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60 Bayesian learning of latent variable models

2.1 Bayesian modeling and variational learning: introduc-
tion

Unsupervised learning methods are often based on a generative approach where the goal
is to find a latent variable model which explains how the observations were generated. It
is assumed that there exist certain latent variables (also called in different contexts source
signals, factors, or hidden variables) which have generated the observed data through an
unknown mapping. The goal of generative learning is to identify both the latent variables
and the unknown generative mapping.

The success of a specific model depends on how well it captures the structure of the
phenomena underlying the observations. Various linear models have been popular, be-
cause their mathematical treatment is fairly easy. However, in many realistic cases the
observations have been generated by a nonlinear process. Unsupervised learning of a
nonlinear model is a challenging task, because it is typically computationally much more
demanding than for linear models, and flexible models require strong regularization for
avoiding overfitting.

In Bayesian data analysis and estimation methods, all the uncertain quantities are
modeled in terms of their joint probability distribution. The key principle is to construct
the joint posterior distribution for all the unknown quantities in a model, given the data
sample. This posterior distribution contains all the relevant information on the parameters
to be estimated in parametric models, or the predictions in non-parametric prediction or
classification tasks [1, 2].

Denote by H the particular model under consideration, and by @ the set of model
parameters that we wish to infer from a given data set X. The posterior probability
density p(0|X,H) of the parameters given the data X and the model H can be computed
from the Bayes’ rule
p(X10, H)p(6|H)

p(X[H)

Here p(X|0,H) is the likelihood of the parameters 6, p(@|H) is the prior pdf of the pa-
rameters, and p(X|H) is a normalizing constant. The term H denotes all the assumptions
made in defining the model, such as the choice of a particular model class and structure,
specific noise model, etc.

The parameters @ of a particular model H; are often estimated by seeking the peak
value of a probability distribution. The non-Bayesian maximum likelihood (ML) method
uses to this end the distribution p(X|6,H) of the data, and the Bayesian maximum a pos-
teriori (MAP) method finds the parameter values that maximize the posterior probability
density p(0|X,H). However, using point estimates provided by the ML or MAP methods
is often problematic, because the model order estimation and overfitting (choosing too
complicated a model for the given data) are severe problems [1, 2.

Instead of searching for some point estimates, the correct Bayesian procedure is to
use all possible models to evaluate predictions and weight them by the respective pos-
terior probabilities of the models. This means that the predictions will be sensitive to
regions where the probability mass is large instead of being sensitive to high values of the
probability density [3, 2]. This procedure optimally solves the issues related to the model
complexity and choice of a specific model H; among several candidates. In practice, how-
ever, the differences between the probabilities of candidate model structures are often very
large, and hence it is sufficient to select the most probable model and use the estimates
or predictions given by it.

A problem with fully Bayesian estimation is that the posterior distribution (2.1) has a
highly complicated form except for in the simplest problems. Therefore it is too difficult

p(OIX, H) =

(2.1)
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to handle exactly, and some approximative method must be used. Variational methods
form a class of approximations where the exact posterior is approximated with a simpler
distribution [4, 2]. In a method commonly known as Variational Bayes (VB) [1, 3, 2] the
misfit of the approximation is measured by the Kullback-Leibler (KL) divergence between
two probability distributions ¢(v) and p(v). The KL divergence is defined by

q(v)
Dialp) = [ atv)mL B (22)
which measures the difference in the probability mass between the densities ¢(v) and p(v).

A key idea in the VB method is to minimize the misfit between the actual posterior pdf
and its parametric approximation using the KL divergence. The approximating density is
often taken a diagonal multivariate Gaussian density, because the computations become
then tractable. Even this crude approximation is adequate for finding the region where
the mass of the actual posterior density is concentrated. The mean values of the Gaussian
approximation provide reasonably good point estimates of the unknown parameters, and
the respective variances measure the reliability of these estimates.

A main motivation of using VB is that it avoids overfitting which would be a difficult
problem if ML or MAP estimates were used. VB method allows one to select a model
having appropriate complexity, making often possible to infer the correct number of la-
tent variables or sources. It has provided good estimation results in the very difficult
unsupervised (blind) learning problems that we have considered.

Variational Bayes is closely related to information theoretic approaches which minimize
the description length of the data, because the description length is defined to be the
negative logarithm of the probability. Minimal description length thus means maximal
probability. In the probabilistic framework, we try to find the latent variables or sources
and the nonlinear mapping which most probably correspond to the observed data. In
the information theoretic framework, this corresponds to finding the latent variables or
sources and the mapping that can generate the observed data and have the minimum
total complexity. This information theoretic view also provides insights to many aspects
of learning and helps to explain several common problems [5].

In the following subsections, we first discuss a natural conjugate gradient algorithm
which speeds up learning remarkably compared with alternative variational Bayesian learn-
ing algorithms. We then briefly present a practical building block framework that can be
used to easily construct new models. This work has been for the most part carried out
already before the years 2006-2007 covered in this biennial report. After this we consider
the difficult nonlinear blind source separation (BSS) problem using our Bayesian methods.
This section has been placed into the Bayes chapter instead of the ICA/BSS because the
methods used are all Bayesian. This section is followed by variational Bayesian learning
of nonlinear state-space models, which are applied to time series prediction, improving in-
ference of states, and stochastic nonlinear model predictive control. After this we consider
an approach for non-negative blind source separation, and then principal component anal-
ysis in the case of missing values using both Bayesian and non-Bayesian approaches. We
then discuss predictive uncertainly and probabilistic relational models. Finally we present
applications of the developed Bayesian methods to astronomical data analysis problems.
In most of these topics, variational Bayesian learning is used, but for relational models
and estimation of time delays in astronomical applications other Bayesian methods are
applied.
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2.2 Natural conjugate gradient in variational inference

Variational methods for approximate inference in machine learning often adapt a paramet-
ric probability distribution to optimize a given objective function. This view is especially
useful when applying variational Bayes (VB) to models outside the conjugate-exponential
family. For them, variational Bayesian expectation maximization (VB EM) algorithms
are not easily available, and gradient-based methods are often used as alternatives.

In previous machine learning algorithms based on natural gradients [6], the aim has
been to use maximum likelihood to directly update the model parameters 6 taking into
account the geometry imposed by the predictive distribution for data p(X|@). The re-
sulting geometry is often very complicated as the effects of different parameters cannot be
separated and the Fisher information matrix is relatively dense.

Recently, in [7], we propose using natural gradients for free energy minimisation in
variational Bayesian learning using the simpler geometry of the approximating distribu-
tions ¢(@|&). Because the approximations are often chosen to minimize dependencies
between different parameters @, the resulting Fisher information matrix with respect to
the variational parameters £ will be mostly diagonal and hence easy to invert.

While taking into account the structure of the approximation, plain natural gradient in
this case ignores the structure of the model and the global geometry of the parameters 6.
This can be addressed by using conjugate gradients. Combining the natural gradient search
direction with a conjugate gradient method yields our proposed natural conjugate gradient
(NCG) method, which can also be seen as an approximation to the fully Riemannian
conjugate gradient method.

The NCG algorithm was compared against conjugate gradient (CG) and natural gra-
dient (NG) algorithms in learning a nonlinear state-space model [8]. The results for a
number of datasets ranging from 200 to 500 samples of 21 dimensional speech spectro-
grams can be seen in Figure 2.1. The plain CG and NG methods were clearly slower than
others and the maximum runtime of 24 hours was reached by most CG and some NG runs.
NCG was clearly the fastest algorithm with the older heuristic method of [8] between these
extremes. The results with a larger data set are very similar with NCG outperforming all
alternatives by a factor of more than 10.
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Q —H— NCG
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Figure 2.1: Convergence speed of the natural conjugate gradient (NCG), the natural
gradient (NG) and the conjugate gradient (CG) methods as well as the heuristic algorithm
(Old) with different data sizes. The lines show median times with 25 % and 75 % quantiles
shown by the smaller marks. The times were limited to at most 24 hours, which was
reached by a number of simulations.
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The experiments in [7] show that the natural conjugate gradient method outperforms
both conjugate gradient and natural gradient methods by a large margin. Considering
univariate Gaussian distributions, the regular gradient is too strong for model variables
with small posterior variance and too weak for variables with large posterior variance.
The posterior variance of latent variables is often much larger than the posterior variance
of model parameters and the natural gradient takes this into account in a very natural
manner.
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2.3 Building blocks for variational Bayesian learning

In graphical models, there are lots of possibilities to build the model structure that defines
the dependencies between the parameters and the data. To be able to manage the vari-
ety, we have designed a modular software package using C++/Python called the Bayes
Blocks [9]. The theoretical framework on which it is based on was published in [10] and a
description of the software package was published in [11].

The design principles for Bayes Blocks have been the following. Firstly, we use stan-
dardized building blocks that can be connected rather freely and can be learned with local
learning rules, i.e. each block only needs to communicate with its neighbors. Secondly,
the system should work with very large scale models. We have made the computational
complexity linear with respect to the number of data samples and connections in the
model.

The building blocks include Gaussian variables, summation, multiplication, nonlinear-
ity, mixture-of-Gaussians, and rectified Gaussians. Each of the blocks can be a scalar or
a vector. Variational Bayesian learning provides a cost function which can be used for
updating the variables as well as optimizing the model structure. The derivation of the
cost function and learning rules is automatic which means that the user only needs to
define the connections between the blocks. Examples of structures which can be build
using the Bayes Blocks library can be found in Figure 2.2.

r(t) ur ()

u,(t)

Figure 2.2: Various model structures utilizing variance nodes. Observations are denoted
by x, linear mappings by A and B, sources by s and r, and variance nodes by u.
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2.4 Nonlinear BSS and ICA

A fundamental difficulty in the nonlinear blind source separation (BSS) problem and even
more so in the nonlinear independent component analysis (ICA) problem is that they
provide non-unique solutions without extra constraints, which are often implemented by
using a suitable regularization. Our approach to nonlinear BSS uses Bayesian inference
methods for estimating the best statistical parameters, under almost unconstrained models
in which priors can be easily added.

We have applied variational Bayesian learning to nonlinear factor analysis (FA) and
BSS where the generative mapping from sources to data is not restricted to be linear. The
general form of the model is

x(t) = £(s(t),0¢) + n(t) (2.3)

This can be viewed as a model about how the observations were generated from the sources.
The vectors x(t) are observations at time ¢, s(t) are the sources, and n(¢) the noise. The
function f(-) is a mapping from source space to observation space parametrized by ;.

In an earlier work [13] we have used multi-layer perceptron (MLP) network with tanh-
nonlinearities to model the mapping f:

f(s;A,B,a,b) = Btanh(As+a)+b. (2.4)

The mapping f is thus parameterized by the matrices A and B and bias vectors a and
b. MLP networks are well suited for nonlinear FA and BSS. First, they are universal
function approximators which means that any type of nonlinearity can be modeled by
them in principle. Second, it is easy to model smooth, nearly linear mappings with them.
This makes it possible to learn high dimensional nonlinear representations in practice.

An important special case of general nonlinear mixtures in (2.3) is a post-nonlinear
(PNL) mixing model. There linear mixing is followed by component-wise nonlinearities
acting on each output independently of the others:

:El(t) = fz [aiTs(t)] + n,(t) 1= 1, .o (25)

Such models are plausible in applications where linearly mixed signals are measured by
sensors with nonlinear distortions f;. The nonlinearities f; can also be modelled by MLP
networks.

Identification of models (2.3) or (2.5) assuming Gaussianity of sources s(t) helps to
find a compact representation of the observed data x(¢). Nonlinear BSS can be achieved
by performing a linear rotation of the found sources using, for example, a linear ICA
technique.

The paper [12] presents our recent developments on nonlinear FA and BSS. A more
accurate linearization increases stability of the algorithm in cases with a large number
of sources when the posterior variances of the last weak sources are typically large. A
hierarchical nonlinear factor analysis (HNFA) model using the building blocks presented
in Section 2.3 is applicable to larger problems than the MLLP based method, as the compu-
tational complexity is linear with respect to the number of sources. Estimating the PNL
factor analysis model in (2.5) using variational Bayesian learning helps achieve separation
of signals in very challenging BSS problems.
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2.5 Nonlinear state-space models

In many cases, measurements originate from a dynamical system and form a time series.
In such instances, it is often useful to model the dynamics in addition to the instan-
taneous observations. We have used rather general nonlinear models for both the data
(observations) and dynamics of the sources (latent variables) [8]. This results in a state-
space model where the sources can be interpreted as the internal state of the underlying
generative process.

The general form of our nonlinear model for the generative mapping from the source
(latent variable) vector s(t) to the data (observation) vector x(¢) at time ¢ is the same as
in Eq. (2.3):

x(t) =f(s(t),0¢) +n(t). (2.6)

The dynamics of the sources can be modelled by another nonlinear mapping, which leads
to a source model [§]

s(t) =g(s(t—1),0,) +m(t), (2.7)
where s(t) are the sources (states) at time ¢, m is the Gaussian noise, and g(-) is a vector
containing as its elements the nonlinear functions modelling the dynamics.

As for the static models presented in Sec. 2.4, the nonlinear functions are modelled
by MLP networks. The mapping f has the same functional form (2.4). Since the states
in dynamical systems are often slowly changing, the MLP network for mapping g models
the change in the value of the source:

g(s(t—1)) =s(t—1) + Dtanh[Cs(t — 1) +c| +d. (2.8)

The dynamic mapping g is thus parameterized by the matrices C and D and bias vectors
c and d.

Estimation of the arising state-space model is rather involved, and it is discussed in de-
tail in our earlier paper [8]. An important advantage of the proposed nonlinear state-space
method (NSSM) is its ability to learn a high-dimensional latent source space. We have also
reasonably solved computational and over-fitting problems which have been major obsta-
cles in developing this kind of unsupervised methods thus far. Potential applications for
our method include prediction and process monitoring, control and identification. MAT-
LAB software packages are available for both the static model (2.3)-(2.4) (under the name
nonlinear factor analysis) and the dynamic model (2.7)-(2.8) (under the name nonlinear
dynamical factor analysis) on the home page of our Bayes group [14].

Time series prediction

Traditionally, time series prediction is done using models based directly on the past ob-
servations of the time series. Perhaps the two most important classes of neural network
based solutions used for nonlinear prediction are feedforward autoregressive neural net-
works and recurrent autoregressive moving average neural networks [15]. However, instead
of modelling the system based on past observations, it is also possible to model the same
information in a more compact form with a state-space model.

We have used the nonlinear state-space model and method [8] described in the begin-
ning of this section to model a time series. The primary goal in the paper [16] was to
apply our NSSM method and software [14] to the time series prediction task as a black
box tool. The details of this application are given in [16].

We applied the NSSM method to the prediction of the nonlinear scalar time series
provided by the organizers of the ESTSP’07 symposium. The original time series contain-
ing 875 samples is shown in Figure 2.3. It seems to be strongly periodic with a period of
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Figure 2.3: The original time series and the predicted 61 next time steps.
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Figure 2.4: Bottom: The original time series starting from time instant 800 and the
predicted 61 next time steps.

approximately 52 samples. Figure 2.3 shows also the predicted 61 next time steps, and
Figure 2.4 in more detail the original time series starting from time instant 800 and the
predicted 61 next time steps. The dotted lines in both figures represent pseudo 95 %
confidence intervals. These intervals are, however, smaller than in reality as the variance
caused by the innovation is ignored [16].

Improving state inference

The problem of state inference involves finding the source vectors s(t — 1) given the data
and the model. While this is an easier problem than finding both the model and the
sources, it is more time critical, since it must often be computed in real-time. While
the algorithm in [8] can be used for inference, it is very slow because of the slow flow
of information through the time series. Standard algorithms based on extensions of the
Kalman smoother work rather well in general, but may fail to converge when estimating
the states over a long gap or when used together with learning the model.

When updates are done locally, information spreads around slowly because the states
of different time slices affect each other only between updates. It is possible to predict
this interaction by a suitable approximation. In [17], we derived a novel update algorithm
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for the posterior mean of the states by replacing partial derivatives of the cost function
with respect to state means s(¢) by (approximated) total derivatives

dCkL, . T OCxk1, 8§(T
ds(t) 2= 35(r) 58(1) (2.9)

~—

They can be computed efficiently using the chain rule and dynamic programming, given
that we can approximate the terms 9s(t)/9s(t — 1) and 9s(t)/9s(t + 1).

This is how we approximated the required partial derivatives. The posterior distribu-
tion of the state s(t) can be factored into three potentials, one from s(t — 1) (the past),
one from s(t + 1) (the future), and one from x(t) (the observation). We linearized the
nonlinear mappings so that the three potentials become Gaussian. Then also the poste-
rior of s(t) becomes Gaussian with a mean that is the weighted average of the means of
the three potentials, where the weights are the inverse (co)variances of the potentials. A
change in the mean of a potential results in a change of the mean of the posterior inversely
proportional to their (co)variances.

Experimental comparison in [17] showed that the proposed algorithm worked reliably
and fast. The algorithms from the Kalman family (IEKS and IUKS) were fast, too, but
they also suffered from stability problems when gaps of 30 consequtive missing observations
were introduced into the data. Basic particle smoother performed very poorly compared to
the iterative algorithms. It should be noted that many different schemes exists to improve
the performance of particle filters.

Stochastic nonlinear model-predictive control

Figure 2.5: Left: The cart-pole system. The goal is to swing the pole to an upward
position and stabilize it without hitting the walls. The cart can be controlled by applying
a force to it. Top left: The pole is successfully swinged up by moving first to the left
and then right. Bottom right: Our controller works quite reliably even in the presence of
serious observation noise.

In [18], we studied such a system combining variational Bayesian learning of an un-
known dynamical system with nonlinear model-predictive control. For being able to con-
trol the dynamical system, control inputs are added to the nonlinear state-space model.
Then we can use stochastic nonlinear model-predictive control, which is based on optimis-
ing control signals based on maximising a utility function.

Figure 2.5 shows simulations with a cart-pole swing-up task. The results confirm that
selecting actions based on a state-space model instead of the observation directly has many
benefits: First, it is more resistant to noise because it implicitly involves filtering. Second,
the observations (without history) do not always carry enough information about the sys-
tem state. Third, when nonlinear dynamics are modelled by a function approximator such
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as an multilayer perceptron network, a state-space model can find such a representation
of the state that it is more suitable for the approximation and thus more predictable.

Continuous-time modeling

In [19], we have outlined an extension of the discrete-time variational Bayesian NSSM of
[8] to continuous-time systems and presented preliminary experimental results with the
method. Evaluation of the method with larger and more realistic examples is a very impor-
tant item of further work. The main differences between continuous-time and discrete-time
variational NSSMs are the different method needed to evaluate the predictions of the states
and the different form of the dynamical noise or innovation.
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2.6 Non-negative blind source separation

In linear factor analysis (FA) [20], the observations are modeled as noisy linear combina-
tions of a set of underlying sources or factors. When the level of noise is low, FA reduces
to principal component analysis (PCA). Both FA and PCA are insensitive to orthogonal
rotations, and, as such, cannot be used for blind source separation except in special cases.
There are several ways to solve the rotation indeterminacy. One approach is to assume
the sources independent, which in low noise leads to independent component analysis.
Another approach, the one discussed in this section, is to constrain the sources to be
non-negative.

Non-negativity constraints in linear factor models have received a great deal of interest
in a number of problem domains. In the variational Bayesian framework, positivity of
the factors can be achieved by putting a non-negatively supported prior on them. The
rectified Gaussian distribution is particularly convenient, as it is conjugate to the Gaussian
likelihood arising in the FA model. Unfortunately, this solution has a technical limitation:
the location parameter of the prior has to be fixed to zero; otherwise the potentials of
both the location and the scale parameter become awkward.

To evade the above mentioned problems, the model is reformulated using rectifica-
tion nonlinearities. This can be expressed in the form of Eq. (2.4) using the following
nonlinearity

f(s; A) = A cut(s) (2.10)

where cut is the componentwise rectification (or cut) function such that [cut(s)]; =
max(s;,0). In [21], a variational learning procedure was derived for the proposed model
and it was shown that it indeed overcomes the problems that exist with the related ap-
proaches (see Figure 2.6 for a controlled experiment). In Section 2.10 an application of
the method to the analysis of galaxy spectra is presented. There the underlying sources
were such that the zero-location rectified Gaussian prior was highly inappropriate, which
motivated the development of the proposed approach.
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Figure 2.6: (a) The histograms of the true sources to be recovered. (b) and (c¢) The
estimated sources plotted against the true sources with the signal-to-noise ratios printed
above each plot. In (b), rectified Gaussian priors have been used for the sources. In (c),
the proposed approach employing rectification nonlinearities has been used.
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2.7 PCA in the presence of missing values

Principal component analysis (PCA) is a classical data analysis technique. Some algo-
rithms for PCA scale better than others to problems with high dimensionality. They also
differ in the ability to handle missing values in the data. In our recent papers [22, 23],
a case is studied where the data are high-dimensional and a majority of the values are
missing.

In the case of very sparse data, overfitting becomes a severe problem even in simple
linear models such as PCA. Regularization can be provided using the Bayesian approach by
introducing prior for the model parameters. The PCA model can then be identified using,
for example, maximum a posteriori estimates (regularized PCA) or variational Bayesian
(VB) learning. We study both approaches in the papers [22, 23].

The proposed learning algorithm is based on speeding up a simple principal subspace
rule in which the model parameters are updated as

2 —Q
) c> oC 2.11)

9i<—9i—’7<80ig 87@’

where « is a control parameter that allows the learning algorithm to vary from the standard
gradient descent (a = 0) to the diagonal Newton’s method (o = 1). These learning rules
can be used for standard PCA learning and extended to regularized PCA and variational
Bayesian (VB) PCA.

The algorithms were tested on the Netflix problem (http://www.netflixprize.com/),
which is a task of predicting preferences (or producing personal recommendations) by using
other people’s preferences. The Netflix problem consists of movie ratings given by 480189
customers to 17770 movies. There are 100480507 ratings from 1 to 5 given, and the task is
to predict 2817131 other ratings among the same group of customers and movies. 1408395
of the ratings are reserved for validation. Thus, 98.8% of the values are missing. We tried
to find 15 principal components from the data using a number of methods. The results
confirm that the proposed speed-up procedure is much faster than any of the compared
methods, and that VB-PCA method provides more accurate predictions for new data than
traditional PCA or simple regularized PCA (see Fig. 2.7).
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Figure 2.7: Left: Training error against computation time in hours in the Netflix problem
for unregularized PCA algorithm based on gradient descent and the proposed speed-up.
Two alternative methods are shown for comparison. Right: The error on test data for
the two versions of unregularized PCA, regularized PCA and two variants of variational
Bayesian PCA. The time scale is linear below 1 and logarithmic above 1.
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2.8 Predictive uncertainty

In standard regression, we seek to predict the value of a response variable based on a set
of explanatory variables. Here, the term predictive uncertainty is used to refer to a task
similar to regression with the exception that we predict not only the mean outcome of
the response variable, but also the uncertainty related to its value. For example, con-
sider predicting the concentration of an air pollutant in a city, based on meteorological
conditions measured some time in advance. In this task it is the extreme events, namely
those occasions when the concentration of the air pollutant rises over a certain threshold,
that are interesting. If the conditional distribution of the response variable is not tightly
concentrated around its mean value, the mean value by itself will be a poor indicator of
the extreme events occurring, and hence predictions based on those alone might lead to
policies with ill consequences.

In [26], a method for predictive uncertainty is presented. The method is based on
conditioning the scale parameter of the noise process on the explanatory variables and then
using MLP networks to model both the location and the scale of the output distribution.
The model can be summarised as

Yt ~ N(f(xt7 ey)a e_Ut)

ug ~ N(f(x¢, 04), 7'_1) (212)

Above, y; is the response variable and x; is the vector of explanatory variables. The
function f, representing the MLP network, has essentially the same form as in Eq. (2.4).
When the latent variable u; is marginalised out of the model the predictive distribution for
y; becomes super-Gaussian. The extent to which this happens depends on the uncertainty
in u; as measured by the precision parameter 7 which is adapted in the learning process.
This adaptive nongaussianity of the predictive distribution is highly desirable as then
the uncertainty in the scale parameter can be accommodated by making the predictive
distribution more robust.

The problem with heteroscedastic models is that learning them using simple meth-
ods can be difficult as overfitting becomes a serious concern. Variational Bayesian (VB)
methods can, however, largely avoid these problems. Unfortunately, VB methods for non-
linear models, such as that in Eq. (2.12), become involved both in analytic as well as in
computational terms. Therefore the learning algorithm in [26] is based on the slightly
weaker approximation technique, the variational EM algorithm, and only the “important”
parameters have distributional estimates. These parameters include the latent variables
ut, the precision parameter, and the second layer weights of the MLPs. The rest of the
parameters, that is, the first layer weights of the MLPs, have point estimates only.

The method summarized in this section was applied to all four datasets in the 'Pre-
dictive uncertainty in environmental modelling’ competition held at World Congress on
Computational Intelligence 2006. The datasets varied in dimensionality from one input
variable to 120 variables. The proposed method performed well with all the datasets
where heteroscedasticity was an important component being the overall winner of the
competition.
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2.9 Relational models

In the previous sections, we have studied models belonging to two categories: static and
dynamic. In static modeling, each observation or data sample is independent of the others.
In dynamic models, the dependencies between consecutive observations are modeled. A
generalization of both types of models is that the relations are described in the data itself,
that is, each observation might have a different structure.

Logical hidden Markov models

Many real-world sequences such as protein secondary structures or shell logs exhibit rich
internal structures. In [24], we have proposed logical hidden Markov models as one so-
lution. They deal with logical sequences, that is, sequences over an alphabet of logical
atoms. This comes at the expense of a more complex model selection problem. Indeed, dif-
ferent abstraction levels have to be explored. Logical hidden Markov models (LOHMMs)
upgrade traditional hidden Markov models to deal with sequences of structured symbols
in the form of logical atoms, rather than characters. Our recent paper [24] formally
introduces LOHMMSs and presents solutions to the three central inference problems for
LOHMMs: evaluation, most likely hidden state sequence, and parameter estimation. The
resulting representation and algorithms are experimentally evaluated on problems from
the domain of bioinformatics (see Figure 2.8).
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Figure 2.8: Representation of mRNA signal structures as a sequence of logical atoms to
be analyzed with a logical hidden Markov model.

Higher order statistics in play-out analysis

A second relational study involves game playing. There is a class of board games called
connection games for which traditional artificial intelligence approach does not provide a
good computer player. For such games, it is an interesting option to play out the game
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from the current state to the end many times randomly. Play-outs provide statistics that
can be used for selecting the best move. In [25], we introduce a method that selects
relevant patterns of moves to collect higher order statistics. Play-out analysis avoids the
horizon effect of regular game-tree search. The proposed method is especially effective
when the game can be decomposed into a number of subgames. Preliminary experiments
on the board games of Hex and Y are reported in [25].
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2.10 Applications to astronomy

Two astronomical applications are discussed in this section: analysis of galaxy spectra and
estimation of time delays in gravitational lensing.

Analysis of galaxy spectra

We have applied rectified factor analysis [21] described in Section 2.6 to the analysis of real
stellar population spectra of elliptical galaxies. Ellipticals are the oldest galactic systems
in the local universe and are well studied in physics. The hypothesis that some of these
old galactic systems may actually contain young components is relatively new. Hence,
we have investigated whether a set of stellar population spectra can be decomposed and
explained in terms of a small set of unobserved spectral prototypes in a data driven but
yet physically meaningful manner. The positivity constraint is important in this modelling
application, as negative values of flux would not be physically interpretable.

Using a set of 21 real stellar population spectra, we found that they can indeed be
decomposed to prototypical spectra, especially to a young and old component [27]. Fig-
ure 2.9 shows one spectrum and its decomposition to these two components. The right
subfigure shows the ages of the galaxies, known from a detailed astrophysical analysis,
plotted against the first weight of the mixing matrix. The plot clearly shows that the first
component corresponds to a galaxy containing a significant young stellar population.

o T T T — n T T T T ]
o< — FNGC 5102 E A ]
o _ _: — Q -
> . - C ]
‘-g . o} C ]
° 3 S F .
x o E Cr °* op ]

O m O :-_l lll 1 1 1 1 Ll l,._-:

4000 6000 1 2 5 10
Restframe A / & age, / Gyr

Figure 2.9: Left: the spectrum of a galaxy with its decomposition to a young and old com-
ponent. Right: the age of the dominating stellar population against the mixing coefficient
of the young component.

Estimation of time delays in gravitational lensing

Gravitational lensing occurs when the light coming from a distant bright source is bent by
the gravitational potential of an intermediate galaxy such that several images of the source
are observed (see the left panel of Figure 2.10 for an example system). Relativistic effects
and the different lengths of the paths affect the time it takes for the photons originating
from the source to travel to the observer. This is perceived as a delay in the intensity
variations between the images (see the right panel of Figure 2.10). The significance of
estimating the delays in such systems stems from the early observation that they can be
used in determining important cosmological quantities [28].

The delay estimation problem is difficult for various reasons. The main challenge is
the uneven sampling rate, as the sampling times are determined by factors one cannot
control such as observing conditions and scheduling. The signal-to-noise ratio in the
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Figure 2.10: Left: The four images of PG11154+080. Right: The corresponding intensity
measurements (the two images closest to each other are merged).

observations is often poor too, although this varies somewhat between datasets. Classical
delay estimation methods usually rely on the cross-correlation function which is easy to
evaluate between regularly sampled signals. The obvious way to attack the problem with
unevenly sampled signals would then be to interpolate them appropriately to obtain evenly
sampled signals and then apply the cross correlation method. But with all the gaps and
the noise in the data, the interpolation can introduce spurious features to the data which
make the cross-correlation analysis go awry [29].

In [30, 31], a method for estimating the delay between irregularly sampled signals is
presented. Since interpolation on the gappy and noisy data can be venturesome, that is
avoided. Instead the two observed signals, z1(t) and xs(t), are postulated to have been
emitted from the same latent source signal s(t), the observation times being determined
by the actual sampling times and the delay. The source is then assumed to follow the
Wiener process: s(tiy1) — s(t;) ~ N(0, [(ti+1 — t;) 0]?). This prior encodes the notion of
“slow variability” into the model which is an assumption implicitly present in many of the
other methods as well. The model is estimated using exact marginalization, which leads
to a specific type of Kalman-filter, combined with the Metropolis-Hastings algorithm.

We have used the proposed method to determine the delays in several gravitational
lensing systems. Controlled comparisons againts other methods cannot, however, be done
with real data as the true delays are unknown to us. Instead, artificial data, where the
ground truth is known, must be used. Figure 2.11 shows the performance of several
methods in an artificial setting.
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Figure 2.11: Average errors of the methods for three groups of datasets.
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