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In standard blind source separation, one tries to extract unknown source signals from their instantaneous
linear mixtures by using a minimum of e priori information. We have recently shown that certain
nonlinear extensions of principal component type neural algorithms can be successfully applied to this
problem. In this paper, we show that a nonlinear PCA criterion can be minimized using least-squares
approaches, leading to computationally efficient and fast converging algorithms. Several versions of this
approach are developed and studied, some of which can be regarded as neural learning algorithms. A
connection to the nonlinear PCA subspace rule is also shown. Experimental results are given, showing
that the least-squares methods usually converge clearly faster than stochastic gradient algorithms in blind

separation problems.

1. Introduction

In recent years, blind signal processing has become
an important application and research domain of
both unsupervised neural learning and statistical sig-
nal processing. In the basic blind source separa-
tion (BSS) problem, the goal is to separate mu-
tually statistically independent but otherwise un-
known source signals from their instantaneous linear
mixtures without knowing the mixing coefficients.
BSS techniques have applications in a wide variety
of problems for example in communications, speech
processing, array processing, and medical signal pro-
cessing. References and a brief description of some
applications of neural BSS techniques to signal and
image processing can be found in Refs. 1, 2.

Blind source separation is based on the strong

but often plausible requirement that the separated
sources must be statistically independent (or as in-
dependent as possible). Because direct verification
of the independence condition is very difficult, some
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suitable higher-order statistics are in practice used
for achieving separation. In neural BSS methods,
higher-order statistics are incorj)orated into process-
ing implicitly by using suitable nonlinearities in the
learning algorithms. Different neural approaches to
BSS and to the closely related Independent Com-
ponent Analysis (ICA)>* are reviewed in Refs. 2,
5. It has turned out that fairly simple neural
algorithms*®~!2 are able to learn a satisfactory sep-
arating solution in many instances.

In particular, we have recently shown that several
nonlinear PCA (Principal Component Analysis) type
neural algorithms can successfully separate a number
of sources on certain conditions. Blind separation
using stochastic gradient type neural learning algo-
rithms based on nonlinear PCA approaches is dis-
cussed in detail in Ref. 10. This work is based on our
earlier extensions of standard neural principal com-
ponent analysis into various forms containing some
simple nonlinearities.’>'4 The idea of extending
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neural PCA learning rules so that some nonlinear
processing is involved was more or less independently
proposed by Sanger,'® Oja,'® and Xu.!?

However, neural and adaptive algorithms pro-
posed thus far for blind source separation are typ-
ically stochastic gradient algorithms which apply a
coarse instantaneous estimate of the gradient. Such
algorithms are fairly simple, but they require careful
choice of the learning parameters for providing ac-
ceptable performance. If the learning parameter is
too small, convergence can be intolerably slow; on
the other hand the algorithm may become unstable
if the learning parameter is chosen too large.

In this paper, we introduce efficient recursive
least-squares (RLS) type algorithms for the blind
source separation problem. These algorithms min-
imize in a different way the same nonlinear PCA
criterion which we have used previously as a basis
of separation.!® The proposed basic algorithms use
relatively simple operations, and they can still be
realized using nonlinear PCA networks. The main
advantage of these algorithms is that the learning pa-
rameter is determined automatically from the input
data so that it becomes roughly optimal. This usu-
ally leads to a significantly faster convergence com-
pared with the corresponding stochastic gradient al-
gorithms where the learning parameter must be cho-
sen using some ad hoc rule.

Recursive least-squares methods have a long his-
tory in statistics, adaptive signal processing, and
control; see Refs. 18, 19. For example in adap-
tive signal processing, it is well-known that RLS
methods converge much faster than the standard
stochastic gradient based least-mean square (LMS)
algorithm at the expense of somewhat greater com-
putational cost.!® Similar properties hold for the
RLS algorithms presented in this paper.

Our basic RLS algorithms are obtained by mod-
ifying approximate RLS algorithms proposed by
Yang?? for the standard linear PCA problem. A fun-
damental difference between Yang's algorithms and
ours is that the former ones do not contain any non-
linearitiesy and hence utilize second-order statistics
only. Therefore, they cannot be directly applied to
blind source separation. Apart from Yang’s work,
some other authors (for example Refs. 21, 22) have
applied different RLS approaches to the standard lin-
ear PCA problem.

The contents of the rest of the paper is as follows:
In the next section the necessary background on the
blind source separation problem and associated neu-
ral network models is briefly presented. Then the
nonlinear PCA criterion is shown to be a contrast
function with a suitable choice of nonlinearity. Con-
nections between the nonlinear PCA subspace crite-
rion and the Bussgang criterion as well as the EASI
algorithm are discussed. After this, we introduce
the basic recursive least-squares algorithms and some
variants of them. After presentation of selected ex-
perimental results, the paper ends with conclusions
and some remarks.

2. Neural Blind Source Separation
2.1. The blind separation problem

The blind source separation problem has the fol-
lowing basic form. Assume that there exist m
zero-mean source signals s1(t),..., s,m(¢) that are
scalar-valued and mutually statistically independent
at each time instant or index value ¢. The original
sources s;(t) are unknown, and we observe n possibly
noisy but different linear mixtures z;(2),..., z,(t)
of the sources. The constant mixing coefficients are
also unknown. In blind source separation, the task
is to find the waveforms {s;(¢)} of the sources, using
only the mixtures z;(t). Some examples of source
signals are speech signals (cocktail party problem),
EEG signals, and digital images.

Denote by x(t) = [z1(t),..., za(t)]T the n-
dimensional data vector made up of the mixtures at
discrete time (or point) ¢. The BSS signal model can
then be written in the matrix form

x(t) = As(t) + n(t). (1)

Here s(t) = [s1(t),..., sm(t)]T is the source vector,
and A is-a constant full-rank n x m mixing ma-
trix whose elements are the unknown coefficients of
the mixtures. The additive noise term n(¢) is often
omitted from (1), because it is usually impossible to
separate noise from the sources without some prior
knowledge on noise.

The number of available different mixtures n
must be at least as large as the number of sources
m. Usually m is assumed to be known, and the num-
ber of sources is the same as the number of mixtures

(m = n). Furthermore, each source signal s;(t) is
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assumed to be a stationary zero-mean stochastic pro-
cess. Only one of the sources is allowed to have a
Gaussian distribution. In practice, it is often possible
to separate the sources approximately even though
they are not strictly mutually independent.4
Essentially the same data model (1) is used in
Independent Component Analysis. Assumptions on
the model are described in more detail in Refs. 3, 10,
23. It is possible to extend the basic data model
(1) into various directions for example to include
time delays etc. Some possibilities and references are
listed in Ref. 5. In particular, various methods for
handling cases where the number of mixtures is dif-
ferent (usually greater) than that of sources are dis-
cussed in Ref. 24, and suppression of noise in Ref. 25.

2.2. Neural network model

In neural and adaptive BSS, an m x n separating
matrix B(t) is updated so that the m-vector

y(t) = B{)x(?) (2)

becomes an estimate y(t) = §(¢) of the original inde-
pendent source signals. In neural realizations, y(t)
is the output vector of the network, and the matrix
B(t) is the total weight matrix between the input
and output layers. Only the waveforms of the source
signals can be recovered, since the estimate 3;(t) of
the ith source signal may appear in any component
y;(t) of y(t). The amplitudes and signs of the esti-
mates y;(t) may also be arbitrary due to the inherent
inderminacies of the BSS problem.?® The estimated
sources are typically scaled to have a unit variance.
In several BSS algorithms, the data vectors x(t)
are preprocessed by whitening them through a lin-
ear transform V so that the covariance matrix
E{x(t)x(t)T} becomes the unit matrix I,. Whiten-
ing can be done in many ways, for example using
standard PCA or simple adaptive neural algorithms;
see Ref. 10. After prewhitening, the separation task
becomes somewhat easier, because the components
of the whitened vectors x(t) are already uncorre-
lated which is,a necessary prerequisite of indepen-
dence. Also the subsequent m xm separating matrix,
denoted here by WT(t), can be taken orthogonal:
WT (t)W(t) = I,. The total separating matrix be-
tween input and output layers is B(t) = WT()V(¢).
These considerations lead to a two-layer network
structure with weight matrices V and W7, Feed-

back connections are needed in the learning phase
between the neurons in each layer. In the standard
stationary case, the whitening and separating matri-
ces converge to some constant values during learning,
and the network becomes purely feedforward after
learning. However, the same model can be used in
the general nonstationary situation by keeping these
matrices time-varying. The ensuing network struc-
ture is discussed in more detail in Ref. 10.

Roughly speaking, the currently existing neural
blind separation algorithms can be divided into two
main groups: the methods in the first group try to
find the total separating matrix B(t) directly, while
the methods of the second group use prewhiten-
ing. Whitening has some advantages mentioned be-
fore but also has disadvantages; especially if some
of the source signals are very weak or the mixture
matrix is ill-conditioned, prewhitening may greatly
lower the accuracy of separation. In the following,
we will use the notation x(t) for both whitened and
non-whitened mixture vectors, explicitly mentioning
when whitening is required.

A simple criterion for separating prewhitened
sources having the same known sign of kurtosis is
the sum of kurtoses of the outputs of the network or
the separating system.2” Our approaches are related
to this criterion, because it provides simple but yet
sufficiently efficient neural algorithms. The kurtosis
of the ith output y;(¢) is defined as

kalya()) = B{ms(9)*} - 3E{m(®*}*. ()

Due to the prewhitening, E{y:(t)?} = 1, and it suf-
fices to consider the sum of the fourth moments of
the outputs. This criterion is minimized for sub-
Gaussian sources (for which the kurtosis is negative),
and maximized for super-Gaussian sources (having a
positive kurtosis value). For Gaussian sources, the
kurtosis is zero. The theory of separation is pre-
sented in more detail in Refs. 5, 10, 27.

3. The Nonlinear PCA Criterion
3.1. The basic criterion

Standard principal component analysis (PCA) is a
well-defined and fairly unique technique, but it uti-
lizes second-order statistics of the data only. There
exist many neural learning algorithms for perform-
ing standard PCA.?829 However, the PCA problem
can be solved efficiently using numerical eigenvector
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algorithms, so that neural gradient based algorithms
are often not competitive in practical applications.

If the standard PCA problem is extended so
that some nonlinearities are involved, the situa-
tion changes considerably. The nonlinearities intro-
duce at least implicitly some higher-order statistics
into computations. This is often desirable for non-
Gaussian data, which may contain a lot of useful
information in their higher-order statistics. Further-
more, neural approaches become more competitive
from the computational point of view because there
usually does not exist any simple algebraic solution
to the nonlinear problem. These issues are discussed
in more detail in Refs. 13 and 14, where several sim-
ple approaches to nonlinear PCA are introduced by
generalizing optimization problems leading to stan-
dard PCA. Generally, nonlinear PCA is a non-unique
concept. There exist many possible nonlinear exten-
sions of PCA which often lead to somewhat different
solutions. In addition to Refs. 13 and 14, various
neural approaches to nonlinear PCA are discussed
and introduced in, for example, Refs. 16, 17, 30-33.

In this paper, we concentrate on a specific form
of nonlinear PCA which has been turned out to be
especially useful in blind source separation. This is
obtained by minimizing the nonlinear PCA subspace
criterion!?+13

J1(W) = E{|lx — Wg(WTx)|*} (4)

with respect to the m x m weight matrix W. Here
g(y) denotes the vector which is obtained by apply-
ing a nonlinear function g(t) componentwise to the
vector y. In the nonlinear PCA criterion (4), g(t) is
usually some odd function such as g(t) = tanh(t) or
g(t) = t3. The criterion (4) was first proposed in a
more general context by Xu in Ref. 17.

Denoting the ith column of the matrix W by w;,
the criterion (4) can be written in the form

m

J(W) =E{llx =Y gwix)w’}.  (5)

=1

This shows that the sum which tries to approximate
the data vector x is linear with respect to the weight
vectors w;, the nonlinearity ¢(t) appearing only in
the coefficients g(w? x) of the expansion. This simple
form of nonlinear PCA is not the best possible if the
goal is to approximate the data vector x for example
in data compression or representation, but the co-

effictents introduce higher-order statistics which are
needed in blind separation.

The criterion (4) can be approximately min-
imized using the stochastic pgradient descent
algorithm

AW = ufx - Wg(WTx)lg<"W)  (6)

This nonlinear PCA subspace rule has been inde-
pendently derived in Refs. 17 and 13. In (6), g is
a positive learning parameter, and we have omitted
the time index t from all the quantities for simplicity.

The algorithm (6) was first proposed by Oja
et al. in Ref. 16 on heuristic grounds. For more de-
tails and related algorithms, see Refs. 16, 17, 13, 14.

3.2. Application to blind source separation

In applying the criterion (4) and the algorithm (6) to
the blind separation problem, it is essential that the
data vectors x(t) are first preprocessed by whiten-
ing them. Thus the nonlinear PCA learning rule is
applied to BSS problems in the form

AW = p[x — Wg(y)lgyT) (7)

where y = WTx. Later on we have justified in
several papers summarized in Refs. 10 that for the
prewhitened mixture vectors x(t), WT(t) becomes
an orthogonal m X m separating matrix provided that
all the source signals are of the same type, namely
either sub-Gaussian or super-Gaussian. In practice,
this condition can be mildened somewhat so that one
of the sources can be of different type if its kurtosis
has the smallest absolute value.23:10

In order to achieve separation, it suffices that the
nonlinearity g(t) is of right type.36:1% More precisely,
for sub-Gaussian sources g(t) should grow less than
linearly. Later, it is seen that this condition is closely
connected with a general nonlinearity determined by
the source signal density functions. We have used
in our earlier experiments the sigmoidal nonlinear-
ity ¢g(t) = tanh(¢) with good results. The robustness
of the blind separation problem against choosing a

non-optimal nonlinearity is discussed in Refs. 36 and
26.

The nonlinear PCA rule (7) can be applied also
for super-Gaussian sources using Fahlman type acti-
vation functions.3® Alternatively, one could use the
cubic nonlinearity g(t) = t3. However, this kind of




Least-Squares Methods for Blind Source Separation Based on Nonlinear PCA 605

fast growing nonlinearity often requires extra mea-
sures (some kind of normalization) for keeping the
algorithm stable.

The separation properties of the algorithm (7)
have been analyzed rigorously in simple cases in
Ref. 37. Recently it has been shown® that the crite-
rion function (4) is approximately related to a sepa-
rating contrast function derived in Ref. 3 Below, we
show an exact correspondence using a specific non-
linearity. The orthogonality of the separating matrix
W (WTW = WWT = I, where I is the unit ma-
trix) allows us to analyze the criterion (4) in more
detail for prewhitened data vectors x. In this case,
one can express the criterion (4) in the form

JI(W) = E{[lx - Weg(WTx)||*}
= E{|WTx - WTWg(WTx)|%}

= E{lly - eI’}
= ZE{[yi - g(¥:))*}- (8)

If we now define an odd quadratic function illus-
trated in Fig. 1 as

v+y, y=0
-y +y, y<o,

9(y) = { )

the criterion (8) becomes
J(W) =3 E{lyi —wi v’} = ) E{y{} (10)
i=1 i=1

The statistic J;(W) = >, E{y/} has been rigor-

following assumptions: all the sources have the same
known sign of kurtosis, and the data have been
prewhitened. Therefore, each of the global min-
ima (there are several) of J; corresponds exactly to
the separating solutions. Experimentally it has been
found that local optimization of J; usually provides
the separated sources.

The simple form (8) makes it easier to un-
derstand the effect of any nonlinearity to separa-
tion, and allows a comparison to known contrast
functions.? Consider for example the sigmoidal non-
linearity g(t) = tanh(t) which has been used widely
in neural separation algorithms. Inserting the Taylor
series expansion tanh(t) = t—¢3/3+2t°/15— ... into
(8), one can easily see that in this case the criterion
J1(W) actually depends on sixth order (and higher)
statistics.

3.3. Relationships to other approaches

3.3.1. Blind equalization using
Bussgang approaches

The form E{|ly — g(y)||?} is similar to the Bussgang
blind equalization cost,'®39 in which the nonlinearity
is chosen to be
—E{|z[*}pe(=
(@) = el e=(E), )
pz(x)

where p. is the probability density function of .
Since the mixtures are whitened, the expectation
E{|z|?} = 1, and for p.(z) = 1/ cosh(z) we get

_ sinh(z) cosh(x)

g(z) = tanh(z). (12)

ously shown to be a contrast in Ref. 27 under the cosh?(zx)
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Fig. 1. Left: The odd quadratic function g. Right: The derivative of g.
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This means that (4) with g(z) = tanh(z) is a Buss-
gang blind equalization cost for sources with a den-
sity proportional to p-(x) = 1/ cosh(z). This corre-
sponds to a signal with a positive kurtosis. However,
in the nonlinear PCA learning rule the nonlinearity
g(z) = tanh(z) makes it possible to separate sig-
nals with negative kurtosis. Conversely, nonlineari-
ties corresponding to signals with negative kurtosis
according to (11) can be used to separate signals with
positive kurtosis using nonlinear PCA learning rule.
The reasons for this are discussed in Ref. 40. Al-
though in the Bussgang blind equalization cost it is
assumed that the density p, is known, it has been
shown that it is not necessary to exactly match the
nonlinearity with the source density.3¢

Based on Lambert’s work,3? we have also shown
in Ref. 40 that the minimization of the cost E{|y —
g(¥)II?} can be interpreted as finding an extremal
point of the sum of negentropies

J= Z E{log py.(vi)/ log pc(yi)}

Here p,, is the probability density function of the
ith output signal y; and pg is the density of the
Gaussian distribution with the same variance as y;.
Thus minimization of the nonlinear PCA criterion for
prewhitened data is also closely related to a mean-
ingful information-theoretic criterion, since the sum
of negentropies measures the non-Gaussianity of the
outputs.

3.3.2. The EASI algorithm

A well-known stochastic gradient algorithm for blind
separation without prewhitening is the EASI algo-
rithm introduced by Cardoso and Laheld in Ref. 23.
The general update formula for the separating ma-
trix B is in EASI

AB = p[I-yy" — g(y)y” +ye(y")]B. (13)

In Ref. 40 we have derived a closely related al-
gorithm from the nonlinear PCA rule (7) as follows.
For the total separating matrix B = WTV, the up-
date rule is in general

AB = i [AWTV + WTAV]. (14)

Using the nonlinear PCA learning rule for AW and
the simple whitening algorithm

AV = [I - xxT|v (15)

and constraining W to be orthogonal, the follow-
ing algorithm is obtained for the total separating
matrix B:

AB = I - yyT + g(y)yT —e(»)g(yT)|B (16)

A comparison with the EASI algorithm (13) shows
that the derived algorithm (16) differs only slightly
from it (the sign of the nonlinear part g(y)y7 —
g(y)e(yT) is not important). In Ref. 23, the EASI
algorithm is derived by making rather heavy but sen-
sible approximations.

4. Least-Squares Algorithms for the
Nonlinear PCA Criterion

4.1. Symmetric recursive algorithm

Our basic recursive least-squares algorithms are
closely related to Yang’s recent work,2® in which he
has derived a RLS algorithm called PAST for adap-
tive tracking of signal subspaces. A signal subspace
models the “signal” part in the data, and it is es-
sentially the same as a PCA subspace of suitable
dimension. Signal subspaces are used especially in
linear eigenvector methods of array processing and
sinusoidal frequency estimation.

Yang derives his PAST algorithm from the cost
function

Jo(W) = E{flx - WWTx|?}. (17)

This criterion differs from the nonlinear PCA crite-
rion (4) in that the nonlinear function g(t) is lacking
from it. Therefore, the criterion (17) does nottake
into account any higher-order statistics in the data
even implicitly.

The cost function (17) has been considered in
several earlier papers dealing with PCA neural
networks,34:13:14.28,17.35 1t ¢ well.known that the
minimum of (17) is provided by any orthogonal ma-
trix W whose columns span the PCA subspace de-
fined by the principal eigenvectors of the data covari-
ance matrix E{xx”} (for zero mean data). Some of
these results have been rederived in Ref. 41 together
with a convergence analysis of the PAST algorithms.

In this paper we extend Yang’s PAST algorithm
so that it can be used for minimizing the nonlin-
ear cost function (4), and apply the resulting modi-
fied algorithm to blind source separation. Our modi-
fied symmetric (or subspace type) nonlinear PAST
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algorithm adapted for the BSS problem reads as
follows:

z(t) = g(WT(t - 1)x(t)) = &(y(?)),
h(t) =Pt - 1)z(t),
m(t) = h(t)/(8 + 27 ($)h(2)),

1
B
e(t) = x(t) - W(t — 1)z(t),
W(t) = W(t - 1) +e(t)mT(2).

(18)

P(t) = =Txi[P(t — 1) — m(t)hT(¢)],

The constant 0 < 8 < 1 is a forgetting term which
should be close to unity. The notation Tri means
that only the upper triangular part of the argument
is computed and its transpose is copied to the lower
triangular part, making thus the matrix P(¢) sym-
metric. The simplest way to choose the initial values
is to set both W(0) and P(0) to mn x m unit matrices.
According to the theory, the data vectors x(t) must
be prewhitened prior to using them in the algorithm
(18).

The symmetric algorithm (18) can be regarded
either as a neural network learning algorithm or an
adaptive signal processing algorithm. It does not re-
quire any matrix inversions, because the most com-
plicated operation is division by a scalar. In par-
ticular, the sequential version discussed in the next
subsection becomes relatively simple when written
out for each weight vector.

The algorithm (18) and its modified versions can
be derived using the following principles.?:!® Be-

cause the expectation in (4) is unknown, it is first

replaced by the sum over the last samples, leading to
the respective least-squares criterion. Then we ap-
proximate the unknown vector g(W7 (¢)x(t)) by the
vector z(t) = g(W7T(t — 1)x(¢)). This vector can be
easily computed because the estimated weight ma-
trix W7 (t — 1) from the previous iteration step ¢ — 1
is already known. The approximation error is usu-
ally rather small after initial convergence, because
the update term AW(¢) then becomes small com-
pared to weight matrix W(t). These considerations
yield the modified least-squares type criterion

12

J3(W(t) =D B7FIIx(@) - W(B=z@)*.  (19)

=1

If the forgetting factor 8 = 1, all the samples are
given the same weight, and no forgetting of old data

takes place. Choosing 8 < 1 is useful especially in
tracking nonstationary changes in the sources. The
cost function (19) is now of the standard form used
in recursive least-squares methods. Any of the avail-
able algorithms’® can be used for solving the weight
matrix W (t) iteratively. We have in this paper used
the efficient algorithm (18).

4.2. Sequential recursive algorithm

The algorithm (18) updates the whole weight matrix
‘W(t) simultaneously, treating all the weight vectors
or the columns wy(t),..., wn(t) of the matrix W (t)
in a symmetric way. Alternatively, we can compute
the weight vectors w;(t) in a sequential manner us-
ing a deflation technique. The resulting algorithm
has the following form:

x1(t) = x(t);
For each i = 1,..., m compute
zi(t) = g(w] (t - 1)xi(t)),
di(t) = Bdi(t — 1) + [z:(8)]?, (20)

e,-(t) = Xi(t) - Wi(t - 1)zi(t) ,
wi(t) = wi(t — 1) + e;(t)[2:(t)/d:(t)]
x,-+1(t) = Xi(t) — w,-(t)z,-(t) .

Here again the data vectors x{t) must be
prewhitened, and d;(t) provides an individual learn-
ing parameter 1/d;(t) for each weight vector w;(t)
from a simple recursion formula.

Let us now compare the algorithms (18) and (20)
to the nonlinear PCA subspace learning rule (7).
Consider for ease of comparison the single neuron
case m = 1. Both the symmetric and sequential ver-
sions then reduce to the algorithm

1

wi(t) =w(t-1)+ m[x(t) —w(t—1)z(t)]2(t) (21)

where z(t) = g(w”(t — 1)x(t)) = g(y(t)), and
d(t) = pd(t — 1) + [2(1)]* . (22)

The algorithm (21) is exactly the same as the non-
linear PCA learning rule (7) except for the scalar
learning parameter. In (21), the learning parameter
1/d(t) is determined automatically from the proper-
ties of the data using the recursion (22) so that it
becomes roughly optimal due to the minimization of
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the least-squares criterion (19). On the other hand,
in (7) the learning parameter u(t) is usually a con-
stant which is chosen in a somewhat ad hoc man-
ner or by tuning it to the average properties of the
data. It is just this nearly optimal choice of the
learning parameter that yields the algorithms (18)
and (20) their superior convergence properties com-
pared to standard stochastic gradient type learning
algorithms such as (7).

The original PAST algorithms2® which estimate
either the PCA subspace or the PCA eigenvectors
themselves have a similar relationship to the well-
known Oja’s one-unit rule,*2 which is the seminal
neural algorithm for learning the first PCA eigen-
vector. However, they cannot be applied to the BSS
problem because no higher-order statistics or nonlin-
earities are used.

4.3. Batch Versions
4.3.1.  Symmetric batch algorithm

The previous considerations and the form of the
cost function (4) suggest straightforward batch al
gorithms for optimizing the matrix W. These algo-
rithms are no longer neural because they are non-
adaptive and use all the data vectors during each
iteration cycle. However, they are derived by itera-
tively minimizing the same nonlinear PCA criterion
as before.

If it is assumed for the moment that the matrix
W in the term g(W7x) is a constant, (4) can be re-
garded as the least-squares error for the linear model

X=Wg(W'X) +e=WG +e, (23)

where e is the modeling error or noise term, the
matrix

G = [g(WTx(1)),..., g(WTx(N))] (24)
is a constant, and the data matrix X is defined by
X = [x(1),..., x(N)]. (25)

Now a new value for the weight matrix W can be
computed by minimizing the least-squares error lle]|?
for the linearized model (23). This is equivalent to
finding the best approximate solution to the linear
matrix equation

X =WG (26)

in the least-squares error sense. It is well-know (see
for example Ref. 43, p. 54) that the optimal solu-
tion to this problem is W = XG*, where G+ is the
pseudoinverse of G. Now G actually depends on W,
but we can anyway determine W using the following
iterative symmetric algorithm:

1. Choose an initial value for W.
2. Compute G using the current value of W.
3. Update the weight matrix W:

W =XGT(GGT)"! = xGg+ (27)

4. Continue iteration from step 2 until
convergence

The basic idea is to treat the weight matrix in
the argument of g as a constant, and then optimize
with respect to the weight matrix W outside g using
the standard linear least-squares method. After suffi-
cient number of iterations, W should converge close
to a local minimum of (4). Recall that these local

minima yield a separating matrix W for prewhitened
mixture vectors v.

4.3.2.  Sequential batch algorithm

It is possible to find the weight matrix W one column
at a time by minimizing the cost function

Js = E[llx - wg(wTx)|?], (28)

where w is a weight vector. A minimizing solution W
gives one of the separated sources as the inner prod-
uct wTx., We can directly use the derivation of the
symmetric algorithm by replacing the matrix W by

the weight vector w. The linear updating step (27)
becomes

w = 229W()x()
29(y(@)?

Once w is found, the algorithm is repeated with
a different initial value for w until all the sources
have been found. After each iteration, w must be
orthogonalized against the previously found weight
vectors using for example the well-known Gram-
Schmidt procedure.?® This ensures that the algo-
rithm does not converge to a previously found vector
(see Ref. 44). It seems that in practice it is better
to compute only the numerator in (29), and then
normalize w explicitly by w = w/||w]l.

(20)
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5. Experimental Results

In the experiments below, we used four sub-Gaussian
source signals: a ramp, a sinusoid, a binary signal,
and uniformly distributed white noise. Three of the
sources are deterministic for easy visual comparison
and inspection of the results. These sources were
mixed linearly using a 4 X 4 mixing matrix, whose
elements were Gaussian random numbers.

In the first experiment the convergence speed of
different algorithms was compared. The nonlinear
PCA subspace rule was compared with the proposed
recursive least-squares algorithms. Convergence was
measured by the following cost C, which is similar
to the one proposed in Ref. 6:

p=y [yl
~ \ 5 maxk [pil?

|P:‘j!2
il ]
* ; (Z maxy |px;|?

c=vD (30)

The elements p;; are from the total system matrix
P = WTVA, where V is the whitening matrix. For
a separating solution, the value of C is zero and pos-
itive otherwise. A typical learning rate y = 0.01 was
chosen and for the RLS algorithms, a forgetting fac-
tor 8 = 1~ pu = 0.99 was chosen. All algorithms used
the same data, 1000 samples of four linear mixtures
of four sub-Gaussian sources.

In Fig. 2, the value of the performance index C
is depicted as a function of iterations. The conver-
gence curves clearly show that the recursive least-
squares algorithms perform better than the nonlinear
PCA subspace rule. Furthermore, the symmetric al-
gorithm converges faster than the sequential version.
In a similar experiment with the parameter values
g = 0.02 and B = 0.98 the results were similar (see
Fig. 3).

In another experiment, the sequential batch al-
gorithm (29) using explicit normalization was com-
pared to the nonlinear PCA learning rule (7) by
, finding one basis vector w of four mixtures of four
sub-Gaussian sources. The number of data vectors
x(i) was 100, and each algorithm was run 50 cy-
cles. In (7) one cycle means using each sample once
(100 iterations). We used the sigmoidal nonlinearity

-
E |

Fig. 2. The convergence speed of the recursive least-
squares algorithms is compared with the nonlinear PCA
subspace rule using gz = 0.01 and 8 = 0.99. Solid: Non-
linear PCA subspace rule. Dashed: Symmetric RLS
algorithm. Dotted: Sequential RLS algorithm. The
curves show the performace index (30) as a function
of iterations.
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Fig. 3. The convergence of the recursive least-squares al-
gorithms is compared with the nonlinear PCA subspace
rule using g = 0.02 and 8 = 0.98. Solid: Nonlinear
PCA subspace rule. Dashed: Symmetric RLS algorithm.
Dotted: Sequential RLS algorithm. The curves show the
performace index (30) as a function of iterations.
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SNR (dB)

Fig. 4. Solid line: Sequential batch algorithm. Dashed
line: Nonlinear PCA algorithm. The z-axis represents
the number of floating point operations and the y-axis
signal-to-noise ratio of the separated source vs. the cor-
responding original source.

9(y) = tanh(y)- Figure 4 shows that the proposed
batch algorithm converges faster and achieves a bet-
ter final accuracy.

5.1. Discussion

The experimental results presented above are typi-

_cal ones achieved using these algorithms. In all the
computer simulations that we have made thus far the
proposed least-squares algorithms (18) and (20) con-
verged faster than the existing adaptive neural BSS
algorithms. The difference in the convergence speed
is often of the order of magnitude or even higher com-
pared with the nonlinear PCA subspace rule (and
other stochastic gradient type algorithms that have
a roughly similar performance.®)

In general, the final accuracy achieved by RLS
algorithms can be improved in stationary situations
by increasing the forgetting parameter 8 from its ini-
tial value (say § = 0.95) closer to unity after initial
convergence has taken place. Similarly, in gradient
type algorithms the value of the learning parameter
u can be decreased with time for achieving a bet-
ter accuracy. The convergence speed of the nonlin-

ear PCA subspace rule (6) may depend greatly on
the chosen initial values of the weight vectors.3® The
least-squares algorithms introduced in this paper are
more robust in this respect.

Although the proposed adaptive RLS algorithms
utilize a fixed nonlinearity g, it is straightforward
to extend the algorithms so that the nonlinearity is
not fixed. This can be done e.g. by estimating the
sign of the kurtosis of the outputs online (see Ref. 45,
46), which makes it possible to separate sources with
different sign of kurtosis.

All the adaptive learning algorithms can be used
also for simultaneous tracking and separation of
sources in nonstationary situations. This problem
is very difficult but important in practice. We have
presented some tracking experiments with the pro-
posed RLS type algorithms in Refs. 47, 48.

6. Conclusions

In this paper we have introduced several new algo-
rithms for blind source separation and possible other
applications based on a nonlinear PCA criterion. In
particular, we have discussed minimization of the
nonlinear PCA cost function (4) using approxima-
tive least-squares approaches. The proposed nonlin-
ear recursive least-squares type algorithms (18) and
(20) provide faster convergence in blind source sep-
aration compared with the corresponding stochastic
gradient algorithms, in the same sense as recursive
least-squares (RLS) algorithms are fast compared
with stochastic gradient LMS algorithms in adap-
tive filtering.!® According to the experiments made
thus far, they provide a very good performance with
a fairly low computational load. In some instances,
it may be computationally more efficient to use the
batch versions of the least-squares algorithms.

We have also mentioned connections of the
nonlinear PCA criterion to some well-known exist-
ing approaches such as Bussgang methods in blind
equalization and the adaptive EASI blind source sep-
aration algorithm.

Together with earlier' works, the results in this
paper demonstrate that nonlinear PCA is a versatile
and useful starting point for blind signal processing
with close connections to some other well-known ap-
proaches. There exist several possibilities for further
research such as taking into account robustness, time
delays etc.
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