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Abstract— In this paper, we consider a linear supervised
dimension reduction method for classification settings: Stochastic
Discriminant Analysis. This method matches point adjacencies
in the projection space with those in a response space. These
adjacencies are represented by t-distributed probabilities. The
matching is done by minimizing the Kullback-Leibler divergence
between the two distributions. The performance of the algo-
rithm is compared against state-of-the-art methods in supervised
dimension reduction. We found that the performance of SDA
is comparable to (and sometimes better than) state-of-the-art
methods in supervised linear dimension reduction. In the presence
of multiple classes, low-dimensional SDA projections led to higher
classification accuracies.

I. INTRODUCTION

Dimension reduction is related to the fundamental problem
of determining what portion of the data is useful. Often thought
to tackle the problem of which variables we want to preserve
and what we can discard, in our setting, dimensionality reduc-
tion is combining variables into meaningful new variables that
are useful for classification or regression.

The literature over Fisher’s Linear Discriminant Analysis
(LDA) [1] and its different modifications is vast. LDA produces
a linear projection of the original data in a low-dimensional
hyperplane. The cost function in LDA maximizes between-
class scatter while minimizing the within-class scatter. LDA
has problems with singular within-class scatter matrices, which
is why it is often coupled with PCA in image recognition tasks
[2]. Partial Least Squares regression is a supervised linear di-
mension reduction technique that tries to find subspaces in the
input matrix that explain the largest amount of variance in the
response matrix. When used with categorial response variables
it is referred to as PLS-DA [3]. Kernel Dimension Reduction
(KDR) [4] is a sufficient dimension reduction method [5]
for classification and regression data. A sufficient dimension
reduction contains all the regression information that the
original space contained about the response variable. KDR
tries to find the central subspace [5] for the input data, which
in the intersection of all dimension reduction subspaces. The
method is demanding in terms of computation and memory
consumption. A gradient version of KDR has been developed
for faster computation, called gKDR [6]. Supervised PCA by
Barshan et al. is a regression technique that finds the principal
components with maximum dependence on the given response
variable. SPCA tries to find variables that are orthogonal in a

kernel space of the response variable. A dual-space and kernel
variant of SPCA (KSPCA) [7] have also been developed,
extending the usage scenarios of the method.

All the methods discussed previously were supervised
techniques. The following methods use no output information
produce their embeddings. Neighborhood embedding tech-
niques recreate a high-dimensional neighborhood structure
in a low-dimensional space. The methods preserve point-to-
point neighborhood relations. The low-dimensional embedding
is created by defining probability mass functions based on
point-to-point adjacencies in both high-dimensional and low-
dimensional space. An information divergence between these
two probability distributions is then iteratively decreased. The
most common information divergence is the Kullback-Leibler
divergence [8].

Some of the most popular and famous point-to-point map-
pings are t-SNE [9] and NeRV [10]. t-SNE describes high-
dimensional point adjacencies as probabilities calculated from
Gaussian kernels and low-dimensional adjacencies as proba-
bilities calculated from t-distributed kernels. The motivation
for the asymmetric matchup being that it solves the so called
crowding problem. NeRV matches a convex combination of the
divergences between the low-dimensional point adjacencies to
the high-dimensional point adjacencies and vice versa. The
proportion is hand-tuned, giving the user some control in
penalizing precision and recall errors. Parametric methods pro-
vide a mapping of the data points. Amongst others, Parametric
t-SNE learns a mapping by using a deep neural network.

In this paper, we present a supervised dimensionality re-
duction technique for classification. We are looking for a linear
mapping of the data points from the high-dimensional space
to the low-dimensional embedding by matching t-distributed
point adjacencies. The matching is done using the Kullback-
Leibler divergence. The method is similar to LDA in the regard
that we want to maximize the between-class distances and
minimize within-class distances, with a focus on extremely
low-dimensional projections with multiple classes.

In what follows, Section II discusses the proposed method.
Section III discusses how to minimize the cost function. Sec-
tion IV evaluates the proposed method experimentally against
some traditional and state-of-the-art approaches to dimension
reduction. Finally, Section V summarizes the discussed topics.



II. STOCHASTIC DISCRIMINANT ANALYSIS

Formally, we are reducing the size of a data matrix contain-
ing n observations each with d0 variables (dimensions): X =
[x1x2...xn]T ∈ Rn×d0 . We reduce the amount of variables in
X by finding a linear subspace of it: Z = [z1z2...zn]T = XW,
where Z is a Rn×dt matrix, W ∈ Rd0×dt , and dt � d0.
We are using class information from the response matrix
Y = [y1y2...yn]T ∈ In×dy to find this projection. The
response variables yi are sequences of dy binary numbers,
specifying the class labels. The linear subspace is searched by
matching point adjacencies (probability mass functions) in the
embedding space with point adjacencies in the response space.
The probabilities between points i and j in the Z-space are:

qij(W) =
(1 + ‖zi − zj‖22)−1∑n

k=1

∑n
l=1,l 6=k(1 + ‖zk − zl‖22)−1

, (1)

where zi = xiW is the low-dimensional embedding coor-
dinate. The elements qij are called t-distributed, because of
the similarity with the probability density function of the t-
distribution. The probabilities of response space are pij =
p̄ij/σ, where the normalization term σ =

∑
ij p̄ij and

p̄ij =

{
1, if yi = yj

ε, otherwise
, (2)

where ε > 0 is any small number. The target probabilities
define ideal distances. By setting ε→ 0 we essentially have a
stochastic version of the LDA principle: minimize within-class
(yi = yj) and maximize between-class (yi 6= yj) distances.

The Kullback-Leibler divergence [11] is a measure of inef-
ficiency when trying to encode a distribution P using another
distribution Q. For two discrete probability mass functions P
and Q, the divergence is DKL(P ||Q) =

∑N
i=1 pi log(pi/qi),

where i = 1, . . . , N is the index of the probability point
masses. The Kullback-Leibler divergence is zero only in the
case that Q = P . However, it is not a real distance because it
does not fulfill the triangle inequality and it is not symmetric.
We can write the cost function as:

J(W) =

n∑
i=1

n∑
j=1

pij log
pij

qij(W)
+ λ

d0∑
i=1

dt∑
j=1

W2
ij . (3)

We are searching for the thin linear projection matrix W
that minimizes the Kullback-Leibler divergence of approximat-
ing probability distribution P with Q. The inefficiency of en-
coding ideal distances in the response space using realized dis-
tances in the embedding space is measured. The t-distribution
causes asymmetric distance penalties: the cost function is more
sensitive to deviations in within-class distances than it is to
between-class distances. Matching distances creates a regular
simplex structure if the target dimension is high enough. This
optimal structure is found already in ν− 1 dimensional space,
where ν is the number of classes in the dataset. If lower
than this, the points are placed so as to maximize the space
between classes. The expected effect is shown in Figure 1.
In practice, the optimization criterion converges slowly with
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Fig. 1: An ideal embedding of 5 classes into 2D. Same-class
elements are separated from other class elements.

small values of ε. Therefore we choose ε = 1/ν in general.
We can also use an additive Tikhonov regularization term
[12]. If the value of the regularization term λ is searched
by cross-validation, we refer to the method as Regularized
SDA, denoted as RSDA. Normally λ is set to zero. Tikhonov
regularization is often applied to ill-posed [13] problems. In
SDA, we have local solutions where the solution depends on
the initialization. The initial solution in SDA is obtained with
PCA, giving orthogonal vectors with maximum variance. In
high-dimensional cases, regularization can help in moving past
the initialization. Additionally, the optimization process can
also be made smoother by constraining the elements of W.

III. COST FUNCTION

Equation (3) presented the cost function. The minimum of
that cost function is approached by minimizing its gradient.
The essential steps in obtaining the gradient are written here.
We use the shorthand notation qij = qij(W). We also write
the distance in the embedding space as Dij = Dij(W) =
‖zi(W)−zj(W)‖22 = τ ijWWT τT

ij = (xi−xj)WWT (xi−
xj)

T . The matrices P,Q, Q̄ and D are Rn×n matrices. pij ,
qij , q̄ij and Dij denote their elements.

dKL(P ||Q(W))

dW
=

n∑
i=1

n∑
j=1

pij
1

qij
(−1)

dqij
dW

=

n∑
i=1

n∑
j=1

pij(−1)
[ n∑
k=1

n∑
l=1

qklq̄kl
dDkl

dW
− q̄ij

dDij

dW

]
=

n∑
i=1

n∑
j=1

pij q̄ij
dDij

dW
−

n∑
k=1

n∑
l=1

qklq̄kl
dDkl

dW

=

n∑
i=1

n∑
j=1

(pij − qij)q̄ij
dDij

dW

=

n∑
i=1

n∑
j=1

(pij − qij)q̄ijτT
ijτ ijW,

(4)

since
∑n

i=1

∑n
j=1 pijk = (

∑n
i=1

∑n
j=1 pij)k = k, where k

is an arbitrary constant. Here (1 + Dij)
−1 = q̄ij denotes the

unnormalized probability. Adding the regularization we get

dJ

dW
=

n∑
i=1

n∑
j=1

(pij − qij)q̄ijτT
ijτ ijW + 2λW. (5)

In matrix form the expression becomes

∇WJ = 2XTLXW + 2λW, (6)



where L = G+ −Λ ∈ Rn×n is calculated as

G = (P−Q)� Q̄

G+ = G + GT

Λ =
∑
j

G+
ij

(7)

Here � denotes the Hadamard product and G+ is a
symmetrized matrix of G ∈ Rn×n and Λ ∈ Rn×n is a
diagonal matrix containing the row sum of G+. The matrix
L is the difference between two Laplacian matrices L =
LP−LQ, where LP is calculated from the adjacency matrices
GP = P � Q̄ and GQ = Q � Q̄. A Laplacian matrix is a
symmetric diagonally dominant matrix and therefore positive
definite, however L need not be positive semi-definite.

There are many ways of optimizing the cost function based
on gradient information alone, for example Conjugate Gradient
[14], [15], [16] methods and the Limited-memory BFGS [17],
[15] algorithm are efficient at solving problems with a large
number of variables. The partial Hessian H+ = XTLPX has
been successfully used in neighborhood embedding methods,
where it is called the Spectral Direction optimization method
[18].

IV. EXPERIMENTAL EVALUATION

The experimental evaluation is divided into two parts.
First, three case studies on different datasets are conducted
in subsection IV-A. In the case studies, the classification
accuracies for a range of target dimensionality values are
calculated and 2D projections are visualized. We will also
describe a regularization parameter search scheme for SDA
in subsection IV-A1 and compare the runtime with different
optimization algorithms in subsection IV-A4. In subsection
IV-B, a comparison of the 2D projection qualities of state-
of-the-art methods is conducted over a range of datasets. The
utilized datasets are summarized in Table I.

We will define the hyperparameters used of various meth-
ods here. Our proposed method SDA is initialized with the
PCA initial solution is all tests. In SPCA, we chose the delta
kernel [7] for the response space. In the kernel version of
SPCA, we selected the delta kernel for response space and
a Gaussian kernel for the input space, setting the width of
the Gaussian to the median value of the squared interpoint
distances. gKDR was run in the partitioning mode (v) to reduce
its memory requirements. The variables of each dataset were
standardized: mean-centered and normalized to unit variance.

A. Case studies with three high-dimensional datasets

Three high-dimensional image datasets were chosen and
analyzed: Olivetti faces, USPS and COIL-20. All datasets have
multiple classes. The Olivetti face dataset (IV-A1) contains
images of 40 persons, each photographed in ten pictures with
both normal and unusual facial expressions. The input dimen-
sionality is very high. The USPS dataset (IV-A2) contains a
large number of hand-written digits in ten classes in a smaller
space. COIL-20 (IV-A3) features 20 high-dimensional images
of rotating objects photographed at fixed angle intervals.

1) The Olivetti faces dataset: The Olivetti faces (ORL /
AT&T) [19] contains 40 persons shot with 10 different angles
and facial expressions totaling 400 images. Each sample is
a 64-by-64 pixel image, amounting to 4096 variables. In our
tests, two thirds of the data was randomly selected as training
data elements and one third as test elements. The random
selection was repeated ten times to acquire error bars.
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Cross-validation for RSDA

Fig. 2: Tikhonov regularization parameter search. The 2D
embedding of the learning points are displayed for selected
values of λ.
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Olivetti: Classification accuracies

SDA

RSDA

PCA

PLS-DA

SPCA

gKDR-v

baseline: none

PCA+LDA

Fig. 3: Olivetti dataset. Classification accuracies after projec-
tion with different DR methods. The baseline is the classifica-
tion accuracy in the original high-dimensional dataset.

Data set Samples Variables Classes
USPS 9298 256 10
MNIST5k 5000 784 10
Phoneme 4509 256 5
Olivetti faces 400 4096 40
COIL-20 1440 16384 20
COIL-100 7200 16384 100
Iris 150 4 3
W. Breast cancer 683 9 2
Wine 178 13 3

TABLE I: Data sets used in this paper.
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Fig. 4: A representative RSDA linear embedding of the Olivetti faces dataset. Colored borders denote projected test points.
Red borders denote a misclassification, while blue borders denote a correct classification.

In the Olivetti dataset, Tikhonov regularization was used
to guide the optimization process. The appropriate amount
of regularization was searched by cross-validation. A random
selection of 80% of the learning subset was used for training
and 20% were used for cross-validation. The correct value is
searched by trying six logarithmically intervalled values of λ
from 102 to 10−8. In total, ten regularization values are ex-
plored in the cross-validation search. Among these values, the

one that gives the smallest 1-NN classification error is called
λ∗, which is the regularization value used in the tests that
follow. Figure 2 shows one regularization search procedure.
The classification error is plotted against the logarithm of the
regularization term. The dimension reduction in the figure is
to 2D. We can observe that the search is magnified twice in
the region λ = 100. Finally, the 1-NN classification error
on the cross-validation dataset was found to be the smallest
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Fig. 5: Three linear embeddings of the Olivetti faces dataset. Dots denote projected learning points. Stars denote projected
test points. The 1-NN classification accuracy resulting from this embedding is added to the title.

when λ = 10−0.5 ≈ 0.32. This search was conducted until
no progress could be made, evaluated at a tolerance 10−4.
The search procedure was fast, requiring approximately 3-4
seconds per value explored. The tolerance for optimality in
the main algorithm was set at 10−5.

Figure 3 shows the classification accuracy when learning
the dimension reduction, using the λ search scheme described
earlier. The error bars report the mean and standard deviation.
The regularized algorithm shows the best performance here.
The mean accuracy is highest among the methods and further,
the error bars are among the narrowest. The method stabilizes
at 98.0% 1-NN classification accuracy at 10D, above the 90.1%
accuracy for using the whole input space.

An 2D RSDA embedding of the Olivetti faces is shown
Figure 4. The correct classifications and misclassifications have
been high-lighted in the figure. We can see for example that the
face projected at (3, 6) is projected a bit off as it should in fact
have been projected at (0.5, 4.5). The three best performing 2D
projections in the Olivetti faces dataset have been compared
in Figure 5. All figures show the 266 learning points and 134
test points for the same permutation. The same embedding is
shown in both Figure 4 and Figure 5.

2) The USPS dataset: The US Postal Service [19] dataset
contains 9298 hand-written images of digits. Each digits is
represented by 16-by-16 pixel grey-scale images, giving 256
data dimensions. The data was divided randomly so that 2/3
was used for training and 1/3 was used for testing. The random
selection was repeated ten times to obtain error bars.

The 1-NN classification accuracies are shown in Figure 6.
SDA has the highest accuracies for small dimension reduction
tasks. We can observe a saturation in LDA, SPCA and SDA.
The saturation is related to the fact that the defined optimal
simplex structure of the data is reached already at 9 dimen-
sions. PCA, PLS-DA and gKDR-v approach or exceed the ini-
tial classification accuracy 96.3% in higher target dimensions.
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Fig. 6: USPS dataset. Classification accuracies for different
DR methods. The baseline is the classification accuracy in the
original high-dimensional dataset.

The three best performing 2D linear embedding of the
data points are compared in Figure 7. In general, we can see
that LDA and PLS-DA resemble multidimensional simplexes
projected onto a subspace with too many classes crowding near
the origin. Such projections are not ideal in the presence of
multiple classes. On the contrary, SDA tends to fill a 2D circle,
ultimately resulting in a higher class discrimination ability.

3) COIL-20 Object Images: The Columbia Object Image
Library contains rotating images of 20 objects, photographed at
5 degree intervals [20]. The images are 128-by-128 pixel grey-
scale images. Images include objects such as rubber ducks, toy
cars and jars. In total, there are 1440 samples in 16384D.

Figure 8 shows classification accuracies for the previous
techniques calculated over the dimensions two to five. The
mean and error bars were calculated by leaving three elements
out of each class at each round and repeating the runs 24 times,
thus going through the whole data. The tolerance for the SDA
algorithms was set at 10−5. SDA and RSDA can in average
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Fig. 7: Three linear embeddings of the USPS dataset. Dots denote projected learning points and stars denote projected test
points. The 1-NN classification accuracy resulting from this embedding is added to the title.

identify over 90% of the classes in with two variables. At 5D,
most algorithms perform similarly. The three best performing
embeddings of the COIL-20 dataset are shown in Figure 9.
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Fig. 8: COIL-20 dataset. Classification accuracies for differ-
ent DR methods. The baseline is the classification accuracy
with no DR at all.

4) Computational complexity and runtime comparison:
The time complexity of SDA in gradient based methods is
largely determined by the number of times the gradient in
Equation (6) is evaluated. The matrix expression has the time
complexity O(dn2 +dDn)), where D is the dimensionality of
the input space, d is dimensionality of target space and n is
the number of samples. As such, optimizers that require as few
function evaluations as possible would be efficient choices.

The processing time of the algorithms in Table II is
compared on the three featured datasets in Figure 10. The
fastest algorithm differs depending on the characteristics of
the dataset. The spectral direction method converges faster
and at a lower level than the other algorithms in the USPS
dataset. Convergence is reached in ca. 120s. The number of
variables is still small enough so that the partial Hessian

Acronym Method
GD: Gradient descent [15]
BB: GD with Barzilai and Borwein step length [15]
CG: Conjugate gradient (Hestenes-Stiefel update) [15]
PCG: Preconditioned CG (LBFGS preconditioning )[15]
RCG: Conjugate gradient (Polak-Ribiere update) [16]
LBFGS: Limited-memory BFGS [15]
SD: Spectral direction (Modified Newton’s method) [15]

TABLE II: Different optimizers compared.

information can be utilized cost-efficiently. The Olivetti and
COIL-20 datasets contain a much larger number of variables.
The Hessian matrix is of the size dD×dD, resulting in a costly
use of the Hessian information. In COIL-20, the attractive
Hessian is re-evaluate only every 20 iterations to increase
the performance. We can see that the LBFGS algorithm and
different forms of the nonlinear conjugate gradient method are
faster choices when doing dimensionality reduction for very
high-dimensional spaces.

B. Comparison over multiple datasets

In this subsection we compare the proposed method with
state-of-the-art linear embeddings especially for visualization
settings (2D). The algorithms were run over three standard
UCI datasets [21], three large datasets (more than 4000 data
points) and three very high-dimensional datasets (more than
4000 input dimensions). In general, the algorithms were run
for different selections of training and test points 10 times
to obtain the confidence intervals. The COIL-20 and COIL-
100 datasets were evaluated in the principle of leave-three-out,
as discussed in subsection IV-A3. As a preprocessing step,
the original color images in COIL-100 were transformed to
gray-scale images and all datasets were normalized. [22] In
the tables that follow, a distinction is made between different
dimension reduction types: none, supervised and unsupervised.
The different types are separated by horizontal lines.

UCI datasets: In the Iris dataset, morphological varieties
of the iris flower are identified by quantitative measurements
of flowers. In the Wine dataset, wine species are identified
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Method Iris Wine W. Breast Cancer
None 0.941± 0.026 0.949± 0.026 0.957± 0.014
SDA 0.948± 0.030 0.983± 0.017 0.956± 0.009
LDA 0.962± 0.025 0.981± 0.016 0.961± 0.009
PLS-DA 0.879± 0.040 0.974± 0.021 0.957± 0.008
gKDR 0.960± 0.021 0.959± 0.030 0.956± 0.013
SPCA 0.892± 0.026 0.974± 0.018 0.961± 0.011
KSPCA 0.893± 0.047 0.971± 0.019 0.893± 0.087
PCA 0.860± 0.034 0.938± 0.024 0.961± 0.011

TABLE III: Three UCI datasets: 1-NN generalization accuracy
(mean ± std) on test set. The datasets were reduced to 2D aside
from None, in which no dimension reduction was done.

based on chemical test results. In the Wisconsin Breast Cancer
dataset, tumors are classified as benign or malignant based
on physical measurements. The datasets are all standard small
datasets with few input dimensions. The results of 2D projec-
tions are shown in Table III. In the UCI datasets, all methods
are performing quite similarly. The tests were repeated 20
times to obtain the error bars.

Large datasets: Three large datasets were compared.
Two datasets were optical number recognition tasks (MNIST,
USPS) and one was a phoneme recognition dataset. The
phoneme dataset contains two vowel pronunciations (aa,ao)
and three consonants (dcl,iy,sh), in which the vowels are
difficult to separate [23],[24]. In SDA, the optimality tolerances
for the large datasets were set at 10−5 and the tests were
repeated 10 times each. The results can be seen in Table IV.
SDA performs favorably in all tests.

High-dimensional datasets: A face recognition dataset
(Olivetti faces) and two object recognition datasets (COIL-
20 and COIL-100) were compared. The regularized version of
SDA was also calculated. The 1-NN out-of-sample classifica-
tion accuracies are shown in Table V. The proposed regularized
algorithm has the highest accuracy among the tested algorithms
on all datasets. The tests were repeated 10 times to obtain the
error bars. The tolerance for optimality was set at 10−5 in
Olivetti and COIL-20 and at 10−4 in COIL-100. The tolerances
for the regularization search were set at one magnitude higher

Method Phoneme MNIST5k USPS
None 0.889± 0.010 0.936± 0.002 0.962± 0.002
SDA 0.875± 0.009 0.557± 0.006 0.668± 0.009
LDA 0.664± 0.010 0.461± 0.011P 0.554± 0.008
PLS-DA 0.779± 0.014 0.301± 0.006 0.490± 0.008
gKDR-v 0.809± 0.015 0.323± 0.024 0.453± 0.009
SPCA 0.780± 0.008 0.401± 0.008 0.490± 0.008
KSPCA 0.781± 0.009 0.401± 0.009 0.354± 0.010
PCA 0.765± 0.007 0.383± 0.006 0.460± 0.010

TABLE IV: Three large high-dimensional datasets, 1-NN
generalization accuracy (mean ± std) on test set. The datasets
were reduced to 2D aside from None, in which no dimension
reduction was done.

Method Olivetti faces COIL-20 COIL-100
None 0.908± 0.023 0.999± 0.005 0.988± 0.006
SDA 0.393± 0.056 0.904± 0.035 0.277± 0.024
RSDA 0.562± 0.047 0.944± 0.026 0.605± 0.026
LDAP 0.446± 0.039P 0.656± 0.079P 0.300± 0.054P

PLS-DA 0.310± 0.042 0.573± 0.042 0.481± 0.049
gKDR-v 0.210± 0.046 0.565± 0.057P 0.142± 0.038P

SPCA 0.325± 0.033 0.623± 0.152D 0.437± 0.061D

KSPCA 0.322± 0.037 0.567± 0.191 0.397± 0.055
PCA 0.289± 0.029 0.667± 0.046 0.288 + 0.036

TABLE V: Three very high-dimensional datasets, 1-NN gen-
eralization accuracy (mean ± std) on test set. The datasets
were reduced to 2D aside from None, in which no dimension
reduction was done.

than the final algorithm, at 10−4 resp. 10−3. Optimizing with
RSDA, including the λ search procedure, was in average faster
than using no regularization (λ = 0) in COIL-100, with the
median time 88 min vs. 215 minB.

DDual formulation for SPCA used.
PDimensionality reduction done in a PCA reduced space, with the size 100.
ARun on 4-core Intel i5-4570 CPU @ 3.20GHz
BRun on 6-core Intel Xeon X5650 @ 2.67GHz. We acknowledge the

computational resources provided by Aalto Science-IT project.
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Fig. 10: Runtimes with different optimization algorithms.
The fastest methods differ depending on the characteristics of
the datasets.

V. CONCLUSION

The proposed method is useful especially at extremely low-
dimensional projections of datasets with numerous classes that
ordinary discriminant analysis algorithms manage poorly. The
generalization ability of the method increases until the optimal
structure is found in ν− 1 dimensions, where ν is the number
of classes. The method performs better than state-of-the-art
linear projections in extremely low-dimensional projections.
Tikhonov regularization was found to increase classification
accuracies in very high-dimensional datasets.
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