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Abstract— We show that independent component analysis
(ICA) can be used to find distributed representations for words
that can be further processed by thresholding to produce
sparse representations. The applicability of the thresholded ICA
representation is compared to singular value decomposition
(SVD) in a multiple choice vocabulary task with three data
sets.

I. I NTRODUCTION

Latent semantic analysis (LSA) [1] is a very popular
method for extracting information from text corpora. LSA
is based on singular value decomposition (SVD) [2] that
removes second order correlations from data. LSA has been
shown to produce reasonably low-dimensional latent spaces
that can handle various tasks, such as vocabulary tests
and essay grading, at human level [1]. The found latent
components, however, cannot be understood by humans.

Independent component analysis (ICA, see, e.g., [3] and
[4]) can be seen as a whitening followed by a rotation,
where the whitening can be produced with SVD. ICA can
thus be seen as an extension of LSA. The rotation should
transform the latent SVD components into components that
are statistically independent of each other, or in the case
when the components are not truly independent, it should
find “interesting” components. Typical distance measures for
LSA are rotation-invariant and would not show differences
between ICA and LSA. We are interested in the information
encoded by the individual ICA components and how they
can be useful.

The ICA has been shown to, e.g., detect topics in document
collections (see, e.g., [5] and [6]). Earlier we have shown that
the ICA analysis results into meaningful word features (see,
[7] and [8]) and that these features correspond to a reasonable
extent with categorizations created through human linguistic
analysis in [9] and in [10].

In this paper, we present a novel methodological extension.
We show that the components found by ICA can be further
processed by simple nonlinear filtering methods and produce
results with good quality. In particular, the end result is a
sparse feature representation of words. We show through
practical experiments using three different data sets that
this approach exceeds the capacity of the LSA method. An
analogical approach can be found from the analysis of natural
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images, where a soft thresholding of sparse coding is seen
as a denoising operator [11].

II. DATA

Understanding language requires knowing the different
relations between the units of language. Our goal is to
find a distributed word representation based on unsupervised
learning from actual natural language use. We have a col-
lection of English texts as our source of natural language
and our unsupervised learning methods are singular value
decomposition and independent components analysis. The
representations learned with the methods are applied to a
synonym finding task and to an association finding task that
measure how well the word representations capture word
meanings.

A. Gutenberg Corpus

A collection of 4966 free English e-books were extracted
from the Project Gutenberg website [12]. The texts were
pruned to exclude poems and the e-book headers and footers
were removed. The texts were then concatenated into a
single file and preprocessed by removing special characters
and replacing numbers by a special symbol and uppercase
characters with respective lowercase ones. The final corpus
had 319 998 584 tokens (word forms in running texts) and
1 405 298 types (unique word forms). For computational
reasons, a subset of the types was selected as the vocabulary
to be analyzed.

B. Vocabulary Test Sets

The semantic content of a word representation can be
measured with multiple choice vocabulary tests. We chose
three test sets. The first one is the synonym part of the
TOEFL data set [13] provided by the Institute of Cogni-
tive Science, University of Colorado, Boulder. The second
and larger synonym data set was derived from the Moby
thesaurus II [14], which is part of the Moby Project. In a
synonym test, the task is to choose a synonym or related
word from a list of alternatives for a given stem word. The
third data set is a word association test derived from the
idiosyncratic responses from the free association norms data
set [15]. There we defined the task to be select the association
produced by a human subject for the same cue word from a
list of alternatives. Performance of the methods is measured
with precision: the ratio of correct answers to the number of
questions in the data set. Questions and the vocabulary were
selected to have perfect recall, i.e., all words in the questions
were included in the vocabulary.
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1) TOEFL Synonyms: In the synonym data set of 80
TOEFL questions, where the task is to select the synonym
for the stem word from four alternatives. LSA has been
shown to get 64.4 % correct for these questions [1]. Even
a level of 97.5 % has been reached by combining several
methods, including LSA and an online thesaurus [16]. By
comparison, the average score on the 80 questions, for a
large sample of applicants to US colleges from non-English
speaking countries, is 64.5 % correct [1]. The data set is very
limited in size and comparison of methods with only this
data set is not sufficient. Also, the baseline precision with
guessing from four alternatives is 25 % and chance might
play a big role in the precision.

2) Moby Synonyms and Related Words: The Moby The-
saurus of English words and phrases has more than 30 000
entries with 2.5 million synonyms and related terms. We
generated multiple choice questions similar to the TOEFL
synonym test by selecting a stem from the Moby thesaurus,
removing all but one of the synonyms and adding a number
of random words from our vocabulary as alternatives. This
method allows us to have more questions and alternatives,
which makes the test more robust. With four alternatives,
the Moby questions scored worse than the TOEFL questions
with the methods presented in this paper, which would
suggest that, on average, our generated questions are not
easier than the hand-made questions. However, when the
incorrect alternatives in the TOEFL set were replaced with
random words, the precision improved, which means that the
hand-made questions are more difficult.

Our vocabulary overlapped with 16 638 entries in the
Moby thesaurus and one multiple choice question with
16 alternatives was generated for each one. The baseline
precision is 6.25 % with guessing from 16 alternatives.

3) Idiosyncratic Associations: The free association norms
data set from the University of South Florida contains
idiosyncratic responses, that is, responses given by only
one human subject, to more than five thousand cue words.
On average, there are approximately22.15 idiosyncratic
responses per cue word with high variation, and typically
more idiosyncratic responses are produced than responses
given by two or more participants [15].

Similarly to the generated Moby questions, the idiosyn-
cratic association data set was used to generate 4 582 multiple
choice questions with 16 alternatives. This data set is smaller
than the Moby data set, but still significantly larger than the
TOEFL data set.

III. M ETHODS

It has been known already for some time that statistical
analysis of the contexts in which a word appears in text can
provide reasonable amount of information on the syntactic
and semantic roles of the word (see, e.g., [17] and [18]). A
typical approach is to calculate a document-term matrix in
which the rows correspond to the documents and the columns
correspond to the terms. A column is filled with the number
of occurrences of the particular term in each document. The
similarity of use of any two terms is reflected by the relative

similarity of the corresponding two columns in the document-
term matrix. Instead of considering the whole documents
as contexts, one can also choose the neighboring words,
a sentence, a paragraph or some other contextual window.
An alternative approach, that is taken here, is to calculate
the number of co-occurrences of the particular term with a
number of other terms in a contextual window around the
analyzed term. This produces a context-term matrix, where
each context is defined using terms instead of documents.

A. Contextual Information

Contextual information is a standard way of filtering
more dense data from running text. Frequencies of term
occurrences, or co-occurrences, in different chunks of texts
are typically calculated. The idea behind this is that the
relations of words manifest themselves by having related
words occur in similar contexts, but not necessary together.
Raw contextual data is too sparse for practical use and it
has been shown that finding a more compact representation
from the raw data can increase the information content by
generalizing the data [1].

A context-term matrixX was calculated using the Guten-
berg corpus, where the rows correspond to contexts and the
columns represent the terms in the analyzed vocabulary. The
context contained frequencies of the 1 000 most common
word forms in a 21 word window centered around each
occurrence of the analyzed terms. It has been reported that
contextual methods are not sensitive to moderate changes
in context window size [1] and context window size varies
greatly from experiment to experiment [19]. We did not
optimize the context window size for our method. The
terms included the 50 000 most common word forms in the
Gutenberg corpus and additional 29 words that were present
in the TOEFL data set but not in the first set so that all of
the questions in the TOEFL set could be used. Experiments
with only the 1 000 most common terms combined with the
TOEFL terms gave similar results. The contextual informa-
tion was encoded with a bag-of-words model to the matrix
X of size 1 000 × 50 029. The raw frequency information
of the most common words is typically modified using stop-
word lists and term weighting, such as the tf·idf method that
is suitable for document contexts. We did not use stop-word
lists and frequency rank information was preserved by taking
the logarithm of the frequencies increased by one, which we
have found to be a simple and an efficient method.

B. Singular Value Decomposition

Singular value decomposition learns a latent structure for
representing data. Input to singular value decomposition is a
m× n matrix X. The SVD method finds the decomposition
X = UDV

T , whereU is anm × r matrix of left singular
vectors from the standard eigenvectors of square symmetric
matrix XX

T , V is ann× r matrix of right singular vectors
from the eigenvectors ofXT

X, D is a diagonalr×r matrix
whose non-zero values are the square roots of the eigenvalues
of XX

T or (equivalently)XT
X, andr = min(n,m) is the



rank ofX. A lossy dimension reduction tol ≤ r components
can be achieved by discarding small eigenvalues.

In latent semantic analysis, that is based on SVD, the input
matrix X is a context-term matrix representing the weighted
frequencies of terms in text passages or other contexts.
The method can handle tens of thousands of terms and
contexts. Dimension is typically lowered to a few hundred
components, that reduces noise and generalizes the data by
finding a latent semantic representation for words. Words
and texts can be compared by their respective vectorial
representations in the latent space. We calculated SVD with
the PROPACK [20] package for Matlab.

C. Independent Component Analysis

Independent component analysis uses higher-order statis-
tics compared to singular value decomposition that only re-
moves second-order correlations. ICA finds a decomposition
Z = BS for a data matrixZ, whereB is a mixing matrix
of weights for the independent components in the rows of
matrix S. The task is usually to find a separating matrix
W = B

−1 that produces independent componentsS = WZ.
If dataZ is white, i.e., the covariance matrix is an identity

matrix, it suffices to find a rotation that produces maximally
independent components [4]. The right singular valuesV

produced by SVD are white and thus SVD can be seen as a
preprocessing step to ICA. This is illustrated in Figure 1.
The ICA rotation should find components that are more
interesting and structure the semantic space in a meaningful
manner. We calculated ICA with the FastICA package for
Matlab [21].

Fig. 1. ICA can be represented as an extension of SVD, where the white
SVD componentsZ = VT are transformed with a rotation matrixB to
find the ICA componentsS. SVD is approximated for a reduced dimension
from the original dimension of the data matrixX, marked here with the
solid and dashed lines, respectively.

D. Word Space and Thresholding

The orthographic representation of words does not give
a direct way of comparing the similarity of words. The
vectorial representations of the raw contextual data, the SVD
representation and the ICA representation, however, represent
words as points in space. The locations of the words in the
space are a result of the contexts used for collecting the raw
contextual data, text occurrences of the words in the corpus,
and the components found by LSA and ICA, respectively.

Two words in the space are compared through their
vectorial representationsa and b, which are the respective

two columns in the matrixX, VT or S. We chose the cosine
measure

d(a,b) =
a

T
b

‖a‖‖b‖
(1)

that gives the cosine of the angle between the two vectorsa

andb. In a multiple choice vocabulary test, the stem word is
compared to all alternatives and the closest word according
to (1) is chosen as the answer. The measure works similarly
for word vectors with thresholded values. The measure is a
typical one in LSA and is invariant to the rotation found by
ICA. This ensures that the differences between the methods
are due to the thresholding.

SVD has an inbuilt method of selection of the components
in descending magnitude of the variances in the directions of
the eigenvectors. This is an efficient way to reduce dimension
and optimal in mean square error sense.

Similar treatment does not work with ICA that considers
the components to have unit variance and does not order
the components. Instead, the dimension is already reduced
with SVD and followed by an ICA rotation. We further
processed the ICA space by selecting a number of active
components for each word vector. The rest of the components
are selected to be inactive. The selected components depend
on the word, but the same number of components was
selected for each word. As the mean was not removed from
the data, the component values selected as inactive were set
to the mean component value. The number of selected active
components for all word vectors was the same, which makes
the comparison between ICA thresholding and SVD feasible.

The selection of the active components for each word
vector was based on ordering normalized, i.e., zero mean
and unit variance, absolute component values of the word
vectors. Low values closer to the mean component value are
thought as less active than values that diverge from the mean.
Our assumption is that the ICA components are linguistically
more separated than the latent SVD components and that
only a few active components are needed to represent each
word. The inactive ICA component values would thus be less
important for that particular word and can be thresholded. We
did not want to fix the thresholding parameter, i.e., the fixed
number of components that are thresholded for each word
vector. Instead, we varied this parameter and show results
with thresholding from the full model with no thresholding
to the minimal model with only one retained component for
each word.

Dimension reduction with SVD can be thought as thresh-
olding the same components for each word vector. This has
the additional advantage that the inactive components can
be dropped out and the dimension can actually be reduced,
whereas ICA thresholding only makes the representation
more sparse without dimension reduction. Thresholding with
SVD was also tested for comparison.

IV. RESULTS

Singular value decomposition orders the latent components
according to the eigenvalues of the covariance matrix. This



allows a natural and efficient way of reducing dimension. In
this paper, the necessary number of components for efficient
working of the latent space as a semantic representation is
measured with vocabulary tests. Figure 2 shows precision of
the SVD space with the Moby questions w.r.t. the number of
components. The peak precision is seen with approximately
80 components. This can be explained by many noise compo-
nents with small eigenvalues that do not contribute positively
to the precision of the classification system. The peak value
can be thought to be an optimal number of components and
a good starting point for ICA. The 95 % confidence intervals
for the Moby data set would overlap the precision curve and
are not shown in this section.
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Fig. 2. Precision of the SVD space with the Moby data set w.r.t.dimension
of the latent space. With more than 80 dimensions the precisionactually
drops from the peak value.

Independent component analysis does not order the com-
ponents and feature selection must be done by other means.
Dimension reduction and whitening with SVD is the standard
practice for ICA, but this would only add a rotation of the
space compared to SVD. The distance measure in (1) is
rotation-invariant and basic ICA would not contribute sig-
nificant changes to the classification result. The assumption
that the ICA components are meaningful as such suggests
that the inactive components for words can be de-selected
by thresholding the components with values close to the
mean component value (see, e.g., [22]). This makes the word
representation sparse and could remove noise. Dimension
reduction in preprocessing is important, as it will remove
noise, as ICA does not order the components and considers
each component to have unit variance. Figure 3 plots the
precision of ICA with thresholding starting from 20, 40 and
80 components for the Moby data set w.r.t. to the number
of active components. The SVD precision in Figure 2 is
shown as reference. It can be seen that precision grows faster
with ICA and levels out to the SVD precision when no
components are thresholded.

Thresholding with SVD does not improve the precision, as
can be seen in Figure 4, that compares the precisions of SVD
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Fig. 3. Precision of ICA with thresholding with the Moby dataset w.r.t. the
number of active components. ICA word representations are thresholded to
include only a selected number of components from 20 (dashed),40 (dash
dotted) and 80 (dotted) components. The SVD precision (solid) up to 100
components is given as reference.
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Fig. 4. Precisions of the SVD (solid), SVD with thresholdingwith
80 components (dashed) and ICA with thresholding with 80 components
(dotted) with the Moby data set w.r.t. the number of active components.

and SVD with thresholding starting with 80 components
with the Moby data set. SVD with thresholding performs
similarly to the basic SVD. With a very small number of
starting components, ICA and SVD thresholding methods
perform quite similarly. This is understandable, since if the
dimension of the representation is too small, it may not be
possible to separate semantic components from each other.
With an optimal number of starting components, selected
with the peak SVD precision, ICA with thresholding is more
accurate and outperforms SVD with all thresholding values.
If the starting dimension is too high and includes noise
components, however, ICA with thresholding does not reach
the same peak level as SVD.

Similar tests were run with the questions derived from



the idiosyncratic association data set and results are quite
similar, even the precision is approximately at the same level.
Figure 5 shows the result with 60 components for ICA and
SVD with thresholding and comparison to SVD precision.
Similarly to the Moby questions, the precision did not grow
after the peak value approximately at 100 components.
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Fig. 5. Precisions of the SVD (solid), SVD with thresholdingwith
60 components (dashed) and ICA with thresholding with 60 components
(dotted) with the idiosyncratic association data set w.r.t.the number of active
components.

Results for the TOEFL data set, shown in Figure 6,
show that here SVD with thresholding performs equally well
to ICA with thresholding, both with 106 components. The
hand-picked alternatives for the TOEFL questions make the
alternatives for each question to be close to each other. This
seems to affect the precision as SVD with thresholding works
equally well as ICA with thresholding. Changing the hand-
selected incorrect alternatives to random words produces
results similar to Figure 4 and Figure 5, where SVD with
thresholding does not perform better than SVD. This suggests
that ICA with thresholding performs equally well for all
words whereas SVD with thresholding works only with
words that are all very similar to each other.

An interesting result is the highest precision, 81.25 %,
that was reached with 106 components with SVD for the
TOEFL data set. That precision is equal to the result
obtained with document retrieval with a window of 16 words,
point-wise mutual information and a 53 billion word web
corpus [19]. Comparison to the LSA result of 64.4 % with
60 000 words, 30 000 document contexts and dimension
reduction to 300 with SVD [1], however, shows a huge
improvement. The main difference in our experiments is the
use of co-occurrences of terms in window contexts instead
of the document-based approach. Thus, it seems that the
selection of context type has a crucial effect on the results.

V. CONCLUSIONS

In this paper, distributed semantic feature representations
for words are extracted using contextual information from

0 50 100 150

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 6. Precisions of the SVD (solid), SVD with thresholdingwith 106
components (dashed) and ICA with thresholding with 106 components
(dotted) with the TOEFL data set w.r.t. the number of active components.

natural language data. Especially, we demonstrate how inde-
pendent component analysis finds an explicit representation
for words, compared to the latent representation found by
singular value decomposition. This is carried out by addi-
tional nonlinear filtering, which preserves the semantically
rich component values for each word, and thresholds the less
important components the mean component values.

The semantic information content of the different represen-
tations is measured with multiple choice vocabulary tests,in
which the locations of the words in the space represents their
relationship to each other. Two alternatives are proposed to
complement the traditional synonym TOEFL data set. The
first one is a synonym questions data set generated from the
electronic Moby thesaurus. The second data set is generated
from idiosyncratic associations from human subjects. The
proposed data sets are much larger and the number of
alternatives can easily be extended, but on the other hand,
there is no knowledge of human level performance.

Independent component analysis and singular value de-
composition are both examined as methods for extracting
word representations from raw contextual information. An
optimal dimension can be seen to contain all semantic
information and to exclude noise. Additionally, ICA can be
seen to find such a rotation of the representation that the
components reflect more meaningful concepts. Thresholding
of inactive values with ICA gives a sparse representation for
words with much less degradation of precision in vocabulary
tests than SVD with or without thresholding. SVD with
thresholding performs equally well to ICA with thresholding
when considering words that are close to each other, but
unlike ICA with thresholding, it does not generalize to all
words.

The parameters and preprocessing were chosen to repre-
sent an LSA approach, in order to avoid tuning the method
to favor ICA. This is reflected in the fact that we were able to



reach a precision of 81.25 % with full SVD for the TOEFL
synonym questions, that did equally well to the best single
reported method but does not reach the level of a combination
of different methods.

The results shown in this article indicate that it is possible
to create automatically a sparse representation for words.
Moreover, the emergent features in this representation seem
to correspond with some linguistically relevant features.
When the context is suitably selected for the ICA analysis,
the emergent features mostly correspond to some semantic
selection criteria. Traditionally, linguistic features have been
determined manually. For instance, case grammar is a clas-
sical theory of grammatical analysis [23] that proposes to
analyze sentences as constituted by the combination of a
verb plus a set of deep cases, i.e., semantic roles. Numerous
different theories and grammar formalisms exist that provide
a variety of semantic or syntactic categories into which words
need to be manually classified.

Statistical methods such as SVD and ICA are able to
analyze context-term matrices to produce automatically use-
ful representations. ICA has the additional advantage, es-
pecially when combined with some additional processing
steps reported in this article, over SVD (and thus LSA) that
the resulting representation is sparse and each component
of the representation is meaningful as such. As the LSA
method is already very popular, we assume that the additional
advantages brought by this method will further strengthen the
movement from manual analysis to an automated analysis.
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