Associative Clustering

Janne Sinkkonen', Janne Nikkil#', Leo Lahti!, and Samuel Kaski?!

!Helsinki University of Technology, Neural Networks Research Centre,
P.O. Box 5400, FIN-02015 HUT, Finland
?Department of Computer Science,
P.O. Box 68, FIN-00014 University of Helsinki, Finland
{Janne.Sinkkonen,Janne.Nikkila,Leo.Lahti,Samuel.Kaski}@hut.fi
http://www.cis.hut.fi/projects/mi

Abstract. Clustering by maximizing the dependency between two paired,
continuous-valued multivariate data sets is studied. The new method, as-
sociative clustering (AC), maximizes a Bayes factor between two cluster-
ing models differing only in one respect: whether the clusterings of the
two data sets are dependent or independent. The model both extends
Information Bottleneck (IB)-type dependency modeling to continuous-
valued data and offers it a well-founded and asymptotically well-behaving
criterion for small data sets: With suitable prior assumptions the Bayes
factor becomes equivalent to the hypergeometric probability of a contin-
gency table, while for large data sets it becomes the standard mutual
information. An optimization algorithm is introduced, with empirical
comparisons to a combination of IB and K-means, and to plain K-means.
Two case studies cluster genes 1) to find dependencies between gene ex-
pression and transcription factor binding, and 2) to find dependencies
between expression in different organisms.

1 Introduction

Distributional clustering by the information bottleneck (IB) principle [21] groups
nominal values x of a random variable X by maximizing the dependency of the
groups with another, co-occurring discrete variable Y. Clustering documents x
by the occurrences of words y in them is an example. For continuous-valued
X, the analogue of IB is to partition the space of possible values & € R% by
discriminative clustering (DC); then the dependency of the partitions and y is
maximized [16].

Both DC and IB maximize dependency between representations of random
variables. Their dependency measures are asymptotically equivalent to mutual
information (MI)!; the empirical mutual information used by IB and some vari-
ants of DC is problematic for finite data sets, however. A likelihood interpretation
of empirical MI (see [16]) opens a way to probabilistic dependency measures that

! Yet another example of dependency maximization is canonical correlation analysis,
which uses a second-moment criterion equivalent to mutual information assuming
normally distributed data [11].



are asymptotically equivalent to MI but perform better for finite data sets [17].
The current likelihood formulation, however, breaks down when both margins
are clustered simultaneously.

In this paper we introduce a novel method, associative clustering (AC), for
clustering of paired continuous-valued data by maximizing the dependency be-
tween the clusters of X and Y, later called margin clusters. A sample appli-
cation is search for different types of city districts, by partitioning a city into
demographically homogeneous regions (Fig. 1B). Here the paired data are the
coordinates and demographics of the buildings of the city.

As a measure of dependency between the cluster sets, we suggest using a
Bayes factor, extended from an optimization criterion for DC [17]. The criterion
compares evidence for two models, one assuming independent margin clusters
(clusters for ¢ and y), and the other allowing more general dependency of the
margin clusters in generating data. With suitable prior assumptions the Bayes
factor is equivalent to a hypergeometric probability commonly used as a de-
pendency measure for contingency tables. It is well justified for finite data sets,
avoiding the problems of empirical mutual information due to sampling uncer-
tainty. Yet it is asymptotically equivalent to mutual information for large data
sets. The Bayes factor is also usable as the cost function of IB [14].

AC will be applied for finding dependencies in gene expression data. It will be
compared with standard K-means, computed independently for the two margins,
which provides a baseline result. The comparison relevals how much is gained
by explicit dependency modeling.

AC will additionally be compared with a new variant of IB. IB operates on
discrete data, and therefore the continuous multivariates need first to be dis-
cretized into atomic regions, for example with K-means. The symmetric IB [5]
can then compose discrete representations for the margins as combinations of the
atomic regions. Again dependence of the representations is the criterion for clus-
tering, and a dependency-maximized contingency table spanned by the margin
clusters results. K-means discretization was chosen because its parameterization
is similar to AC and, more importantly, because it is perhaps the most obvious
alternative for multidimensional discretization.>

In IB, dependency has classically been measured by the (empirical) mutual
information. As margin clusters are here combinations of very small Voronoi
regions, IB finds dependencies between the data sets well, but on the other hand
produces clusters that are potentially less local than those obtained by AC or
standard K-means. We will evaluate the average dispersion of the clusters in the
empirical tests of Section 4.

Both mixture models for discrete data [2,3,8] and Mixture Discriminant Anal-
ysis (MDA)-like [7,13] models for continuous data have common elements with
our approach, and can readily be extended for the double-margin case. An im-

2 Note that discretizing the dimensions independently of each other and using the
Cartesian product as the multidimensional partitioning would fail badly for high-
dimensional « or y. As far as we know, better discretization methods or other com-
parable methods for co-clustering of continuous data have not been published.
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Fig. 1. A Demonstration of the difference between dependency modeling and joint den-
sity modeling. The hypothetical joint density of two one-dimensional variables z and y
is plotted with black, and the respective marginal densities are depicted as histograms
(grey). The marginals, here for simplicity univariate, correspond to the paired data of
the AC setting. The visualized joint distribution consists of two equally-sized parts: a
block in which z and y are independent (denoted by I) and another block (D) where
x and y are dependent. Models for the joint distribution would focus equally on both
blocks, whereas AC and IB focus on the dependent block D not explainable as products
of the marginals, and neglect the independent block I. B Partitioning of Helsinki region
into demographically homogeneous regions with AC. Here x contains geographic coor-
dinates of buildings and y demographic information about inhabitants indicating social
status, family structure, etc. Spatially relatively compact yet demographically homoge-
neous clusters emerge. For instance downtown and close-by relatively rich (Kulosaari,
Westend) areas become separated from less well-off areas

portant difference is that our optimization criterion (as well as that of the In-
formation Bottleneck) focuses only on the dependencies between the variables,
skipping the parts of the joint distribution representable as a product of margins.
Both goals are rigorous but different, as illustrated in Figure 1A.

2 Associative Clustering

2.1 Bayes Factor for Maximizing Dependency between Two Sets of
Clusters

The dependency between two clusterings, indexed by i and j, for the same set
of objects can be measured by mutual information if their joint distribution p;;
is known. If only a contingency table of co-occurrence frequencies n;; computed
from a finite data set is available, the mutual information computed from the em-
pirical distribution would be a biased estimate. A Bayes factor, to be introduced
below, then has the advantage of properly taking into account the finiteness of
the data while still being asymptotically equivalent to mutual information. Bayes
factors have been classically used as dependency measures for contingency ta-
bles (see, e.g., [6]) by comparing a model of dependent margins to another one



for independent margins. We will use the classical results as building blocks to
derive an optimizable criterion for associative clustering; the novelty here is that
the Bayes factor is optimized instead of only using it to measure dependency in
a fixed table.

In general, frequencies over the cells of a contingency table are multinomially
distributed. The model M; of independent margins assumes that the multinomial
parameters over cells are outer products of posterior parameters at the margins:
6;; = 0;0;. The model My of dependent margins ignores the structure of the
cells as a two-dimensional table and samples cell-wise frequencies directly from
a table-wide multinomial distribution 8;;. Dirichlet priors are assumed for both
the margin and the table-wide multinomials.

Maximization of the Bayes factor

g — PUnij}Ma)
p({ni; }|M;)
with respect to the margin clusters then gives a contingency table where
the margins are maximally dependent, that is, which cannot be explained as a
product of independent margins. In the associative clustering introduced in this
paper, the data counts are defined by the training data set and the parame-
ters that determine how the continuous data spaces are partitioned into margin
clusters. Then BF is maximized with respect to the parameters. If this principle
were applied to two-way IB, the margins would be determined as groupings of
nominal values of the discrete margin variables, and the BF would be maximized
with respect to different groupings.
After marginalization over the multinomial parameters, the Bayes factor can
be shown to take the form

Hij I(ni; + n(?)

BF =
[, T(ni. +n) Hj [(n.; +nW)

; (1)

with n;. = Z]. ni; and n.j = ), nj; expressing the margins. The parameters n(d)
n®) and n(¥) arise from Dirichlet priors. We have set all three parameters to
unity, which makes BF equivalent to the hypergeometric probability classically
used as a dependency measure of contingency tables. In the limit of large data
sets, (1) becomes mutual information of the margins; [17] outlines the proof for
the case of one fixed and one parameterized margin.

2.2 Optimization of AC

For paired data {(zy,y,)} of real vectors (z,y) € R¥ x R% we search for
partitionings {Vi(z)} for & and {Vj(y)}) for y. The partitions can be interpreted
as clusters in the same way as in K-means; they are Voronoi regions parameter-
ized by their centroids m;: = € Vi(x) if ||z — m;|| < ||z — my|| for all k, and
correspondingly for y. The Bayes factor (1) will be maximized with respect to
the Voronoi centroids.



The optimization problem is combinatorial for hard clusters, but gradient
methods are applicable after the clusters are smoothed. Gradients for the simpler
one-margin problem have been derived in [17], and are analogous here. An extra
trick, found to improve the optimization in the fixed-margin case [10], is applied
here as well: The denominator of the Bayes factor is given extra weight. A choice
of A) > 1 introduces a regularizing term to the cost function that for large
sample sizes approaches margin cluster entropy, and thereby in general favors
solutions with uniform margin distributions.

The smoothed BF, here called BF’, is then optimized with respect to the
{m} by a conjugate-gradient algorithm (see, for example [1]). We have

_ /\(m) Zlogl“ (Zg(m + n(:c ) )\(y) Zlogl“ (Z (y) + n(?l)) ,

9 (@)= 29 (@) M exp (= o = mNP /ot,)

and similarly for ¢*). The g(+) are the smoothed Voronoi regions at the margins.
The Z(-) is set to normalize 37, ¢\ (x) = > g](-y)(y) = 1. The parameters o
control the degree of smoothing of the Voronoi regions.

The gradient of log BF’ with respect to an X-prototype mgx)

is
Ve 108 BF = — 3 —m™)g @)g (@) (L7 () — L ()
‘ (m)kz’

where

and for y accordingly. In the gradient, ¥(-) is the digamma function.
Note that the smoothing is used during optimization only. Results are evaluated
with hard clusters and the original BF.

3 Reference Methods

3.1 Information Bottleneck with K-means (K-IB)

For discrete X and Y, AC-type of clustering translates to grouping the nominal margin
values to two sets of clusters that are maximally dependent. The setup is that of the
information bottleneck [18,21].

Our continuous data must be discretized before IB can be applied. One approach
is to first quantize the vectorial margins  and y separately by, for instance., K-means,
without paying attention to possible dependencies between the two margins. This re-
sults in two sets of margin partitions which span a large, sparse contingency table that
can be filled with frequencies of training data pairs (2, y,,). The number of elementary



Voronoi regions is chosen by a validation set, as detailed in Section 4. In the second
phase, the large table is compressed by standard IB to the desired size by aggregating
the atomic margin clusters. At this stage, joins at the margins are made to explicitly
maximize the dependency of margins in the resulting smaller contingency table.

IB algorithms are well described in the literature. We have used the symmetric
sequential information bottleneck, described fully in [18]. The algorithm measures
dependency of the margins by empirical mutual information, and it is optimized by
re-assigning of individual samples (here atomic margin partitions) to clusters until a
differential, local version of the cost function does not decrease. Optimization is robust
and fast.

The final partitions obtained by the combination of K-means and IB are of a very
flexible form, and therefore the method is expected to model the dependencies of the
margin variables well—as long as one does not overfit to the data with too many K-
means clusters. As a drawback, the final margin clusters will consist of many atomic
Voronoi regions, and they are therefore not guaranteed to be especially homogeneous
with respect to the original continuous variables (« or y). Interpretation of the clusters
may then be difficult. Our empirical results support both the good performance of K-IB
and the non-localness of the resulting clusters.

3.2 K-means

The data sets will also be clustered by independent K-means clusterings in both data
spaces. Results will represent a kind of a baseline, with no attempt to model depen-
dency.

4 Experiments

4.1 Dependencies between Gene Expression Patterns and TF
Binding Patterns

We sought gene regulation patterns by exploring dependencies between gene expres-
sion on the one hand, and measurement data about potential regulatory interactions
on the other. The latter was measurements of binding patterns of putative regulatory
proteins, transcription factors (TFs), in the promoter regions of the same genes. Asso-
ciative clustering, K-IB, and K-means were applied to 6185 genes of the common yeast,
Saccharomyces cerevisiae. The first margin data (x) was 300-dimensional, consisting of
expressions after 300 knock-out mutations® [9]. The second margin data (y) consisted
of 113-dimensional patterns of binding intensities of TFs [12]. Margin clusters would
then ideally be internally homogeneous sets of expressions and TFs, selected to pro-
duce combinations (contingency table cells) with unexpectedly high or low numbers of
genes.

For AC, the numbers of margin clusters were chosen to produce cross clusters
(contingency table cells) with ten data samples on average. During the cross-validation
runs margin clusters were initialized by K-means, and in each fold the best of three
AC runs was chosen as the final AC clustering. The parameters o(., were chosen with

# Knocking out means elimination of single genes. In all the data sets, missing values
were imputed by gene-wise averages, and variances of dimensions were each sepa-
rately normalized to unity.



a validation set (half of the data as a training set, and half of the data as validation
set), and based on the previous experiments A)=1.2.

Essentially the same test was conducted for the combination of K-means and in-
formation bottleneck (K-IB). Now the number of atomic K-means clusters was chosen
with a validation set, resulting in 400 clusters for the expression space and 300 clus-
ters for the transcription factor binding space. In the cross-validation runs, the atomic
clusters were computed by K-means from three different random initializations, and
for each of these a symmetric IB was sequentially optimized [18]. Of the three runs the
best clustering (in the sense of IB cost) was chosen.

K-IB and AC tables were compared to each other and to tables obtained by bare
margin K-means (10-fold cross validation, tables evaluated by equation 1, paired t-test).
For this data, AC outperformed K-IB (p<0.01) and found more dependent clusters.
Not surprisingly, significant differences to K-means were found (p<0.01) for both AC
and K-IB.

The internal dispersion of the margin clusters was measured for all methods by the
sum of intra-cluster component-wise variances. As expected, K-IB clusters are more
scattered (Figure 2A) in both data spaces. Significant difference was found between
AC and K-IB, but not between AC and K-means, nor between the random partitioning
and K-IB.

Finally, data from the AC cross clusters was studied more closely to find potential
biologically interesting gene concentrations, focusing on contingency table cells with
the most unexpectedly high data counts. In two of the cells, for example, genes showed
a clear and significant bias towards an over-representation of ribosomal protein coding
genes. In the one cell, most of the genes coding for constituent proteins of the cellular
ribosomal complex are present. In the other cell several genes coding for the mitochon-
drial ribosomal subunits are present, and also another set of genes coding for cellular
ribosomal protein subunits.

4.2 Of Mice and Men

As a second test, we clustered human-mouse expression profiles of putative orthologs,
that is, gene pairs sequence-wise similar enough to be suspected to have the same evolu-
tionary origin (see Figure 3). Ideal margin clusters would be internally homogeneous by
expression in at least one species. Cross clusters (cells of the contingency table formed
from margin clusters) would then be cross-species clusters and will be optimized to
detect cross-species regularities in gene expression.

Gene expression from 46 and 45 cell-lines (tissues) of human and mouse were avail-
able, respectively [19]. After removing non-expressed genes (Affymetrix AD<200), 4499
putative orthologs from the the HomoloGene [15] data base were available. After ex-
periments analogous to those of Section 4.1, we found the human-mouse orthologs of
left-out data to be significantly dependent according to both K-IB and AC (10-fold cross
validation against K-means, paired t-test, p<0.001). Differences between AC and K-IB
were not very clear. AC clusters, however, were probably more condensed (p<0.05; Fig.
2B) while tables obtained by K-IB were more dependent (p<0.02).

To illustrate the use of AC for finding interesting relationships, that is, groups of
genes with functional similarity, we picked some cross clusters with significant deviation
from the null hypothesis of independent margin clusters (see also Figure 3).

In the first example AC found a gene pair with a rare and potentially interesting
functional relationship. This cell had unexpectedly few genes (p<0.01), in fact only
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Fig. 2. Average internal dispersion of expression and TF margin clusters obtained by
four methods. 'K’ denotes independent K-means for the margins, and is supposed to
produce very compact clusters. Clusters in '/RAND’ are produced by random assignment
and therefore represent an upper limit of dispersion. The AC and K-means clusters are
more condensed in the expression and in the TF binding space than the IB clusters.
Circles denote the average component-wise intra-cluster variances in left-out data of
cross-validation folds (n=10), and squares show the approximate 99 percent confidence
interval for the means over the cross validation folds. A: Yeast expression and TF bind-
ing. The differences between neither AC and K-means, nor between IB and RAND are
statistically significant (p>0.1, 10-fold cross validation, paired t-test), but the differ-
ence between IB and AC is significant for both expression and TF binding (p<0.01).
B: Homologous genes of human and mouse. The AC and K-means clusters seem to
be more condensed in human and in mouse expression space than the IB or RAND
clusters (p<0.05; paired t-test). Differences between AC and K-means or between IB
and RAND are not statistically significant (p>0.1).

a single gene pair (LocusIDs 1808 and 12934). Average margin profiles of the cluster
suggested activity in the human brain co-occurring with no activity in the mouse at
all. Combining the margin profile information and the fact that only one this kind of
gene exists in the contingency table, we may deduce that homologues which are active
in human brain but totally silent in the mouse are very rare. Examples of such gene
pairs may highlight interesting functional differences between the species. Indeed, the
function of the gene was found to be related to embryo-stage brains and later brain
activity only in humans (see Figure 3B).

In another example, a cross cluster contained unexpectedly many genes
(p<0.01), most of them testis-specific (see Figure 3D). Due to their tissue specificity
and importance for reproduction, they may have sustained their function during evo-
lution.

5 Discussion

We have presented a novel method, associative clustering (AC), for clustering contin-
uous paired data. It maximizes a Bayes factor between two sets of clusters. AC was
found to perform better or equally well than a combination of K-means and information
bottleneck (IB), and better than standard K-means. AC was also capable of extracting
biologically interesting structure from paired gene expression data sets.
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Fig.3. A The contingency table from associative clustering of orthologous human-
mouse gene pairs (orthologous genes are supposed or known to have a common evolu-
tionary ancestor gene). White cross clusters contain an unexpectedly high number of
genes compared to the margin-based expectation. Black cross clusters contain exam-
ples of exceptional gene pairs. B An example of an interesting outlier homology from
a black cross cluster: the gene is highly active in most human tissues but is hardly
expressed at all in mouse. The first 21 tissues are common for both species in B, C and
D. C Cluster-wide average profiles reveal activity in heart tissue, and additional strong
activity in mouse skeletal muscle. Measuring human skeletal muscle would reveal either

a more complete homology or a species difference. D A densely populated cross cluster
of testis-specific genes.



Maximization of the suggested Bayes factor is asymptotically equivalent to max-
imization of mutual information, and could therefore be seen as a dependency cri-
terion alternative to empirical mutual information. It additionally gives information
bottleneck-type dependency modeling a new justification that is clearly different from
joint distribution models but still rigorously probabilistic. The Bayes factor could prob-
ably replace mutual informaton in the Information-Theoretic Co-Clustering Algorithm
[4] as well.

The work could possibly be extended towards a compromise between strict de-
pendency modeling and a model of the joint density (as has been done for one-sided
clustering, [10]). Then the margins could be estimated in part from non-paired data.
This would be analogous to “semisupervised learning” from partially labeled data (see
e.g. [20]), the labels having been replaced by samples of co-occurring paired data.
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