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Noise is an unavoidable factor in real sensor signals. We study how additive and convolutive noise can be
reduced or even eliminated in the blind source separation (BSS) problem. Particular attention is paid to
cases in which the number of sensors is larger than the number of sources. We propose various methods
and associated adaptive learning algorithms for such an extended BSS problem. Performance and validity
of the proposed approaches are demonstrated by extensive computer simulations.

1. Introduction

Blind source separation (BSS) has recently become
an active research area both in statistical signal pro-
cessing and unsupervised neural learning.!~2® The
goal of BSS is to extract statistically independent but
otherwise unknown source signals from their linear
mixtures without knowing the mixing coefficients.
BSS techniques have many potential applications in,
for example, data communications, speech process-
ing, and medical signal processing.

Although many neural learning algorithms have
been proposed for the BSS problem, in their cor-
responding models and network architectures it is
usually assumed that the number of source signals
is known a priori. Typically, it should be equal
to the number of sensors and outputs of a neural
network (separating system). However, in practice
these assumptions do not necessarily hold. The prob-
lem of on-line determining the number of sources
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has been considered only recently.!!'2 In most neu-
ral approaches to BSS, published in available litera-
ture, it is also assumed that there is no noise present
in the signal model or that noise can be neglected.
However, noise is an unavoidable factor in real-world
applications.16:19:33,

In this paper we extend the basic BSS problem by
discussing cases where the number of sensors (inputs
of the separation network) is different from the (gen-
erally unknown) number of source signals, and where
additive noise is present. The question is then how
to separate the sources and determine their correct
number in a noisy environment.

We propose and study the performance of some
network structures in the case of instantaneous mix-
tures with additive noise. We start in Sec. 2 with the
definition of the extended BSS problem. In Secs. 3
and 4 we propose two classes of solutions for the
extended mixing model: The first one is based on
source separation with pre-whitening, whereas the
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second one tries to cancel noise before separating the
sources.'® For general additive colored noise, it is
impossible to separate the unknown noise from the
unknown source signals. Therefore, the proposed so-
lutions are based on the assumptions that either the
noise has Gaussian distribution (Sec. 3), or that some
a priori knowledge about the reference noise itself is
available (Sec. 4).

2. The Extended BSS problem
2.1. The mizing model

Denote by x(t) = [z1(t),. .., z(t)]T the data vector
made up of the n mixtures z;(t), 1 = 1,..., n, at
discrete time or sample value t. The data (mixing)
model in BSS can then be written in the vector form
as (see Fig. 1):

x(t) = As(t) + n(f) = i si(t)a; +n(t). (1)
Here s(t) = [s1(t),..., sm(t)]T is the source vector

consisting of the m unknown source signals at time
t. Furthermore, each source signal s;(t) is assumed
to be a stationary zero-mean stochastic process.

A =J[ay,..., ay] is a constant full-rank n x m
mixing matrix whose elements are the unknown coef-
ficients of the mixtures. The vectors a; are basis vec-
tors of Independent Component Analysis (ICA).20:24

None of the source signals s;(t) are allowed to
have a Gaussian distribution if the noise signal n(t)
itself is a Gaussian signal. Otherwise at most one of
the sources can be a Gaussian signal. This restriction
follows from the fact that it is impossible to separate
two or more Gaussian sources from each other. It is
also customary to assume in BSS problems that the
source signals s1(%),..., sm(t) are mutually statisti-
cally independent.!'?'7 In practice, the sources can
often be successfully separated even though they are
not strictly independent.

2.2. Neural blind source separation

In neural and adaptive source separation approaches,
a m X n separating matrix W(¢) is updated so that
the m-vector (see Fig. 1)

y(t) = W(t)x(?) (2)

becomes an estimate

y(t) =8(t) 3)

........................................

0= 81)

S‘t) A +

Fig. 1. A schematic diagram of the mixing and blind
separation problem. LA means learning algorithm.

of the original source signals. In neural realizations,
y(t) is the output vector of the single-layer feed-
forward network, and the matrix W (¢) is the total
weight matrix between the input and output.
Neural (and adaptive) source separation meth-
ods can be divided into two major groups. In the
first type of methods, the data vectors x(t) are pre-
whitened by using a suitable whitening matrix V(¢):

v(t) = V(t)x(t), with Ryy =E[v(t)vI()]=1.
4)

After this, the sources are separated by employ-
ing a linear network described by:

y(t) = W(t)v(), (5)

where the separating matrix is now denoted by W (t)
for clarity. Pre-whitening has the advantage that
the subsequent separation stage becomes somewhat
easier. This is because the prewhitened mixtures
in v(t) are already uncorrelated, and the separating
matrix W(t) can be constrained to be orthogonal.
On the other hand, whitening can reduce or amplify
the noise in certain cases, and separation may be
difficult or impossible for ill-conditioned mixing ma-
trices A and/or weak source signals s;(t). Therefore,
in the other major group of neural methods, the sep-
arating matrix W (t) is sought directly without using
pre-whitening.

We do not deal with various neural separat-
ing algorithms in more detail here. They are dis-
cussed to the necessary extent in several other
papers,!~46:10.24.27 an{ the references of the present

paper cover the most significant neural approaches
to BSS.




2.3. Estimation of the number of
the sources

In this paper we shall assume for the most of the time
that the actual number of sources m is unknown.
We also assume that there exist more sensors than
sources, that is n» > m. In the contrary case where
there are less mixtures than sources (n < m), there
exist to our knowledge very few algorithms that are
able to handle this situation in some special cases,
e.g. for binary source signals.?-28:30

The first approach is applicable to two-stage
separation that requires a pre-whitening layer. A
schematic diagram of the network structure is shown
in Fig. 2. Whitening can be done in many
ways.10:23.24 If the number m of the sources is un-
known, it is advantageous to use standard or ro-
bust principal component analysis (PCA)"15:22 for
whitening and data compression, because this simul-
taneously yields an estimate for m. PCA can also
filter out some of the additive Gaussian noise in the
case n > m. We shall discuss this method in more
detail in the next section, extending it to the more
difficult and relevant noisy case.

It is also possible to compress the dimensionality
of the data from n to the desired m later on in the
separation layer instead of the whitening layer. How-
ever, this network structure (which is a modification
of the network in Fig. 2) is not recommendable if ad-
ditive noise is present. This is because whitening typ-
ically amplifies noise by transforming the variances
of all the n components of the whitened vectors v(t)
equal to unity. Thus the separation results in the
noisy case are worse than for the network of Fig. 2.

A third approach has been proposed in Ref. 11
(see also Ref. 3) for handling the situation where
the number of sources is completely unknown. Here
a post-processing layer for elimination of redundant
signals is added to the separation network. The
number of active sources is determined indirectly
by counting the number of non-zero output channels
from the final layer. This approach can be applied to
the noisy ease, too. Thus the applied neural network
consists of two or more layers, where the first sub-
network (a single-layer or a multi-layer) separates
the sources in parallel manner, and the last post-
processing layer eliminates the redundant signals. In
this paper we shall investigate how this approach be-
haves under additive and convolutional noise.
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Fig. 2. A schematic diagram of signal compression during
pre-whitening.

2.4. Separation in additive
Gaussian noise

Consider now the effect of additive noise on blind
source separation. Such noise is often unknown, and
can for example describe the possible imperfections
in the data model (1). In most papers dealing with
BSS, it is assumed that the noise term n(t) in (1)
is zero, and sometimes noise is regarded as an extra
source.' Generally, this does not hold for the signal
model (1), which can be seen by expressing the noise
vector n(t) in the form

m
n(t) =Y ni(t)a; +e(t). (6)
i=1
Here n;(t) is the projection of n(t) onto the ith ICA
basis vector a;, and e(t) denotes the portion of the
noise vector n(¢) that lies in the subspace orthogonal
to the m basis vectors ay,..., a, of ICA. Inserting
(6) into the data model (1) shows that generally noise
adds a component n;(t) to each source.

2.5. Separation in additive
convolutional noise

In this paper we also investigate a special case of
colored noise. In many practical situations we can
measure or model the environmental noise. We
shall denote in the following such noise as refer-
ence noise nr(t) or a vector of reference noises [for
each separate sensor n;(t)] (Fig. 3). We assume here
that the noise obeys Finite Impulse Response (FIR)
model, which describes additive and convolutional
noise.'%:19:33 [Fig. 3(b)]:

N N
ni(t) = Z bijz Inp(t) = Z bijnr(t —jT), (7)
7j=0 j=0

1 8

where 27! = e7*7 is the unit delay. Such a model is

generally regarded as a realistic (real-world) model
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S(t) A

Fig. 3. The source mixture with additive noise and the
simple FIR noise model: (a) source mixture with addi-
tive noise vector, (b) modeling the unknown noise by a
convolutional additive noise (ng is the reference noise,
the coefficients b;; are unknown).

in both signal and image processing.!®%% In this
model we assume that known reference noise is added
to each sensor (mixture of sources) with different unit
delays T and various but unknown coeflicients b;;(t).
In other words, we assume that noise is convolutional
and the data model (1) now becomes!'®

x(t) = As(t) + b(z)ng(t), (8)

where b(z) = [b1(2), b2(2), ..., bu(2)]T with

bi(2) = bio + binz™? +"'+biNZ_N. 9)

3. PCA Based Separation in
Additive Gaussian Noise

Our general observation with separation algorithms,
designed for the basic BSS problem (without noise),
was that they can tolerate small amounts of unknown
noise. However, noise destroys nice theoretical prop-
erties of some algorithms such as independence of
the condition number of the mixing matrix A and
the ability to separate even very weak sources.?:5:10
When the amount of noise increases, performance of
the separation algorithms begins to degrade rapidly.
If the power of the noise is large, separation algo-
rithms typically yield output signals that are useless
in practice. Maybe one or two of the output sig-
nals somehow resemble some source signal while the
others are completely unrecognizable.

3.1. PCA based pre-whitening in
noisy conditions

If the number n of mixtures is greater than the num-
ber m of sources, it is usually possible to filter some
of the noise out. This can be done by projecting
the input vectors x(¢) onto their m-dimensional sig-
nal subspace,?® which is in our case defined as the
subspace spanned by the m basis vectors aj, ..., a,,
of ICA. Now these basis vectors and thus the signal
subspace are generally unknown. A standard and in
practice often the best way to estimate the signal
subspace is to use PCA.

3.1.1. Standard procedure

The practical procedure is as follows. First, estimate
the n x n covariance matrix R, = E{x(t)x(t)T}
of the zero-mean data vectors x(¢). Then compute
the n eigenvalues Ay > A2 > --- > A, > 0 and
the respective eigenvectors uj, us,..., u, of R;,.
These eigenvalues and eigenvectors define PCA. The
subspace spanned by the m first PCA eigenvectors
uy, uy,..., W, is an approximation to the true sig-
nal subspace. This PCA subspace is optimal in the
sense that it provides the best lower dimensional ap-
proximation of the data vectors. More specifically,
the projection of the data vectors x(¢) onto the PCA
subspace has the least the mean-square error among




all the subspaces of the same dimensionality. Con-
nections between the signal subspace and the PCA
subspace are explained in more detail in Refs. 23
and 29.

The data vectors x(t) can be conveniently pro-
jected onto the estimated signal subspace in context
with PCA pre-whitening. The PCA whitening ma-
trix V is given by

V=A":UT, (10)

where A = diag[A;, Ag,..., Ap] is the diagonal ma-
trix containing the m largest PCA eigenvalues, and
U = [uy, ug,..., u,] is the orthogonal matrix that
contains the respective PCA eigenvectors. It is easy
to see that the covariance matrix R, of the whitened
vectors v(t) = V(¢)x(t) is then m x m unit matrix,
as required in whitening.

3.1.2. Neural and robust PCA

Instead of computing the PCA whitening matrix
(10) using standard numerical software, one can use
neural approaches for PCA whitening.2> They are,
however, usually less accurate due to the stochastic
gradient learning rules used, and may require long
convergence times especially if the number of sources
m is large.

It is more convenient to use a robust PCA ap-
proach for extraction of principal components, corre-
sponding to useful signals.”>!® In this approach, prin-
cipal components are extracted sequentially as long
as the eigenvalues A; are larger than some chosen
threshold value.

We assume that minor components for i > m cor-
respond to additive noise. Using the concept of self-
supervising principle (replication) and cascade (hier-
archical) neural network architecture we can easily
derive the following robust learning algorithm”1°:

w;(t + 1) = wi(t) +n:(t)0:(2) Ples(t)],
(=1,2,...,n), (1)

where
“e; = e;_1 —wib;, eo(t) =x(t), (12)
ﬁi(t) = u,-Tei_l 5 (13)
U(e;) = [T(en), Y(en),..., Tlem)]", (14)
o - 52 .
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e.g. ¥(e;;) = tanh(e;;/8), B > 0, for the loss
function®:

¥(e;) = B In(cosh(e;/B8)) .

The optimal choice of the activation function ¥(e;)
depends on the distribution of noise. For Gaussian
noise, the linear function ¥(e;) = e; is optimal. In
this case the above algorithm simplifies to the well-
known Oja’s rule (for i = 1):

u;(t+1) = uw(t) +m(t)0i(t)ei(t).  (16)

In contrast to Sanger’s GHA algorithm (see
e.g. Refs. 9 and 22) we extract signals using a de-
flation technique, i.e. 9; = ulTei_l but not ¥; =
u/x. This lead to a more stable and accurate
algorithm.”-!%

The output signals 9;(t) after applying the above
learning procedure will be uncorrelated with vari-
ances \; = E[0?], (. = 1,2,...,n). In order to
normalize them to unit variance we can apply the
following procedure

Tui (Mei(t).  (17)

Some other approaches and references to robust
PCA can be found in Ref. 22. Various robust loss
or criterion functions are discussed in more detail in
Refs. 7, 9, 15 and 21.

3.1.3. Noise reduction during pre-whitening

We can analyze the ability of PCA to present signal
information in noisy conditions somewhat by assum-
ing that the noise term n(t) in (1) is uncorrelated
with the sources s1(2), ..., sm(t), which are assumed
to be mutually independent (or at least uncorrelated
with each other). Then the data covariance matrix
has the form

m
Ruz = Ros + Rnn = Y E{si(t)*}aia] + Ron,
i=1
(18)
where R, is the covariance matrix of the noise vec-
tor n(t), and Ry, is the covariance matrix of the
signal part. If we first assume that the noise vec-
tor n(t) and consequently R, are zero, it is easy to
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see?® that only the m largest PCA eigenvalues are
nonzero, and the corresponding PCA eigenvectors
uj, Ug,..., U, lie exactly in the signal subspace. If
the power of noise is small so that R, is “small”
compared to Ry, the m first PCA eigenvectors still
approximate well the true signal subspace.

A common special case occurs when the compo-
nents of the zero-mean noise vector n(t) are mutually
uncorrelated and have all equal variances o2 (for ex-
ample in the case of white Gaussian noise). Then
the noise covariance matrix

R,, =01, (19)

where I is the unit matrix. It is easy to see that then
the noise term does not affect to the directions of
the PCA eigenvectors, and the m first PCA eigen-
vectors u;, us,..., Wy, theoretically lie in the signal
subspace.?? Because the data covariance matrix Ry
must in practice be estimated from a finite number
of samples, this property does not hold exactly in
practice.

3.2. FEstimation of the number of
sources during pre-whitening

In practical situations, the correct number m of the
sources is often unknown. PCA is useful also in esti-
mating m, and this can be conveniently carried out in
context with PCA-based pre-whitening and/or noise
filtering.

3.2.1. Heuristic approach

Recall first that in the ideal noiseless case only the
m largest “signal” eigenvalues Ay,..., A, of the data
covariance matrix R;; are nonzero while the remain-
ing “noise” eigenvalues are zero. This yields di-
rectly an estimate to the number m of the sources.
If the powers of the sources are much larger than
the power of noise, the m largest signal eigenvalues
are still clearly larger than noise eigenvalues, and it
is straightforward to determine m from the break-
point. However, if some of the sources are weak or
the power of the noise is not small, it is generally
hard to see what is the correct number m of sources
just by inspecting the eigenvalues. The main prac-
tical difficulty in this approach is how to correctly
set the threshold which divides the eigenvalues into
the m signal eigenvalues and the remaining n — m

noise eigenvalues. If the threshold has been selected
roughly correctly, this approach yields good results
in estimating the number m of sources, otherwise
not.

3.2.2. AIC and MDL criteria

Instead of setting the threshold between the signal
and noise eigenvalues using some heuristic procedure
or a rule of thumb, we can use two well-known in-
formation theoretic criteria, namely Akaike’s infor-
mation criterion (AIC) or the minimum description
length (MDL) criterion. Wax and Kailath3? have
evaluated explicit expressions of the AIC and MDL
criteria for estimating the number m of signals in the
model (1). This subspace model is used widely also
in sinusoidal frequency estimation and array process-
ing with different assumptions,?® and the same model
order determination problem appears also there.

The formulas of Wax and Kailath have the
form?29:32

AIC(m) = —2K(n — m) In g(m)
+2m(2n — m), (20)
MDL({m) = —K(n — m) In g(m)
+05m@2n—m)m K. (21)

Here K is the number of the data vectors x(t) used
in estimating the data covariance matrix R, and

A1 Amas - Ay ) 7w
o(m) = — Cmttdmsz o An) (22)

m()\m+1 + )\m+2 ++ )\n)

n—
is the ratio of the geometric mean of the n —m small-
est PCA eigenvalues to their arithmetic mean. The
estimate 2 of the number of the signals (in our case
sources) is chosen so that it minimizes either the AIC
or MDL criterion.

A problem with the AIC and MDL criteria
given above is that they have been derived by as-
suming that the data vectors x(t) have a Gaus-
sian distribution.?®>32 This is done for mathematical
tractability, making it possible to derive closed form
expressions. The Gaussianity assumption does not
usually hold exactly in BSS and other signal process-
ing applications. Therefore, the MDL and AIC crite-
ria yield suboptimal estimates only, but provide any-
way formulas that have turned out useful in model
order estimation in lack of better criteria.




3.2.3. Practical approach

One might at first sight think that the MDL and AIC
criteria cannot be applied to the BSS problem, be-
cause there we assume that the source signals s;(t)
are non-Gaussian. However, it should be noted that
the components of the data vectors x(t) are mixtures
of the sources, and therefore often have distributions
that are actually not so far from the Gaussian one.
In our practical experiments, the MDL and AIC cri-
teria have quite often performed very well in estimat-
ing the number m of the sources in the BSS prob-
lem. We have found two practical requirements for
their successful use. First, the number n of mixtures
must be larger than the number m of the sources.
(If n = m, the ratio (22) cannot be computed.) The
second requirement is that there must be at least a
small amount of noise present. This guarantees that
also the noise eigenvalues A, 11,..., A, are nonzero.
It is obvious that zero eigenvalues cause difficulties
in formulas (20) and (21).

3.3. Separation of pre-whitened signals

In the separation stage, following the pre-whitening
stage, we have applied the nonlinear PCA rule and
the bi-gradient rule. The Nonlinear PCA subspace
rule?™?* employs the following update rule for the
orthogonal separating matrix W:

W(t+1) = V~V(t)+n(t)g[y(t)][V(t)—V~VT(t)g[y(t)g]T),
23

where v(t) = V(t)x(t), x(¢) = As(t), and y(t) =
W(t)v(t). The notation gly(t)] is used for the col-
umn vector whose ith component is g;[y;(¢)], where
g:(t) is usually an odd and monotonically increasing
nonlinear activation function. The learning rate 7(t)
must be positive for stability reasons. The separation
properties of (23) have been analyzed mathemati-
cally in simple cases in Ref. 27. In our experiments
we have applied alternatively the following activation
functions:

9ly(®)] = ¥*(t)
g[y(t)] = tanh[1.3y(t)] for sub-Gaussian sources
(24)

24,31

for super-Gaussian sources

Another algorithm, the bi-gradient algorithm
can also be applied after pre-whitening for learning
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the orthogonal separating matrix W:

W(t+1) = W(t) +v(0)gly(IvT ()
+n(t)[I - WEOWTO]W(). (25)

For sub-Gaussian sources, we can use either a small
negative learning parameter y(t) together with the
cubic nonlinearity g(y) = y*, or a small positive y(t)
with the sigmoidal nonlinearity g(y) = tanh(ay).
Here o is a possible scaling constant (with pre-
whitening o« = 1.3 provides good convergence).
For super-Gaussian sources the same choices with
reversed sign of the learning parameter «(t) are
applicable.

4. Separation with Cancellation of
Convolutional Colored Noise

The problem of efficiently separating the sources
if additive colored noise cannot any longer be ne-
glected, can be stated alternatively: How to cancel
or suppress additive colored noise. In general, the
problem is rather difficult because we have 2 x n un-
known signals (where n is the number of sensors).
Hence the problem is highly under-determined, and
without any a priori information about the mixture
model and/or noise it is very difficult or even impos-
sible to solve it.!?

4.1. Reference noise

However, in many practical situations we can mea-
sure or model the environmental noise. We shall de-
note in the following such noise as reference noise
ngr(t) or a vector of reference noises [for each sepa-
rate sensor n;(t)] (Fig. 3).1® For example, in acous-
tic cocktail party problems we could measure such
a noise during a short salience period (when no
one speaks), or we could measure and record it on-
line by an extra isolated microphone. In a similar
way one can measure noise in biomedical applica-
tions like EEG or ECG by extra electrodes, placed
appropriately.

The noise ng(t) may influence each sensor in
some unknown manner due to environmental effects.
Hence, such effects like delays, reverberation, echo,
nonlinear distortion etc. may occur. It can be as-
sumed that the reference noise is processed by some
unknown nonlinear dynamic system before it reaches
each sensor (Fig. 3). We could consider ARMA,
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NARMA or FIR (convolutive) noise models. In the
simplest case, a convolutive model of noise can be
assumed, that is, the reference noise is processed by
some FIR (finite impulse response) filters, whose pa-
rameters need to be estimated.'® Hence, the additive
noise in the ith sensor is modeled as [Fig. 3(b)]'®:

N
ni(t) = Z b,-jz_jnR(t) (26)

where 27! = e7*T is the unit delay. Equation (26)
can be written in the time domain as

n,'(t) = bionR(t)+bi1nE(t—T)+- . ~+b,-NnR(t—NT) .
(27)

In this model, we assume that known reference noise
is added to each sensor (mixture of sources) with dif-
ferent unit delays T" and various but unknown coeffi-
cients b;;(t). In other words, we assume that noise is
convolutional and the reference noise ng is known.
The mixing matrix A, the coefficient vector b(z),
and the number of time delay units N (maximum
order of the FIR filters) are completely unknown.

4.2. Learning algorithm for
notse cancellation

In our simple model the noise cancellation and source
separation stages are performed sequentially. We
first attempt to cancel the noise contained in the
mixtures and then to separate the sources (Fig. 4).
Thus the output signals are derived from:

y(t) = W[x(t) — h(z)ng]
= WASs(t) + Wb(z)ng — Wh(z)ng. (28)

It is obvious that y(¢) ~ s(t) if (problems of signal
scaling and permutation are omitted):

WA =1 and h(z) =b(2). (29)

In order to cancel additive noise and to develop
an adaptive learning algorithm for unknown coeffi-
cients hy;(t) we can apply the concept of minimiza-
tion of generalized output energy of output signals
%(t) = [#1(t), T2(t), ..., En(t)]T. In other words, we
can formulate the following cost function (general-
ized energy)!®:

J(h) = _Z pi(%i) (30)

"r It
@ b(z) | h(z) | =42
Unknown /
.sgi__ A *é x(t) _1\_/,}:; X0 }’V (@)
LAl

Fig. 4. The model for blind source separation with noise
cancellation as pre-processing.

where p;(Z;) is a suitably chosen loss function,
typically:

il % In cosh(3;) or pi(@:) = ;}Wp
(31)
and

Zi(t) = 2i(t) = ) hyna(t—4T), Vi. (32)
7=1

Minimization of this cost function using a standard
stochastic gradient descent approach leads to the
learning algorithm (compare Fig. 4)16:

8J(h)

Bhi]-

= hi;(t) + () fr[Z:()]nr(t — JT). (33)

hi (¢ + 1) = hiz(t) — 7(2)

Here fgr(Z;(t)) is a suitably chosen nonlinear
function:

falii)) = 220 (34)

Typical choices are fr(Z;(t)) = 3(t) or fr(F:(t)) =
tanh(ad; (£)).

4.3. Separation layer

In order to separate noiseless signals we can alterna-
tively apply two relative simple and powerful learn-
ing algorithms without any preprocessing?810:14;

e the global robust learning rule®®°:

W(t+1) = W(t) +n(t)
x {I - fly()gly” OW(2), (35)
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Fig. 5. Multi-layer neural network model for improved source separation with noise cancellation.

which can be written in scalar form as:

wig (E41) = wij (1) +n(t)

x |wis (8)— Filys ()] D wis Ogrlyn (@]

k=1
(36)
e or the local learning rule!!-!4:
wij (t + 1) = wi; (t) + n(t)
x {6i; — filys()]g;ly; (O} (37)

In the above equations, 4;; is the Kronecker delta,
n(t) > 0 is the adaptive learning rate and I is
the m X n identity matrix. As before, f(y) =
(@), Fya)]" and g(y™) = [9(s1)s- .-, 9(un))
denote vectors of nonlinear activation functions,
where f(y), g(y) is a pair of nonlinear functions cho-
sen to match the type of sources (for example images,
sound signals, and speech signals).

For g(y) = y the rule (35) was theoretically de-
rived and justified by Amari et al.l73

4.4. Mulli-layer models

In order to improve the learning performance multi-
layer neural networks can be used (Fig. 5).11:16 Em-
ploying several layers clearly improves the separation
results if we want to apply a local learning rule for
separation of mixtures in which some of the source
signals are very weak or the mixing matrix A is ill-
conditioned. A multi-layer model might be a proper
solution also if the initialization and decreasing speed
of the learning rates 7(t) and 7 have not been chosen
optimally.

In case there are more sensors than sources
(n > m), there may appear redundant signals on
some outputs. This redundancy can be eliminated

by adding a post-processing layer, which in course of
learning suppresses eventual redundant signals. An
appropriate solution for this problem was proposed
in Refs. 11 and 12.

5. Computer Simulation Results

5.1. Performance measures

In order to estimate the quality of separation we as-
sume that the original sources and the mixing matrix
are known. However, these quantities are unknown
to the learning algorithms. The separation results
can be assessed qualitatively from figures showing
the original sources, mixtures, and separated sources.
The accuracy of the obtained results can be mea-
sured quantitatively using some suitable criterion.

For sound signals one such measure is snr[Y;, Sj]
— the signal-to-noise ratio between the error of
source S; reconstruction by signal Y; and the cor-
responding original source S;:

snr[Y;, S;] = —10 log,o(MSE[Y;, S;]), (38)

where MSE is the mean square error of source
reconstruction:

N
1
MSE[Y;, Sj] =+ > (s — s58)*. (39)
k=1

In order to made this measure independent of scaling
factors before calculation of the signal-to-noise ratios
the amplitudes of the ¥; and S; signals are always
normalized by max(|y;x|) = max(|s;x]) = 1.

For image sources it is common to use a different

but related index — the peak signal-to-noise-ratio
defined as:

A2
psor[Y;, S;] = 10 log,, (m) ,  (40)
i D]
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where A = Smax — Smin 1S the amplitude interval of
source signal. Also in this case the maximum signal
amplitudes of the Y; and S; are always normalized
to 1.

One of the above quality factors is computed al-
ternatively for each source reconstruction by each
output signal.

5.2. PCA based separation in noise

We first illustrate the effect of a Gaussian unknown
additive noise on the separation results, and next
demonstrate how PCA filtering can be used for re-
moving this type of noise. In the following experi-

ments, we applied the PCA pre-whitening approach,
and then learned the orthogonal separating matrix
W using the bigradient algorithm.?43! We express
the relative noise level contained in the noisy signal
mixtures by the following general signal-to-noise ra-
tio SNR, defined as:

SNR = —10 log;, (%) . (41)

The first row in Fig. 6 shows four original im-
ages and the second one contains separation results
for four noiseless mixtures. The last two rows show

Fig. 6. Separation results in Gaussian additive white noise: (1st row) original 4 images (sub-Gaussian sources), (2nd row)
results for 4 mixtures in noiseless case, (3rd row) results for 4 noisy mixtures, (4th row) results for 8 noisy mixtures and
when PCA was used to whiten and compress the data vectors to 4-D vectors prior to blind separation.
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Fig. 7. Separation results in Gaussian additive white noise: (a) original 4 sub-Gaussian sources, (b) separation results in
noiseless case, (c) separation results for 4 noisy mixtures, (d) results for 8 noisy mixtures when PCA was used to whiten
and compress the data vectors to 4-D vectors prior to blind separation.

separation results for 4 and 8 noisy mixtures, respec-
tively, when the noise level was SNR = 8 [dB]. In the
last case, prior to separation (during whitening) the
mixed signal dimension was compressed from 8 to
4. In this case, there is a significant improvement
in separation quality of noisy mixtures, although the
separation quality of the noiseless case can not be
reached. The total number of data samples was
10000.

Figure 7(a) shows 100 samples of the 4 sub-
Gaussian original sources (uniformly distributed
white noise, a sinusoid, a ramp signal, and a binary

signal) used in this experiment. Figure 7(b) depicts
the good separation results (outputs of the network)
in the case where there were 4 noiseless mixtures,
and no data compression took place in the whiten-
ing stage. The total number of data samples was
5000.

When some noise was added to the 4 mixtures
(components of the data vectors) so that the signal-
to-noise ratio of each mixture was about 26 [dB],
the separation results shown in Fig. 7(c) are much
poorer. Only some of the sources (sinusoid, ramp)
are crudely recognizable. Figure 7(d) shows the




230 J. Karhunen et al.

respective result when there were 8 similar noisy
mixtures available, and the dimensionality of the
data vectors was compressed from 8 to 4 using PCA
whitening. The quality of the separated sources is
now much better than in Fig. 7(c), and only slightly
worse than in the noiseless case in Fig. 7(b).

Generally speaking, PCA yields good results in
filtering Gaussian additive noise, if there are more
mixtures than sources and enough samples from the
mixtures. A general rule of thumb in estimation the-
ory is that there should be at least 5-10 times more
samples than parameters to be estimated for get-
ting acceptable results. In PCA, one must in prac-
tice first estimate the n X n data covariance matrix
R = E{x(t)x(t)T} from the data vectors x(t). Due
to the symmetry, R,; has n(n + 1)/2 free parame-
ters to be estimated. Thus if for example n = 8
we should have at least several hundred samples for
obtaining good noise filtering results in context with
PCA whitening. Of course, the more noise, the more
samples are needed for good accuracy.

5.3. PCA based source number
determination in noise

Another requirement for obtaining good noise filter-
ing results using PCA is that the correct number
m of sources is known or can be estimated reliably.
In the following, we present some experimental re-
sults on the performance of the MDL criterion (21)
and the AIC criterion (20) in estimating the num-
ber of sources in a BSS problem. Generally speak-
ing, these information-theoretic criteria are applica-
ble provided that there is noise in the mixtures and
the number n of mixtures is larger than the number
m of sources. If there is no noise or n < m, the
criteria do not yield good results.

We used the same 4 sub-Gaussian sources (having
negative kurtoses) as in Fig. 7 in experiments with
varying numbers of mixtures, sources and samples for
different noise levels. Tables 1 and 2 show the results
at different signal-to-noise ratios when the number of
samples'was 100 or 1000, respectively, and there were
5 noisy mixtures (n = 5) available. A total of 100 ex-
periments were made in each case where the correct
number of sources was either m = 1, 2, 3 or 4. The
figures.in the tables give the number of times when
the MDL or AIC criteria provided a correct estimate
for m. Thus the numbers in the tables are directly

Table 1. Percentages of correct estimates of the
number m of sources given by the MDL and AIC
criteria at different signal-to-noise ratios. The
number of samples was 100.

SNR No. of Sources

m=1 l m=2 | m=3 | m=4

Estimates with MDL criterion (in [%)])

34.5 dB 99 99 97 96
24.5 dB 100 95 87 70
17.5 dB 99 50 37 20

Estimates with AIC criterion (in [%])

34.5 dB 92 87 85 99
24.5 dB 84 88 85 85
17.5 dB 90 73 55 47

Table 2. Percentages of correct estimates of the
number m of sources given by the MDL and AIC
criteria at different signal-to-noise ratios. The
number of samples was 1000.

SNR No. of Sources

m=1 | m=2 I m=3 l m=4

Estimates with MDL criterion (in [%)])

34.5 dB 100 100 100 98
24.5 dB 100 100 98 86
17.5 dB 100 94 68 55
Estimates with AIC criterion (in [%])
34.5 dB 86 89 81 100
24.5 dB 89 84 85 95
17.5 dB 87 86 80 76

percentages of correctly estimated number of sources
in each case.

From Tables 1 and 2 one can see that the MDL
criterion performs very well, and is more reliable
than the AIC criterion for high signal-to-noise ratios.
Furthermore, the results given by the MDL criterion
improve when the number of samples increases, while
this effect is not so clear in the case of AIC. The
reason for this behavior is obvious: The MDL cri-
terion is consistent, yielding asymptotically correct
results, while the AIC criterion does not have this
theoretically desirable property.*? However, at lower
signal-to-noise ratios the AIC criterion is sometimes
better. We also observed that when the MDL crite-
rion failed, it gave almost always an estimate of m
that was one too small (. = m — 1). For exam-
ple at SNR = 17.5 [dB] with 1000 samples the MDL
criterion estimated the number m = 4 of sources
correctly in 55% of cases, and in 45% of cases it
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Fig. 8. Three original images (a) and three alternative colored reference noise signals (one noise signal per test) (b) used

for generation of additive convolutional noise signals.

gave a wrong estimate m = 3. The AIC
criterion either overestimated or underestimated

the number of sources (usually by one) when it
failed.

Our simulations show that both criteria, espe-
cially MDL, can be successfully applied to the esti-
mation of the number m of sources when the amount
of unknown additive noise is small or moderate,
even though the sources are not Gaussian as as-
sumed in the theoretical derivations. The criteria
may fail in estimating m if large noise is present.
But then the subsequent blind separation task
also becomes too difficult for the currently existing
approaches.

5.4. Separation with convolutional
notse cancellation

In an illustrative example three (unknown) nat-
ural images [Fig. 8(a)] were mixed by a ran-

domly chosen matrix A (with the condition number
|

1.2 14 11 10 09
B=(13 12 15 11 0.95

cond(A) = 18.09):

1.0 07 03
A=|15 07 09 (42)
12 08 0.8

and convolutional noise signals were added, origi-
nated from one of three alternative reference noises
[Fig. 8(b)]. All the sources were zero-mean signals,
and sub-Gaussian with a negative kurtosis value.
Nonlinear activation functions f, fr were chosen to
be: £(y) = 1%, fald) = &°.

The sources 1 and 2 as well as 2 and 3 were cor-
related with each other (by 14-22%). However, none
of the sources was in practice correlated with any of
the three noise signals, the source-to-noise correla-
tions being below 1%.

Convolutional noise signals were modeled using
two tenth order unknown FIR filters (N = 10), the
first one is introducing small noise and the second
one large noise (see the top row on Fig. 9). The FIR
matrix for generation of large convolutional noises
was:

08 0.7 055 040 0.3
0.84 0.77 065 054 04 (43)

11 12 13 115 099 074 087 085 0.94 1.0
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Three mixed images (with small additive and convolutional noise 1)

Three mixed images (with large additive and convolutional noise 2)

(b) Mixed images after noise cancellation

(c) Output images after subsequent blind separation

Fig. 9. Example of source separation with colored noise cancellation for an image mixture containing additive,
convolutional noise.
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In the noise cancellation model the number M of delay units was chosen to be equal to 25. The noise cancellation
results are very accurate. After 2000 iterations, the FIR, h;(z) filters are already as follows:

h; = [1.202, 1.401, 1.096, 0.999, 0.897, 0.795, 0.699, 0.547, 0.400, 0.299,
— 0.011, —0.005, —0.003, —0.003, 0.002, —0.001, —0.001, 0.000,
—0.012, —0.007, —0.008, —0.007, —0.002, —0.001, —0.002]
h, = [1.301, 1.203, 1.499, 1.101, 0.949, 0.835, 0.770, 0.648, 0.541, 0.401,
—0.011, —0.004, —0.002, —0.003, 0.002, —0.001, —0.001, 0.002, (44)
—0.012, —0.005, —0.007, —0.007, —0.002, —0.002, —0.003]
= [1.102, 1.203, 1.299, 1.151, 0.989, 0.735, 0.871, 0.849, 0.941, 1.001,
—0.010, —0.003, —0.002, —0.003, 0.002, —0.000, —0.001, 0.001,

—0.011, —0.005, —0.006,

Table 3. Quality factors for separation and noise
cancellation of image signals.

Noise | Signals psur [dB]
Face 1 l Face 2 | Face 3

Separation with noise cancellation

Small y 20.32 24.50 31.54
Large y 20.30 27.53 32.29

Separation of a noise-free mixture

None | y || 2337 | 2619 | 28.36

From Eqs. (43) and (44) one can clearly see that
the approximation error of matrix B [Eq. (43)] is
0.1%-1.0%.

The separation performance is summarized in
Table 3. It should be emphasized that the detailed
performance values may change from experiment to
experiment depending on the learning rates n(t), 7(¢)
and on proper setting of their initial values and decay
speed.

We repeated the same experiment for sound
sources [Fig. 10(a)] and convolutional noise signals,
generated from some reference noise [Fig. 10(b)].
All the sources were super-Gaussian with a positive
kurtosis value. In this case the appropriate non-
linear activation functions are: f(y) = tanh(1.3y),
fr(£) = tanh(10%).

Now the source and the noise were in practice
uncorrelated with each other, i.e. all correlation fac-
tors were below 1%, so we expected that the separa-
tion and cancellation stages should be substantially
easier than the same operations were for the image
sources. The experiments verified this conjecture,

—0.006, —0.001, —0.002, —0.003]
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Fig. 10. Three sound sources (a) and one reference noise
(b) used for generation of additive convolutional noise
signals.
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(c) Separated signals (reconstructed sources)

Fig. 11. Example of blind source separation and noise cancellation of a sound mixture with additive, convolutional noise,

assuming that reference noise is available.

because high quality separation results were achieved
in this case (see the example on Fig. 11).

5.5. Noise cancellation for more
sensors than sources

We also investigated such a case where only some
convolutional noise signal generated by an unknown
primary reference noise is measurable. In this case
the cancellation of the noise is no longer perfect al-
though it still gives good quality results. Usually the
noise “returns back” (is amplified) during the sub-
sequent blind separation, and instead of a desired
source signal a noise signal appears on one or more
outputs.

We can improve the performance if we apply more
sensors than sources. Figure 12 illustrates an exam-

ple of five sensors and only three sources. The ap-
plied neural network with learning rules described
in Sec. 4 was able not only to cancel the additive,
convolutive noise but also to extract all the sources
successfully. In this example, additive noise signals
appeared on two auxiliary outputs.

6. Conclusions

In this paper, we have developed adaptive ap-
proaches for blind separation of unknown source sig-
nals from their linear mixtures distorted by addi-
tive noise. The first approach is based on PCA,
and is best applicable to completely unknown noise
which is Gaussian or close to it. It was shown that
if more mixtures than sources are available, consid-
erably better separation results can be achieved in
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Fig. 12. Sound separation with noise cancellation results in an over-determined sensor case: five sensors, three sound

sources.

noisy environment by first compressing the input vec-
tors (mixed signals) onto PCA subspace. This can be
done conveniently in context with PCA whitening.
However, for obtaining good results the dimension-

ality of selected PCA subspace must be equal to the
correct number of sources. In our experiments the
separation results generally improved in noisy con-
ditions when the number n of mixtures was larger
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than the number m of sources, and PCA whitening
was used to reduce the dimensionality of the input
vectors from n to m. However, when the number
of mixtures n was chosen too large, the separation
results became worse. This effect was caused by
the estimation errors in the covariance matrix due
to the limited number of available samples. Gen-
erally, the number of samples should be at least
5-10 times the number n(n + 1)/2 of free parame-
ters in the data covariance matrix for getting good
separation and noise filtering results using the PCA
pre-whitening approach.

It was also shown that the number of the sources
can be estimated with high reliability using the MDL
criterion on certain conditions. In our experiments
it turned out that when PCA-based pre-whitening
had failed in estimating the number of sources cor-
rectly, the separation results were too noisy to be of
much practical value. If the mixtures contain a large
amount of general unknown noise, the whole blind
separation task becomes in general very difficult or
impossible.

The second approach simultaneously performs
noise cancellation and source separation, assuming
that reference noise is available. This approach is
valid under the assumption that the unknown noise
can be modeled as a convolutional noise mixture of
a known reference noise. The proposed noise model
could be extended to IIR adaptive filters, gammsa, fil-
ters, and other more sophisticated nonlinear neural
network models of noise, like NARMAX.

Open problems are how to suppress or to cancel
non-additive noise, and how to proceed if no refer-
ence noise is available or if there is no a priori knowl-
edge about the statistics of noise.

The computer experiments presented demon-
strate the validity and performance of proposed al-
gorithms. The approaches were tested on various
source signals including image and sound signals, but
they are generally applicable to various classes of
non-Gaussian signals, such as speech and biomedi-
cal signals.
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