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Inference in continuous-time stochastic dynamical models is a challenging problem. To com-
plement existing sampling-based methods [2], variational methods have recently been developed
for this problem [1].

Our approach, which was first introduced in [3], solves the variational continuous-time infer-
ence problem by discretisation that essentially reduces it to a discrete-time problem previously
considered in [8]. While this approach is not as elegant as that of [1], our framework makes learn-
ing the model in addition to inference easy. Other extensions such as heteroscedastic models are
also relatively easy to consider within this framework.

The discrete-time model in [8] is based on using multi-layer perceptron (MLP) networks
to model the nonlinearities. While it may be difficult to use them to specify complex prior
information, their functional form seems quite reasonable in many computational biology appli-
cations [6], for instance.

The discrete-time state-space model studied in [8] assumes that the observations x(t) are
generated by

s(t + 1) = s(t) + gdt(s(t),θg) + m(t) (1)

x(t) = f(s(t),θf ) + n(t) (2)

with states s(t), Gaussian innovation m and noise n, and MLP networks to model the nonlin-
earities f and gdt. Inference and learning in the model can be made more reliable and efficient
than in [8] by using new linearisation [5] and state inference techniques [4].

The general formulation of the state evolution in a continuous-time nonlinear state-space
model is given by a stochastic differential equation (SDE)

ds = g(s)dt +
√

ΣdW, (3)

where dW is the differential of a Wiener process [7]. The model by Valpola and Karhunen can
be turned into a continuous-time nonlinear state-space model by using Eq. (3) to model state
evolution instead of Eq. (1). The nonlinear mapping g is again modelled by a MLP network.
The observation equation Eq. (2) remains unchanged.

We use variational Bayes (VB) to approximate the otherwise intractable posterior appearing
in the problem. In particular, we find a Gaussian approximation q of all the parameters and
the states at observation times, similar to that in [8], by optimising the VB free energy using
conjugate gradient.

The continuous-time NSSM is demonstrated with a data set generated by a Lorenz process.
A Lorenz process has a three-dimensional state-space with non-linear chaotic dynamics. The
data set was generated by drawing 1000 samples uniformly at random time instants between
0 and 50 (Figure 1, left panel). Additive Gaussian observation noise was added (Figure 1,
middle panel). To make learning more challenging and to demonstrate the benefits of the latent
state-space, only two components of the observations were used in this experiment. A three
dimensional state-space was used to learn this data set. The MLPs for both the observation and



the dynamical mapping had 10 hidden units. In the right panel of Figure 1, we show 〈f(s(t),θf )〉
after 1050 iterations (which took approximately one day). Given that the observations are rather
noisy, the method has been able to learn the underlying process quite well.
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Figure 1: Left: The original data set without noise. Middle: The noisy data set used in the
experiment. Right: The reconstruction of the data set by the model.

We have considered several variations to the basic setup as well. In particular, we intend
to incorporate heteroscedastic priors to the model. In the discrete-time case we already have
some initial results with a model where the variance of the observation noise is conditioned
on the states. Some of the states can thus be associated with the dynamics of the variance
which is a reasonable assumption in certain applications such as financial time series. Putting a
heteroscedastic prior on the innovation process is another interesting variation of the basic model.
Bringing these extensions from discrete-time to continuos-time should not pose tremendous
difficulties and we hope to implement these in the future.
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