
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Bidirectional Recurrent Neural Networks as
Generative Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bidirectional recurrent neural networks (RNN) are trained to predict both in the
positive and negative time directions simultaneously. They have not been used
commonly in unsupervised tasks, because a probabilistic interpretation of the
model has been difficult. Recently, two different frameworks, GSN and NADE,
provide a connection between reconstruction and probabilistic modeling, which
makes the interpretation possible. As far as we know, neither GSN or NADE
have been studied in the context of time series before. As an example of an un-
supervised task, we study the problem of filling in gaps in high-dimensional time
series with complex dynamics. Although unidirectional RNNs have recently been
trained successfully to model such time series, inference in the negative time di-
rection is non-trivial. We propose two probabilistic interpretations of bidirectional
RNNs that can be used to reconstruct missing gaps efficiently. Our experiments on
text data show that both proposed methods are much more accurate than unidirec-
tional reconstructions, although a bit less accurate than a computationally complex
bidirectional Bayesian inference on the unidirectional RNN. We also provide re-
sults on music data for which the Bayesian inference is computationally infeasible,
demonstrating the scalability of the proposed methods.

1 Introduction

Recurrent neural networks (RNN) have recently been trained successfully for time series modeling,
and have been used to achieve state-of-the-art results in supervised tasks including handwriting
recognition (Graves et al., 2009) and speech recognition (Graves et al., 2013). RNNs have also
been used successfully in unsupervised learning of time series (Sutskever et al., 2011; Boulanger-
Lewandowski et al., 2012).

Recently, RNNs have also been used to generate sequential data (Bahdanau et al., 2015) in a machine
translation context, which further emphasizes the unsupervised setting. Bahdanau et al. (2015)
used a bidirectional RNN to encode a phrase into a vector, but settled for a unidirectional RNN to
decode it into a translated phrase, perhaps because bidirectional RNNs have not been studied much
as generative models. Even more recently, Maas et al. (2014) used a deep bidirectional RNN in
speech recognition, generating text as output.

Missing value reconstruction is interesting in at least three different senses. Firstly, it can be used
to cope with data that really has missing values. Secondly, reconstruction performance of artifi-
cially missing values can be used as a measure of performance in unsupervised learning (Raiko and
Valpola, 2001). Thirdly, reconstruction of artificially missing values can be used as a training crite-
rion (Brakel et al., 2013; Goodfellow et al., 2013; Uria et al., 2014). While traditional RNN training
criterion corresponds to one-step prediction, training to reconstruct longer gaps can push the model
towards concentrating on longer-term predictions. Note that one-step prediction criterion is typically

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Structure of the simple RNN (left) and the bidirectional RNN (right).

used even in approaches that otherwise concentrate on modelling long-term dependencies (see e.g.
Mikolov et al., 2014; Koutnı́k et al., 2014).

When using unidirectional RNNs as generative models, it is straightforward to draw samples from
the model in sequential order. However, inference is not trivial in smoothing tasks, where we want
to evaluate probabilities for missing values in the middle of a time series. For binary data, inference
with gap sizes of one is feasible - however, inference with larger gap sizes becomes exponentially
more expensive. Even sampling can be exponentially expensive with respect to the gap size.

One strategy used for training models that are used for filling in gaps is to explicitly train the model
with missing data (see e.g. Brakel et al., 2013). However, such a criterion has not to our knowledge
yet been used and thoroughly evaluated compared with other inference strategies for RNNs.

In this paper, we compare different methods of using RNNs to infer missing values for binary
time series data. We evaluate the performance of two generative models that rely on bidirectional
RNNs, and compare them to inference using a unidirectional RNN. The proposed methods are very
favourable in terms of scalability.

2 Recurrent Neural Networks

Recurrent neural networks (Rumelhart et al., 1986; Haykin, 2009) can be seen as extensions of the
standard feedforward multilayer perceptron networks, where the inputs and outputs are sequences
instead of individual observations.

Let us denote the input to a recurrent neural network by X = {xt} where xt ∈ RN is an input
vector for each time step t. Let us further denote the output as Y = {yt} where yt ∈ RM is an
output vector for each time step t. Our goal is to model the distribution P (Y|X). Although RNNs
map input sequences to output sequences, we can use them in an unsupervised manner by letting the
RNN predict the next input. We can do so by setting Y = {yt = xt+1}.

2.1 Unidirectional Recurrent Neural Networks

The structure of a basic RNN with one hidden layer is illustrated in Figure 1, where the output yt is
determined by

P
�
yt | {xd}td=1

�
= φ (Wyht + by) (1)

where
ht = tanh (Whht−1 +Wxxt + bh) (2)

and Wy, Wh, and Wx are the weight matrices connecting the hidden to output layer, hidden to
hidden layer, and input to hidden layer, respectively. by and bh are the output and hidden layer
bias vectors, respectively. Typical options for the final nonlinearity φ are the softmax function
for classification or categorical prediction tasks, or independent Bernoulli variables with sigmoid
functions for other binary prediction tasks. In this form, the RNN therefore evaluates the output yt

based on information propagated through the hidden layer that directly or indirectly depends on the
observations {xd}td=1 = {x1, . . . ,xt}.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2.2 Bidirectional Recurrent Neural Networks

Bidirectional RNNs (BRNN) (Schuster and Paliwal, 1997; Baldi et al., 1999) extend the unidirec-
tional RNN by introducing a second hidden layer, where the hidden to hidden connections flow in
opposite temporal order. The model is therefore able to exploit information both from the past and
the future.

The output yt is traditionally determined by
P (yt | {xd}d�=t) = φ

�
Wf

yh
f
t +Wb

yh
b
t + by

�
,

but we propose the use of
P (yt | {xd}d�=t) = φ

�
Wf

yh
f
t−1 +Wb

yh
b
t+1 + by

�
(3)

where
hf
t = tanh

�
Wf

hh
f
t−1 +Wf

xxt + bf
h

�
(4)

hb
t = tanh

�
Wb

hh
b
t+1 +Wb

xxt + bb
h

�
. (5)

The structure of the BRNN is illustrated in Figure 1 (right). Compared with the regular RNN,
the forward and backward directions have separate non-tied weights and hidden activations, and are
denoted by the superscript f and b for forward and backward, respectively. Note that the connections
are acyclic. Note also that in the proposed formulation, yt does not get information from xt. We
can therefore use the model in an unsupervised manner to predict one time step given all other time
steps in the input sequence simply by setting Y = X.

3 Probabilistic Interpretation for Unsupervised Modelling

Probabilistic unsupervised modeling for sequences using a unidirectional RNN is straightforward,
as the joint distribution for the whole sequence is simply the product of the individual predictions:

Punidirectional(X) =

T�

t=1

P (xt | {xd}t−1
d=1). (6)

For the BRNN, the situation is more complicated. The network gives predictions for individual
outputs given all the others, and the joint distribution cannot be written as their product. We propose
two solutions for this, denoted by GSN and NADE.

GSN Generative Stochastic Networks (GSN) (Bengio et al., 2013) use a denoising auto-encoder
to estimate the data distribution as the asymptotic distribution of the Markov chain that alternates
between corruption and denoising. The resulting distribution is thus defined only implicitly, and
cannot be written analytically. We can define a corruption function that masks xt as missing, and a
denoising function that reconstructs it from the others. It turns out that one feedforward pass of the
BRNN does exactly that.

Our first probabilistic interpretation is thus that the joint distribution defined by a BRNN is the
asymptotic distribution of a process that replaces one observation vector xt at a time in X by sam-
pling it from PBRNN(xt | {xd}d�=t). In practice, we will start from a random initialization and use
Gibbs sampling.

NADE The Neural Autoregressive Distribution Estimator (NADE) (Uria et al., 2014) defines a prob-
abilistic model by reconstructing missing components of a vector one at a time in a random order,
starting from a fully unobserved vector. Each reconstruction is given by an auto-encoder network
that takes as input the observations so far and an auxiliary mask vector that indicates which values
are missing.

We extend the same idea for time series. Firstly, we concatenate an auxiliary binary element to
input vectors to indicate a missing input. The joint distribution of the time series is defined by first
drawing a random permutation od of time indices 1 . . . T and then setting data points observed one
by one in that order, starting from a fully missing sequence:

PNADE(X | od) =
T�

d=1

P (xod | {xoe}d−1
e=1). (7)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In practice, the BRNN will be trained with some inputs marked as missing, while all the outputs are
observed. See Section 5.1 for more training details.

4 Filling in gaps with Recurrent Neural Networks

The task we aim to solve is to fill in gaps of multiple consecutive data points in high-dimensional
binary time series data. The inference is not trivial for two reasons: firstly, we reconstruct multiple
values in a row, which are likely to depend on each other, and secondly, we fill in data in the middle
of a time series and hence need to consider the data both before and after the gap.

For filling in gaps with the GSN approach, we first train a bidirectional RNN to estimate PBRNN(xt |
{xd}d�=t). In order to achieve that, we use the structure presented in Section 2.2. At test time,
the gap is first initialized to random values, after which the missing values are sampled from the
distribution PBRNN(xt | {xd}d�=t) one by one in a random order repeatedly to approximate the
stationary distribution. For the RNN structures used in this paper, the computational complexity of
this approach at test time is O((dc+ c2)(T + gM)) where d is the dimensionality of a data point, c
is the number of hidden units in the RNN, T is the number of time steps in the data, g is the length
of the gap and M is the number of Markov chain Monte Carlo (MCMC) steps used for inference.

For filling in gaps with the NADE approach, we first train a bidirectional RNN where some of the
inputs are set to a separate missing value token. At test time, all data points in the gap are first
initialized with this token, after which each missing data point is reconstructed once until the whole
gap is filled. Computationally, the main difference to GSN is that we do not have to sample each
reconstructed data point multiple times, but the reconstruction is done in as many steps as there
are missing data points in the gap. For the RNN structures used in this paper, the computational
complexity of this approach at test time is O((dc + c2)(T + g)) where d is the dimensionality of a
data point, c is the number of hidden units in the RNN, g is the length of the gap and T is the number
of time steps in the data.

In addition to the two proposed methods, one can use a unidirectional RNN to solve the same task.
We call this method Bayesian MCMC. Using a unidirectional RNN for the task of filling in gaps is
not trivial, as we need to take into account the probabilities of the values after the gap, which the
model does not explicitly do. We therefore resort to a similar approach as the GSN approach, where
we replace the PBRNN(xt | {xd}d�=t) with a unidirectional equivalent for the Gibbs sampling. As
the unidirectional RNN models conditional probabilities of the form PRNN(xt | {xd}t−1

d=1), we can
use Bayes’ theorem to derive:

PRNN (xt = a | {xd}d�=t) (8)

∝ PRNN

�
xt = a | {xd}t−1

d=1

�
PRNN

�
{xe}Te=t+1 | xt = a, {xd}t−1

d=1

�
(9)

=
T�

τ=t

PRNN(xτ | {xd}τ−1
d=1)

���
xt=a

(10)

where PRNN(xτ | {xd}τ−1
d=1) is directly the output of the unidirectional RNN given an input se-

quence X, where one time step t, i.e. the one we Gibbs sample, is replaced by a proposal a. The
problem is that we have to go through all possible proposals a separately to evaluate the probability
P (xt = a|{xd}d�=t). We therefore have to evaluate the product of the outputs of the unidirectional
RNN for time steps t . . . T for each possible a.

In some cases this is feasible to evaluate. For categorical data, e.g. text, there are as many possible
values for a as there are dimensions1. However, for other binary data the number of possibilities
grows exponentially, and is clearly not feasible to evaluate. For the RNN structures used in this
paper, the computational complexity of this approach at test time is O((dc+ c2)(T +aTM)) where
a is the number of different values a data point can have, d is the dimensionality of a data point,
c is the number of hidden units in the RNN, T is the number of time steps in the data, and M is
the number of MCMC steps used for inference. The critical difference in complexity to the GSN

1For character-based text, the number of dimensions is the number of characters in the model alphabet.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

approach is the coefficient a, that for categorical data takes the value d, for binary vectors 2d and for
continuous data is infinite.

As a simple baseline model, we also evaluate the one-gram log-likelihood of the gaps. The one-gram
model assumes a constant context-independent categorical distribution for the categorical task, or a
vector of factorial binomial probabilities for the structured prediction task:

Pone−gram (yt) = f (by) .

This can be done in O(dg).

We also compare to one-way inference, where the data points in the gap are reconstructed in order
without taking the future context into account, using Equations (1) and (2) directly. The computa-
tional complexity is O((dc+ c2)T ).

5 Experiments

We run two sets of experiments: one for a categorical prediction task, and one for a binary structured
prediction task. In the categorical prediction task we fill in gaps of five characters in Wikipedia text,
while in the structural prediction task we fill in gaps of five time steps in different polyphonic music
data sets.

5.1 Training details for categorical prediction task

For the categorical prediction task, we test the performance of the two proposed methods, GSN and
NADE. In addition, we compare the performance to MCMC using Bayesian inference and one-way
inference with a unidirectional RNN. We therefore have to train three different RNNs, one for each
method.

Each RNN is trained as a predictor network, where the character at each step is predicted based
on all the previous characters (in the case of the RNN) or all the previous and following characters
(in the case of the BRNNs). We use the same data set as Sutskever et al. (2011), which consists
of 2GB of English text from Wikipedia. For training, we follow a similar strategy as Hermans and
Schrauwen (2013). The characters are encoded as one-hot binary vectors with a dimensionality of
d = 96 characters and the output is modelled with a softmax distribution. We train the unirectional
RNN with string lengths of T = 250 characters, where the error is propagated only from the last 200
outputs. In the BRNN we use string length of T = 300 characters, where the error is propagated
from the middle 200 outputs. We therefore avoid propagating the gradient from predictions that lack
long temporal context.

For the BRNN used in the NADE method, we add one dimension to the one-hot input which cor-
responds to a missing value token. During training, in each minibatch we mark g = 5 consecutive
characters every 25 time steps as a gap. During training, the error is propagated only from these
gaps. For each gap, we uniformly draw a value from 1 to 5, and set that many characters in the gap
to the missing value token. The model is therefore trained to predict the output in different stages of
inference, where a number of the inputs are still marked as missing.

For all the models, the weight elements are drawn from the uniform distribution: wi,j ∼ U [−s, s]
where s = 1 for the input to hidden layer, and following Glorot and Bengio (2010), where
s =

�
6/ (din + dout) for the hidden-to-hidden and the hidden-to output layers. The biases are

initialized to zero.

We use c = 1000 hidden units in the unidirectional RNN and c = 684 hidden units in the two hidden
layers in the BRNNs. The number of parameters in the two model types is therefore roughly the
same. In the recurrent layers, we set the recurrent activation connected to the first time step to zero.

The networks are trained using stochastic gradient descent and the gradient is calculated using back-
propagation through time. We use a minibatch size of 40, i.e. each minibatch consists of 40 ran-
domly sampled sequences of length 250. As the gradients tend to occasionally ”blow up” when
training RNNs (Bengio et al., 1994; Pascanu et al., 2013), we normalize the gradients at each up-
date to have length one. The step size is set to 0.25 for all layers in the beginning of training, and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

it is linearly decayed to zero during training. As training the model is very time-consuming2, we
do not optimize the hyperparameters, or repeat runs to get confidence intervals around the evaluated
performances.

5.2 Training Details for the Binary Structured Prediction Task

In the other set of experiments, we use four polyphonic music data sets (Boulanger-Lewandowski
et al., 2012). The data sets consist of at least 7 hours of polyphonic music each, where each data
point is a binary d = 88-dimensional vector that represents one time step of MIDI-encoded music,
indicating which of the 88 keys of a piano are pressed. We test the performance of the two proposed
methods, but omit training the unidirectional RNNs as the computational complexity of the Bayesian
MCMC is prohibitive (a = 288).

We train all models for 10000 updates in minibatches of ≈ 3000 individual data points3. As the
data sets are small, we select the initial learning rate on a grid of {0.0001, 0.0003, . . . , 0.3, 1} based
on the lowest validation set cost. We use no ”burn-in” as several of the scores are fairly short, and
therefore do not specifically mask out values in the beginning or end of the data set as we did for the
text data.

For the NADE method, we use an additional dimension as a missing value token in the data. For the
missing values, we set the missing value token to one and the other dimensions to zero.

Other training details are similar to the categorical prediction task.

5.3 Evaluation of Models

At test time, we evaluate the models by calculating the mean log-likelihood of the correct value of
gaps of five consecutive missing values in test data.

In the GSN and Bayesian MCMC approaches, we first set the five values in the gap to a random value
for the categorical prediction task, or to zero for the structured prediction task. We then sample all
five values in the gap in random order, and repeat the procedure for M = 100 MCMC steps4. For
evaluating the log-likelihood of the correct value for the string, we force the last five steps to sample
the correct value, and store the probability of the model sampling those values. We also evaluate
the probability of reconstructing correctly the individual data points by not forcing the last five time
steps to sample the correct value, but by storing the probability of reconstructing the correct value
for each data point separately. We run the MCMC chain 100 times and use the log of the mean of
the likelihoods of predicting the correct value over these 100 runs.

When evaluating the performance of one-directional inference, we use a similar approach to MCMC.
However, when evaluating the log-likelihood of the entire gap, we only construct it once in sequen-
tial order, and record the probabilities of reconstructing the correct value. When evaluating the prob-
ability of reconstructing the correct value for each data point separately, we use the same approach
as for MCMC and sample the gap 100 times, recording for each step the probability of sampling the
correct value. The result for each data point is the log of the mean of the likelihoods over these 100
runs.

On the Wikipedia data, we evaluate the GSN and NADE methods on 50 000 gaps on the test data.
On the music data, all models are evaluated on all possible gaps of g = 5 on the test data, excluding
gaps that intersect with the first and last 10 time steps of a score. When evaluating the Bayesian
MCMC with the unidirectional RNN, we have to significantly limit the size of the data set, as the
method is highly computationally complex. We therefore run it on 1 000 gaps on the test data.

For NADE, we set the five time steps in the gap to the missing value token. We then reconstruct
them one by one to the correct value, and record the probability of the correct reconstruction. We
repeat this process for all possible permutations of the order in which to do the reconstruction, and
therefore acquire the exact probability of the correct reconstruction given the model and the data.

2We used about 8 weeks of GPU time for the reported results.
3A minibatch can therefore consist of e.g. 100 musical scores, each of length T = 30.
4M = 100 MCMC steps means that each value in the gap of g = 5 will be resampled M/g = 20 times

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Negative Log Likelihood (NLL) for gaps of five time steps using different models (lower is
better). In the experiments, GSN outperforms NADE.
Inference strategy Wikipedia Nottingham Piano Muse JSB

GSN 4.60 17.7 39.0 36.4 43.4
NADE 4.86 19.9 40.5 36.9 45.0
Bayesian MCMC 4.41 NA NA NA NA
One-way inference 5.79 NA NA NA NA

One-gram 23.3 145 138 147 118

Position in gap
1 2 3 4 5

D
at

a 
po

in
t N

LL

1

1.5

2

2.5

3
GSN
NADE
Bayesian MCMC
One-way inference

Position in gap
1 2 3 4 5

D
at

a 
po

in
t N

LL

8

8.5

9

9.5

10

GSN
NADE

Figure 2: Average NLL per data point using different methods with the Wikipedia dataset (left)
and the Piano dataset (right) for different positions in a gap of 5 consecutive missing values. The
middle data point is the most difficult to estimate for the most methods, while the one-way inference
cannot take future context into account making prediction of later positions difficult. For the left-
most position in the gap, the one-way inference performs the best since it does not require any
approximations such as MCMC.

We also evaluate the individual character reconstruction probabilities by recording the probability
of sampling the correct value given all other values in the gap are set to missing.

5.4 Results

From Table 1 we can see that the results follow the same order as the computational complexity
of the methods. The Bayesian MCMC method seems to yield the best results, followed by GSN
and NADE. Qualitative examples of the reconstructions obtained with the GSN and NADE on the
Wikipedia data are shown in Table 3 (supplementary material).

In order to get an indication of how the number of MCMC steps in the GSN approach affects
performance, we plotted the difference in NLL of GSN and NADE of the test set as a function
of the number of MCMC steps in Figure 3 (supplementary material). The figure indicates that the
music data sets mix fairly well, as the performance of GSN quickly saturates. However, for the
Wikipedia data, the performance could probably be even further improved by letting the MCMC
chain run for more than M = 100 steps.

In Figure 2 we have evaluated the NLL for the individual characters in the gaps of length five. As
expected, all methods except for one-way inference are better at predicting characters close to both
edges of the gap.

As a sanity check, we make sure our models have been successfully trained by evaluating the mean
test log-likelihood of the BRNNs for gap sizes of one. In Table 2 (supplementary material) we can
see that the BRNNs expectedly outperform previously published results with unidirectional RNNs,
which indicates that the models have been trained successfully.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

6 Conclusion and Discussion

Although recurrent neural networks have been used as generative models for time series data, it has
not been trivial how to use them for inference in cases such as missing gaps in the sequential data.

In this paper, we proposed to use bidirectional RNNs as generative models for time series, with
two probabilistic interpretations called GSN and NADE. Both provide efficient inference in both
positive and negative directions in time, and both can be used in tasks where Bayesian inference of a
unidirectional RNN is computationally infeasible. GSN reconstructions are a bit more accurate and
computationally heavier than NADE reconstructions.

The model we trained for NADE differed from the basic BRNN in several ways: Firstly, we artifi-
cially marked gaps of 5 consecutive points as missing, which should help in specializing the model
for such reconstruction tasks. It would be interesting to study the effect of the missingness pattern
used in training, on the learned representations and predictions. Secondly, we used as training signal
only the reconstructions of those missing values, rather than all outputs. This reduces the effec-
tive amount of training that the model went through. Thirdly, the model had one more input (the
missingness indicator) that makes the learning task more difficult. We can see from Table 2 that
the model we trained for NADE has a worse performance than the BRNN for reconstructing single
values. This indicates that these differences in training have a significant impact on the quality of the
final trained probabilistic model. This might explain the performance difference in the experiments
between the two approaches.

We used the same number of parameters when training an RNN and a BRNN. The RNN can concen-
trate all the learning effort on forward prediction, and re-use the learned dependencies in backward
inference by the computationally heavy Bayesian inference. It remains an open question which
approach would work best given an optimal size of the hidden layers.

As future work, other model structures could be explored in this context, for instance the Long
Short-Term Memory (Hochreiter and Schmidhuber, 1997). Specifically to our NADE approach, it
might make sense to replace the regular additive connection from the missingness indicator input to
the hidden activations in Eq. (4,5), by a multiplicative connection that somehow gates the dynamics
mappings Wf

h and Wb
h. Another direction to extend is to use a deep architecture with more hidden

layers.

The midi music data is an example of a structured prediction task: Components of the output vector
depend strongly on each other. However, our model assumes independent Bernoulli distributions for
them. One way to take those dependencies into account is to use stochastic hidden units hf

t and hb
t ,

which has been shown to improve performance on structured prediction tasks (Raiko et al., 2015).

The proposed methods could be easily extended to continuous-valued data. As an example appli-
cation, time-series reconstructions with a recurrent model has been shown to be effective in speech
recognition especially under impulsive noise (Remes et al., 2011).

References
Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to

align and translate. In Proceedings of the International Conference on Learning Representations
(ICLR 2015).

Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G. (1999). Exploiting the past and the
future in protein secondary structure prediction. Bioinformatics, 15(11), 937–946.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013). Generalized denoising auto-encoders as
generative models. In Advances in Neural Information Processing Systems, pages 899–907.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and transcription.
In Proceedings of the 29th International Conference on Machine Learning (ICML 2012), pages
1159–1166.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Brakel, P., Stroobandt, D., and Schrauwen, B. (2013). Training energy-based models for time-series
imputation. The Journal of Machine Learning Research, 14(1), 2771–2797.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In International conference on artificial intelligence and statistics, pages 249–256.

Goodfellow, I., Mirza, M., Courville, A., and Bengio, Y. (2013). Multi-prediction deep boltzmann
machines. In Advances in Neural Information Processing Systems, pages 548–556.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and Schmidhuber, J. (2009). A
novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(5), 855–868.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural
networks. arXiv preprint arXiv:1303.5778.

Haykin, S. (2009). Neural networks and learning machines, volume 3. Pearson Education.
Hermans, M. and Schrauwen, B. (2013). Training and analysing deep recurrent neural networks.

In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 190–198. Curran Associates, Inc.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735–1780.

Koutnı́k, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork RNN. In Proceedings
of the 31 st International Conference on Machine Learning.

Maas, A. L., Hannun, A. Y., Jurafsky, D., and Ng, A. Y. (2014). First-pass large vocabulary contin-
uous speech recognition using bi-directional recurrent dnns. arXiv preprint arXiv:1408.2873.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. (2014). Learning longer memory
in recurrent neural networks. arXiv preprint arXiv:1412.7753.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on Machine Learning (ICML
2013), pages 1310–1318.

Raiko, T. and Valpola, H. (2001). Missing values in nonlinear factor analysis. In Proc. of the 8th
Int. Conf. on Neural Information Processing (ICONIP01),(Shanghai), pages 822–827.

Raiko, T., Berglund, M., Alain, G., and Dinh, L. (2015). Techniques for learning binary stochastic
feedforward neural networks. In International Conference on Learning Representations (ICLR
2015), San Diego.

Remes, U., Palomäki, K., Raiko, T., Honkela, A., and Kurimo, M. (2011). Missing-feature recon-
struction with a bounded nonlinear state-space model. IEEE Signal Processing Letters, 18(10),
563–566.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11), 2673–2681.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pages
1017–1024.

Uria, B., Murray, I., and Larochelle, H. (2014). A deep and tractable density estimator. In Proceed-
ings of The 31st International Conference on Machine Learning, pages 467–475.

9


