,(t) of the matrix Z(¢) in Eq. (26) will
tend to the ¢th normalized principal eigenvector c(%)
or —c(i) provided that 8 — oo when ¢ — oo (re-
spectively to the ¢th normalized minor eigenvector
c(n—i+1)or —c(n—1i+1)).

Theorem 2 can be commented similarly as the
Theorem 1 before. In particular, the results are
verified experimentally in the first example of the
next section.

4. Simulations

In this section, we first present some simulation
eéxamples on the proposed algorithms, and then the
conclusions on all the experiments.

Exzample 1

The inputs were 10-dimensional uniformly distrib-
uted random vectors, whose components were sta-
tistically independent of each other after subtrac-
tion of the non-zero mean. The variances of the
components were different so that the first compo-
nent of the input vector had the largest variance,
the second component the second largest, and so
on. Then the eigenvectors of the covariance matrix
of the input data are 10-dimensional unit vectors
c(1) = (1000000000)T, c(2) = (0100000000)7, etc.
The corresponding eigenvalues were 84.08, 64.32,
33.09, 17.20, 8.335, 5.619, 2.491, 0.9156, 0.3342, and

0.0784, respectively. This kind of simple example can
be used for testing the bigradient algorithm, because
it operates in a completely unsupervised manner,
and does not know anything about the distribution
of the input data in advance.

The net had 3 parallel units (neurons) which were
taught using either the learning algorithm (23) or
(24), respectively. The parameter «; had a constant
value 0.5, and «y decreased linearly from 0.01 to
0.00001 with the number of iteration steps k. Thus
asymptotically the ratio Oy = 7i/|ax| tended to a
constant limit. The resulting 3 weight vectors are
listed in Table 1 for the bigradient PCA algorithm
(23) and in Table 2 for the bigradient MCA algo-
rithm (24). These simulations showed that the true
eigenvectors are asymptotically stable in the sense
that the bigradient algorithm converges to them from
any initial values that are not too far from the correct
eigenvectors. When the oy sequence is positive and
the bigradient algorithm (23) is used, the columns of
the weight matrix W converge to the first vV PCA
eigenvectors as in Table 1. With negative ay se-
quence, the columns converge to the first N MCA
eigenvectors (see Table 2). The tables also show that
in the MCA case, the estimates are clearly more ac-
curate, obviously because the bigradient approxima-
tion is more accurate in this case.

Table 1. Weight matrix W =[w; waws]
given by the bigradient algorithm in es-
timating the PCA eigenvectors.

w
0.9792 0.1689 —0.0837
—0.1806 0.9712 —0.0281
—0.0630 —0.0009 -0.9608
—0.0613 —0.1625 —0.2447
0.0186 0.0146 0.0862
0.0097 —0.0366 0.0086
0.0089 0.0055 0.0205
—0.0125 —0.0083 0.0051
0.0058 0.0086 0.0356
0.0063 0.0065 0.0036
wTw
1.0000 0.0001 0.0007
0.0001 1.0000 0.0005
0.0007 0.0005 1.0000
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Table 2. Weight matrix W=[wjwaw3]
given by the bigradient algorithm in
estimating the MCA eigenvectors.

w

0.0064 —0.0009 —0.0209
-0.0021 —0.0226 —0.0231
—0.0025 —0.0159 0.0006

0.0070 —0.0173 0.0326

0.0005 0.0029 0.0310
—0.0059 —0.0204 —0.0204

0.0030 0.0125 0.0205

0.0038 0.0471 0.9969

0.0422 0.9976 —0.0481
0.9991 —0.0426 —0.0022

WwWTw

1.0001 —0.0001 —0.0001
—0.0001 1.0009 —0.0002
—0.0001 —0.0002 1.0000

Ezxample 2

Another experiment was carried out for com-
paring the performance of the one-unit bigradient
algorithm (10), when the learning function was
chosen linear: g(yx) = yk, or alternatively nonlin-
ear: g(y,) = sign{yx). Figure 1 shows that with
the hard-limiting nonlinearity sign(yx), the bigradi-

60 , r ; .

ANGLE

0 500 1000 1500 2000 2500 3000
ITERATIONS

Fig. 1. The angle between the weight vector and the
correct minor eigenvector for the linear and hard-limiting
learning functions in the bigradient MCA algorithm (10).

ent algorithm quickly converges to the direction of
the minor component with some bias. Generally,
the bigradient algorithm (10) does not converge ex-
actly to the minor component direction with a hard-
limiting nonlinearity, but provides a good, robust
approximation.

Figure 2 shows the convergence of the norm of the
weight vector w towards unit length. In this case,
using either linear [Fig. 2(a)] or nonlinear [Fig. 2(b)]
learning function has only a little if any effect on the
speed of the convergence.
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Fig. 2. Convergence of the norm of the weight vec-
tor to unit length for the linear (a) and hard-limiting
(b) learning functions.
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original source signals
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Fig. 3. A segment of the three voice signals in Example 3.

Ezxzample 3

Here, we present an example of blind separation of
speech sources. The underlying theory is discussed
in our conference papers!?!3; therefore, we mention
the most important points only here.

The standard linear data model in blind source
separation is as follows:

M

xp = Asp =Y sp(i)a(i). (27)

=1

Here s(i) denotes the ith source signal at.time
k, and s, = [sk(1),..., sk(M)]T is the respective
source vector. In this example, the M = 3 source
signals consisted of a male voice, a female voice,
and music. Figure 3 shows a segment of each of
them. Furthermore, x; denotes the kth data vec-
tor; the dimension of x; must be at least M. In
our example, the 3 components of x; are shown in
Fig. 4. Generally, they are some unknown linear mix-
tures of the unknown sources. In the model (27),
A =[a(1),..., a(M)] denotes the fixed but unknown
mixing matrix. In our example, the elements of the
3 X 3 matrix A were uniformly distributed random

numbers on the interval (—1, 1). When listening to
the input data sequence xix, k = 1, 2,..., one can
hear that two speakers and music are interfering with
each other.

In blind separation, the original source signals are
estimated using the data vectors x, only in a com-
pletely unsupervised manner. This becomes possible
if we make the strong assumption that the sources
sk(i) are non-Gaussian and mutually independent
(or as independent as possible). For our voice data,
this holds at least approximately. The separation
procedure consisted of the following steps:

1. Whiten the original data vectors:
Vi = kak . (28)

The covariance matrix E{vyv}} of the whit-
ened vectors v, must be M-dimensional unit
matrix. Whitening can be done in many ways,
for example using standard PCA. A simple
neural algorithm for learning the whitening
matrix Vy is:

Vk+1 = Vk — U [vkvf - I]Vk ) (29)
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2. Learn an orthogonal separating matrix W7 by
applying the bigradient algorithm (19) to the
whitened vectors vy:

W1 =Witarvig(yi Wi (I-W{ W)
(30)

Here
Vi = W{Vk (31)

is the output vector of the source separation
network, consisting of whitening and separa-
tion layers.}213 If the nonlinearity g(t) is cho-
sen suitably, the components of the output
vector yj, are estimates of the original sources

Sk(’i).

In this example, the network was trained using
the algorithms (29) and (30). The learning function
was g(t) = tanh(¢). In Eq. (30), the parameters were
constants o = —0.01 and v = 0.9. After training
with about 1000 samples, the separation result was
already acceptable. The final result was obtained by

using all the data once in learning. The total number
of samples was 573 300, corresponding to 52 seconds
of speech. Figure 5 shows the separated outputs for
the same data segment as in Figs. 3 and 4. A com-
parison with Fig. 3 reveals that the original sources
have been separated almost perfectly; residual inter-
ferences were inaudible.

The last example clearly shows the usefulness of
nonlinearities in PCA type networks. They intro-
duce at least implicitly higher-order statistics into
the computations, which is necessary for successful
separation. Standard PCA is usually not able to sep-
arate the source signals; typically, the results after
PCA processing are still some linear combinations
of the sources. Whitening is essential in achieving
good separation results with various robust or non-
linear PCA type algorithms'2!3; without it, the al-
gorithms are able to somehow separate sinusoidal
signals only. It seems that whitening is an impor-
tant preprocessing step also in other applications of
nonlinear PCA such as clustering?® or exploratory

observed mixed signals
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Fig. 4. The respective segment of the input data in Example 3.
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separated signals by the two-layer network
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Fig. 5. The separated outputs given by the bigradient algorithm in Example 3.

projection pursuit.” Without it, the nonlinearities
still respond largely to the second-order statistics,
and the results are often fairly similar to those given
by standard PCA.

In the following, we summarize the main results
of our experiments on the bigradient algorithm.

1. If the sign(z) function is applied in the PCA
case, then the upper operator must be used for
estimating the correct PCA eigenvectors.

2. If the sign(z) function is applied in the MCA
case, the nonlinear bigradient algorithm (19)
converges to the desired results without the
upper operator. However, the order of the
columns of the weight matrix may be arbitrary
(not necessarily increasing with respect to the
“eigenvalue”).

3. The new algorithms (19) and (21) are stable
in both MCA and PCA cases. This is an ad-
vantage in a possible VLSI implementation.
The same chip can perform both PCA and

MCA type analysis just by reversing the sign
of the learning parameter a.

If the nonlinearity g(t) grows less than linearly
(19(¢)| < |t] for large values of |t| at least), the
resulting bigradient algorithms are typically
more robust against outliers and long-tailed
noise distributions, and have better stability
properties than their linear counterparts.
Compared to some other neural PCA learn-
ing rules, the new bigradient algorithm does
not have any requirements with respect to the
magnitude of the eigenvalues. This means
that it is flexible and converges relatively fast
to the other than the first principal eigenvec-
tor, too. The well-known GHA algorithm?*
converges slowly in extracting many principal
eigenvectors.

With prewhitening, the nonlinear versions of
the bigradient algorithm can be used for sepa-
rating either sub-Gaussian or super-Gaussian
source signals by choosing the nonlinearity
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g(t) and the sign of the learning parameter
oy, suitably. See Refs. 12 and 13 for details.
7. The disadvantage of the proposed bigradient
algorithm is that in the case of several units
(neurons), it may lack a local implementation.

5. Conclusions

It is well known that Principal Component Analysis
(PCA) is an important tool in data analysis, having
many applications in signal processing and pattern
recognition. In some applications, Minor Component
Analysis (MCA) is more useful: it can be used in
system identification, spectrum estimation, optimal
fitting, and texture analysis.

In this paper, we have introduced a new bigra-
dient algorithm as a unified solution for both the
PCA and MCA problems. A nonlinear generaliza-
tion of this algorithm can successfully separate un-
known independent sources from their linear mix-
tures, and a suitably chosen nonlinearity makes the
bigradient algorithm more robust against outliers
and long-tailed noise in the data. The algorithms
introduced here are typical learning rules for the
adaptive PCA or MCA problems, and they are espe-
cially suitable for neural network implementations.
Mathematical analysis shows that in the linear case
the bigradient algorithm (23) converges to the PCA
eigenvectors and Eq. (24) to the MCA eigenvectors,
depending on whether the Hebbian or anti-Hebbian
term is used. Computer simulations showed that the
new algorithms have some advantages over previous
ones.

Finally, we would like to point out the generality
of the optimization approach used in deriving the
bigradient algorithm. It can be applied in principle
at least to the simultaneous optimization of any two
suitably chosen criteria. The great advantage of
the bigradient approach is that it generally makes
the resulting algorithms simpler than those derived
by taking the constraints into account via, e.g. the
Lagrange multiplier approach.
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Appendix A

Based on the results of Kushner and Clark,!® it is
explained in Refs. 18 and 19 how the asymptotic
limits of discrete stochastic learning rules can be
solved by analyzing the corresponding continuous
time differential equations. Formally the term x;x7
occurring in the discrete algorithms is replaced in
the differential equations by the average C, where
it is assumed that the input vectors x; have zero
mean. Applying this procedure to the one-unit
bigradient algorithm (10) with the linear learning
function g(t) = t yields the averaged differential
equation (12). It is reproduced here for clarity:
((i—; =-Cz+ (1 -2"2)z. (32)
We prove this MCA case only in the following.
The proof is quite similar in the PCA case.

Proof of Theorem 1

Multiplying Eq. (32) by any eigenvector c(i)T, ¢ =

1,...,n, of C from the left yields:

& le(i)"a] == N)e(i) 2+ 8012 2)e(i) 2. (33)
According to Theorem 1, assume that c(n)7z(0) #
0. Because the solution for ¢(n)Tz is unique and
c(n)Tz = 0 is a possible solution, it follows that
c(n)Tz(t) will remain nonzero and has the same sign
for all t. It is then possible to define the ratios:

c(i)Tz

in:——c(n)Tz, 1=1,...,n.

Differentiating 6;, with respect to ¢ and taking
into account Eq. (33) yields:

dain
dt

= [=A(2) + A(n)]bin (34)

which implies that 6, — 0 for all ¢ < n because
A(n) < A(#). Thus asymptotically z lies in the
direction of the minor eigenvector c¢(n) of C. Denote
z = ((n)c(n). It follows that ((n) = c(n)Tz, and
Eq. (33) yields:

d(n) _
dt
The fixed points of this scalar differential equa-

tion are 0 and £+/1 — A(n)/B. Because 8 and A(n)

[-A(n) +B(1 = ¢(M))¢(n).  (35)
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are assumed to be positive in Theorem 1, the point 0
is unstable and the points +4/1 — A(n)/3 are asymp-
totically stable. Assuming that 1/8 — 0, the final
limit of {(n) in Eq. (35) is either +1 or —1 depending
on the sign of ¢(n)Tz(0). This shows the convergence
of z to the unit minor eigenvector c(n) or —c(n) of
the covariance matrix C of the input data.

Proof of Theorem 2

Again, we prove the MCA case only here. The PCA
case can be proved similarly. '

The differential equation (26) takes for each col-
umn vector z;(t) the form:

daz; =
d_t] = —Cz; + B(1 - 2] 2;)z; — B8 Z(z?zf)z"
=1 (36)
j = 1, cee, M.

Here the time index ¢ is omitted from z for con-
venience. Multiplying Eq. (36) by any eigenvector
cT(k), k=1,..., n, from the left yields:

1otk 23] = ~A(®)e(k)2; + B(1 - 2T 2;)e(R) "%
7—1

=8 ) _(a7'z;)e(k) ;. (37)

=1

For z; this gives:
%[c(k)Tzl] = A(K)c(k)Tz:
+8(1 - z;rzl)c(k)Tzl . (38)

But this is exactly the Eq. (33). According to
the Theorem 1, the vector z; will converge to the
unit minor eigenvector ¢(n) or —c(n) of the data
covariance matrix C assuming that 8 — oo when
t — oo.

To show the convergence of zy,..., Z,, we use
induction. Assume that 2y, ..., z;_; have converged
toc(n—1),..., c(n—j+2), respectively. We need to
show that z; will then converge to ¢(n—j+1). Now
the differential equation (37) can be replaced by:

L 1ek)Tz;] = ~A(R)e(k)2;
+B(1 - 252;)c(k)"z; + 5(j) (39)

where the sum:

j-1
s(j)=-p Z c(n—i+1)Tzck)Tc(n—i+1).

=1

For simplicity, denote the index n — 7 + 1 by L
For the sum term s(j) it holds: if & > I, then
s(j) = —Bc(k)Tz;, and if k < 1, s(j) is zero.
Again, it is assumed that c(I)Tz;(0) # 0, imply-
ing that c(!)Tz;(t) # O for all ¢, and the ratios
6k = c(k)Tz;/c(l)Tz; can be defined. Equation (39)
gives:

% =[=Ak) + A1) = B0kt k> 1; (40)

d_gf_' = [-AE) + ADu, k<. (41)

On the assumptions of the Theorem 2, 3 — oc as
t — 00, which implies that

“Ak)+ ()-8 <0.

It follows that all the other ratios 8y, than 6; will
tend to zero. The convergence is exponential, and
the speed of convergence for 0y, k > [ depends on the
ratio 8 and on the difference of the two eigenvalues
M) — Mk) according to Eq. (40).

To show that the norm of z; tends to one, one can
apply exactly the same proof as in the Theorem 1.
The required condition is that 8 — oo, or 1/8 — 0.
This completes the induction step and the proof. We
have thus shown that the jth column z;(t) of the
matrix Z(t) in the averaged differential equation (26)
converges to the unit eigenvector ¢(n — j + 1) or
—c(n — j + 1) of the data covariance matrix C.
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