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Sparse Distributed Representations for Words with
Thresholded Independent Component Analysis
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Abstract—We show that independent component analysis images, where a soft thresholding of sparse coding is seen
(ICA) can be used to find distributed representations for words  as a denoising operator [11].
that can be further processed by thresholding to produce
sparse representations. The applicability of the thresholded ICA Il. DATA
representation is compared to singular value decomposition . ) . .
(SVD) in a multiple choice vocabulary task with three data Understanding language requires knowing the different
sets. relations between the units of language. Our goal is to

find a distributed word representation based on unsupervised

I. INTRODUCTION learning from actual natural language use. We have a col-

Latent semantic analysis (LSA) [1] is a very popu|aljection of English _texts as our source of natur.al language

method for extracting information from text corpora. LSA&Nd our unsupervised learning methods are singular value

is based on singular value decomposition (SVD) [2] thaqlecomposn_lon and mdepe_ndent components analy_5|s. The

removes second order correlations from data. LSA has bekgPresentations learned with the methods are applied to a

shown to produce reasonably low-dimensional latent spac®é10nym finding task and to an association finding task that

that can handle various tasks, such as vocabulary te§ig@sure how well the word representations capture word

and essay grading, at human level [1]. The found lateff€anings.

components, however, cannot be understood by humans. 5 Gutenberg Corpus

Independent component analysis (ICA, see, e.g., [3] and i i
[4]) can be seen as a whitening followed by a rotation A collection of 4966 free English e-books were extracted

where the whitening can be produced with SVD. ICA caffom the Project Gutenberg website [12]. The texts were

thus be seen as an extension of LSA. The rotation shoumuned to exclude poems and the e-book headers and footers
transform the latent SVD components into components thi{e€ removed. The texts were then concatenated into a
are statistically independent of each other, or in the ca§éngle file "?md preprocessed by removing special characters
when the components are not truly independent, it shouﬁpd rep'ac'”g hnumbers.byla special symbol gndf_uplpercase
find “interesting” components. Typical distance measures f§aracters wit resiectlve owe;case ones. The final corpus
LSA are rotation-invariant and would not show differenced'@d 319998584 tokens (word forms in running texts) and

between ICA and LSA. We are interested in the informatiort #0° 298 types (unique word forms). For computational
encoded by the individual ICA components and how the asons, a subset of the types was selected as the vocabulary

can be useful. 0 be analyzed.

The ICA has been shown to, e.g., detect topics in documegt \pcabulary Test Sets
collections (see, e.g., [5] and [6]). Earlier we have shown that
the ICA analysis results into meaningful word features (see,
[7] and [8]) and that these features correspond to a reasona
extent with categorizations created through human linguist
analysis in [9] and in [10].

The semantic content of a word representation can be
gasured with multiple choice vocabulary tests. We chose
ree test sets. The first one is the synonym part of the
OEFL data set [13] provided by the Institute of Cogni-

Hve Science, University of Colorado, Boulder. The second

In this paper, we present a hovel methodological extensio hd larger synonym data set was derived from the Moby
We show that the components found by ICA can be furthe£ esaurus Il [14], which is part of the Moby Project. In a

processed by simple nonlinear filtering methods and produ nonvim test. the task is to ch nonvm or related

results with good quality. In particular, the end result is gynonym test, the fask 1S 1o choose a synonym or refate

sparse feature representation of words. We show throu ord from a list of alternatives for a given stem word. The
ird data set is a word association test derived from the

practical experiments using three different data sets thl iosyncratic responses from the free association norms data

this approach exceeds the capacity of the LSA method. A t[1yS] There WF(; defined the task to be select the association

analogical approach can be found from the analysis of naturay ) :

produced by a human subject for the same cue word from a
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1) TOEFL Synonyms: In the synonym data set of 80 similarity of the corresponding two columns in the docurment
TOEFL questions, where the task is to select the synonytarm matrix. Instead of considering the whole documents
for the stem word from four alternatives. LSA has beems contexts, one can also choose the neighboring words,
shown to get 64.4% correct for these questions [1]. Evea sentence, a paragraph or some other contextual window.
a level of 97.5% has been reached by combining severah alternative approach, that is taken here, is to calculate
methods, including LSA and an online thesaurus [16]. Byhe number of co-occurrences of the particular term with a
comparison, the average score on the 80 questions, fomamber of other terms in a contextual window around the
large sample of applicants to US colleges from non-Englishnalyzed term. This produces a context-term matrix, where
speaking countries, is 64.5% correct [1]. The data set ig veeach context is defined using terms instead of documents.
limited in size and comparison of methods with only this
data set is not sufficient. Also, the baseline precision with. Contextual Information

guessing from four alternatives is 25% and chance might contextual information is a standard way of filtering

play a big role in the precision. _ more dense data from running text. Frequencies of term
2) Moby Synonyms and Related Words: The Moby The- ..\ rrences, or co-occurrences, in different chunks dbtex

saurus of English words and phrases has more than 3009 ynically calculated. The idea behind this is that the

entries with 2'5 miIIion' synonyms a”‘?' related terms. Wee|ations of words manifest themselves by having related
generated multiple choice questions similar to the TOEF

_ ords occur in similar contexts, but not necessary together
synonym test by selecting a stem from the Moby thesauruga,, contextual data is too sparse for practical use and it

removing all but one of the synonyms and adding a numbgf,q peen shown that finding a more compact representation

of random words from our vocabulary as alternatives. Thigqo ., the raw data can increase the information content by
method allows us to have more questions and alternativeg%neranzing the data [1].

which makes the test more robust. With four alternatives, » .o niext-term matrixX was calculated using the Guten-

the Moby questions scored worse than the TOEFL questiops, corhus, where the rows correspond to contexts and the
with the methods presented in this paper, which wouldly;mns'represent the terms in the analyzed vocabulary. The
suggest that, on average, our generated questions are Ogfiev: contained frequencies of the 1000 most common
easier than the hand-made questions. However, when rd forms in a 21 word window centered around each

incorrect alternatives in the TOEFL set were replaced Wit .., rence of the analyzed terms. It has been reported that
random words, the precision improved, which means that tl?:%ntextual methods are not sensitive to moderate changes

hand-made questions are more difficult. in context window size [1] and context window size varies

Our vocabulary overlapped V\."th 16 638 entries in th reatly from experiment to experiment [19]. We did not
Moby thesgurus and one multiple choice question witl ptimize the context window size for our method. The
16 qltgrngtlves was generateq for each one. Th_e base“f%?ms included the 50000 most common word forms in the
pr20|sl|(]cl?n IS 62tS %f W'th %ues.stlr]g frfom 16 altgr?atlves. Gutenberg corpus and additional 29 words that were present
) Idiosyncratic clations. The reée association NOrMs ;, yhe TOEFL data set but not in the first set so that all of
glz_ita set f_rom the Un|ver5|ty_of South FIonda containg,, guestions in the TOEFL set could be used. Experiments
idiosyncratic responses, that is, résponses given by o ith only the 1000 most common terms combined with the
one human subject, to more than five thousand cue WorGggeE) “tormsg gave similar results. The contextual informa-

On average, there are ap.prox[matezy._lS' |dlosyncrat!c tion was encoded with a bag-of-words model to the matrix
responses per cue word with high variation, and typically ¢ i, 1 00 » 50029. The raw frequency information

more idiosyncratic responses are produced than reSPoN3fthe most common words is typically modified using stop-

give_n by two or more participants [15]. . - word lists and term weighting, such as thédff method that
Similarly to the generated Moby questions, the idiosyn-

. o JIs suitable for document contexts. We did not use stop-word
cratic association data set was used to generate 4 582 mumﬁsts and frequency rank information was preserved by akin
choice questions with 16 alternatives. This data set islsmal

han the Mobv d b il sianifi vl h hthe logarithm of the frequencies increased by one, which we
than the Moby data set, but still significantly larger thae t have found to be a simple and an efficient method.
TOEFL data set.

I1l. METHODS B. Singular Value Decomposition

It has been known already for some time that statistical Singular value decomposition learns a latent structure for
analysis of the contexts in which a word appears in text caepresenting data. Input to singular value decompositaa i
provide reasonable amount of information on the syntactie: x n matrix X. The SVD method finds the decomposition
and semantic roles of the word (see, e.g., [17] and [18]). X = UDV7T, whereU is anm x r matrix of left singular
typical approach is to calculate a document-term matrix igectors from the standard eigenvectors of square symmetric
which the rows correspond to the documents and the colummstrix XX, V is ann x r matrix of right singular vectors
correspond to the terms. A column is filled with the numbefrom the eigenvectors &X7X, D is a diagonal x  matrix
of occurrences of the particular term in each document. Thehose non-zero values are the square roots of the eigesvalue
similarity of use of any two terms is reflected by the relativef XX or (equivalently)X”X, andr = min(n,m) is the



rank of X. A lossy dimension reduction fo< » components two columns in the matriX, VT or S. We chose the cosine

can be achieved by discarding small eigenvalues. measure -
In latent semantic analysis, that is based on SVD, the input d(a,b) = a’b Q)
matrix X is a context-term matrix representing the weighted ’ llal||[b]|

frequencies of terms in text passages or other conteXifiy; yives the cosine of the angle between the two veetors
The method can handle tens of thousands of terms a&ﬂdb. In a multiple choice vocabulary test, the stem word is
contexts. Dimension is typ|ca_lly lowered to a few hundre ompared to all alternatives and the closest word according
components, that reduces noise and generalizes the datayhy1) js chosen as the answer. The measure works similarly
finding a latent semantic representation for words. WOrgg,'\yorq vectors with thresholded values. The measure is a
and texts can be compared by their respective VeCtorI%pical one in LSA and is invariant to the rotation found by

representations in the latent space. We calculated SVD wifR 5 This ensures that the differences between the methods
the PROPACK [20] package for Matlab. are due to the thresholding.
SVD has an inbuilt method of selection of the components

in descending magnitude of the variances in the directiéns o

Independent component analysis uses higher-order stafige eigenvectors. This is an efficient way to reduce dimensio
tics compared to singular value decomposition that only regg optimal in mean square error sense.
moves second-order correlations. ICA finds a decomposition sijmilar treatment does not work with ICA that considers
Z = BS for a data matrixZ, whereB is a mixing matrix the components to have unit variance and does not order
of weights for the independent components in the rows ghe components. Instead, the dimension is already reduced
matrix S. The task is usually to find a separating matrixyith SVD and followed by an ICA rotation. We further
W = B~ that produces independent componéits WZ.  processed the ICA space by selecting a number of active

If dataZ is white, i.e., the covariance matrix is an identitycomponents for each word vector. The rest of the components
matrix, it suffices to find a rotation that produces maximallyyre selected to be inactive. The selected components depend
independent components [4]. The right singular valdes on the word, but the same number of components was
produced by SVD are white and thus SVD can be seen ass@lected for each word. As the mean was not removed from
preprocessing step to ICA. This is illustrated in Figure lthe data, the component values selected as inactive were set
The ICA rotation should find components that are morgy the mean component value. The number of selected active
interesting and structure the semantic space in a meahingfgmponents for all word vectors was the same, which makes
manner. We calculated ICA with the FastiCA package fofhe comparison between ICA thresholding and SVD feasible.
Matlab [21]. The selection of the active components for each word
vector was based on ordering normalized, i.e., zero mean
and unit variance, absolute component values of the word

C. Independent Component Analysis

term SVD feature SVD feature term

3 X - i U 5 D : V7 vectors. Low values closer to the mean component value are

s s g z thought as less active than values that diverge from the mean
. A e o Our assumption is that the ICA components are linguisticall

o o . more separated than the latent SVD components and that

3 V7 _ 2 B z S only a few active components are needed to represent each

z z S word. The inactive ICA component values would thus be less

important for that particular word and can be thresholded. W
Fig. 1. ICA can be represented as an extension of SVD, wherevttite  did not want to fix the thresholding parameter, i.e., the fixed

SVD componentsZ = V7 are transformed with a rotation matrR to
find the ICA componentS. SVD is approximated for a reduced dimensionnumber of components that are thresholded for each word

from the original dimension of the data matX, marked here with the VECtOr. Instead, we varied this parameter and show results

solid and dashed lines, respectively. with thresholding from the full model with no thresholding
to the minimal model with only one retained component for
each word.

D. Word Space and Thresholding Dimension reduction with SVD can be thought as thresh-

The orthographic representation of words does not givlding the same components for each word vector. This has
a direct way of comparing the similarity of words. Thethe additional advantage that the inactive components can
vectorial representations of the raw contextual data, ¥i@ S be dropped out and the dimension can actually be reduced,
representation and the ICA representation, however, septe Whereas ICA thresholding only makes the representation
words as points in space. The locations of the words in tHgore sparse without dimension reduction. Thresholding wit
space are a result of the contexts used for collecting the raw/D was also tested for comparison.
contextual data, text occurrences of the words in the corpus
and the components found by LSA and ICA, respectively.

Two words in the space are compared through their Singular value decomposition orders the latent components
vectorial representations and b, which are the respective according to the eigenvalues of the covariance matrix. This

IV. RESULTS



allows a natural and efficient way of reducing dimension. Ir °°
this paper, the necessary number of components for efficie
working of the latent space as a semantic representation o
measured with vocabulary tests. Figure 2 shows precision ¢ |
the SVD space with the Moby questions w.r.t. the number o o
components. The peak precision is seen with approximate,.,l .~

80 components. This can be explained by many noise comp
nents with small eigenvalues that do not contribute paditiv =~ os| 3
to the precision of the classification system. The peak valu
can be thought to be an optimal number of components arozs|
a good starting point for ICA. The 95 % confidence intervals |
for the Moby data set would overlap the precision curve ani°? n

. . . 4
are not shown in this section. !
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Fig. 3. Precision of ICA with thresholding with the Moby datat w.r.t. the
number of active components. ICA word representations assthiofded to
include only a selected number of components from 20 (dasAéd)dash
dotted) and 80 (dotted) components. The SVD precision (sajidto 100
components is given as reference.
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Fig. 2. Precision of the SVD space with the Moby data set wlintension
of the latent space. With more than 80 dimensions the precisobnally
drops from the peak value.

0.25 -

0.2F:
Independent component analysis does not order the cor |
ponents and feature selection must be done by other mea™|
Dimension reduction and whitening with SVD is the standarc o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
practice for ICA, but this would only add a rotation of the "¢ © 20 30 4 s e 7 8 9 100
space compared to SVD. The distance measure in (1) g8 4 precisions of the SVD (solid), SVD with thresholdingth
rotation-invariant and basic ICA would not contribute sig-80 components (dashed) and ICA with thresholding with 80 corepts
nificant changes to the classification result. The assumpti¢dotted) with the Moby data set w.r.t. the number of active congmts.
that the ICA components are meaningful as such suggests
that the inactive components for words can be de-selected
by thresholding the components with values close to th@1d SVD with thresholding starting with 80 components
mean component value (see, e.g., [22]). This makes the wotdth the Moby data set. SVD with thresholding performs
representation sparse and could remove noise. Dimensigimilarly to the basic SVD. With a very small number of
reduction in preprocessing is important, as it will removetarting components, ICA and SVD thresholding methods
noise, as ICA does not order the components and consid@erform quite similarly. This is understandable, sincehi t
each component to have unit variance. Figure 3 plots ttimension of the representation is too small, it may not be
precision of ICA with thresholding starting from 20, 40 andpossible to separate semantic components from each other.
80 components for the Moby data set w.r.t. to the numbéWith an optimal number of starting components, selected
of active components. The SVD precision in Figure 2 igvith the peak SVD precision, ICA with thresholding is more
shown as reference. It can be seen that precision grows fasécurate and outperforms SVD with all thresholding values.
with ICA and levels out to the SVD precision when nolf the starting dimension is too high and includes noise
components are thresholded. components, however, ICA with thresholding does not reach
Thresholding with SVD does not improve the precision, athe same peak level as SVD.
can be seen in Figure 4, that compares the precisions of SVDSimilar tests were run with the questions derived from




the idiosyncratic association data set and results ares qui
similar, even the precision is approximately at the samellev os
Figure 5 shows the result with 60 components for ICA anc
SVD with thresholding and comparison to SVD precision.w?
Similarly to the Moby questions, the precision did not grow

after the peak value approximately at 100 components.
0.6

0.5

05 -
045 :

0.4F E
0.4

0.3

Il 1 1
0 50 100 150

03 -

oz Fig. 6. Precisions of the SVD (solid), SVD with thresholdinith 106
components (dashed) and ICA with thresholding with 106 coraptm

02 1 (dotted) with the TOEFL data set w.r.t. the number of activengonents.
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o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ natural language data. Especially, we demonstrate how inde
o w020 30 4 50 e 70 80 % 100  pandent component analysis finds an explicit representatio
Fig. 5.  Precisions of the SVD (solid), SVD with thresholdimgth ~ [OF WOrds, compared to the latent representation found by
60 components (dashed) and ICA with thresholding with 60 carapts ~ Singular value decomposition. This is carried out by addi-
(dotted) with the idiosyncratic association data set vitrd.number of active  tional nonlinear filtering, which preserves the semanijcal
components. .

rich component values for each word, and thresholds the less

Results for the TOEFL data set, shown in Figure 6|,mp0rtant components the mean component values.

show that here SVD with thresholding performs equally well The semantic information content of the different represen
to ICA with thresholding, both with 106 components. Thdations is measured with multiple choice vocabulary tests,
hand-picked alternatives for the TOEFL questions make tH/ghic_h the _Iocations of the words in the space represents thei
alternatives for each question to be close to each othes. THflationship to each other. Two alternatives are proposed t
seems to affect the precision as SVD with thresholding work®mPlement the traditional synonym TOEFL data set. The
equally well as ICA with thresholding. Changing the hanglirst one is a synonym questions data set generated from the

selected incorrect alternatives to random words produc§iectronic Moby thesaurus. The second data set is generated
results similar to Figure 4 and Figure 5, where SVD witfrom idiosyncratic associations from human subjects. The

thresholding does not perform better than SVD. This suggedifoPosed data sets are much larger and the number of
that ICA with thresholding performs equally well for all alternatives can easily be extended, but on the other hand,

words whereas SVD with thresholding works only withth€re is no knowledge of human level performance.
words that are all very similar to each other. Independent component analysis and singular value de-
An interesting result is the highest precision, 81.25%s0mposition are both examined as methods for extracting

that was reached with 106 components with SVD for thélord representations from raw contextual information. An
TOEFL data set. That precision is equal to the resufPtimal dimension can be seen to contain all semantic
obtained with document retrieval with a window of 16 wordsinformation and to exclude noise. Additionally, ICA can be
point_wise mutual information and a 53 billion word Webseen to find such a rotation of the representation that the
corpus [19]. Comparison to the LSA result of 64.4% withcomponents reflect more meaningful concepts. Thresholding
60000 words, 30000 document contexts and dimensidH inactive values with ICA gives a sparse representation fo
reduction to 300 with SVD [1], however, shows a hugevords with much less degradation of precision in vocabulary
improvement. The main difference in our experiments is thi€sts than SVD with or without thresholding. SVD with
use of co-occurrences of terms in window contexts instedfresholding performs equally well to ICA with thresholgin

of the document-based approach. Thus, it seems that t&en considering words that are close to each other, but

selection of context type has a crucial effect on the resultg!nlike ICA with thresholding, it does not generalize to all
words.

V. CONCLUSIONS The parameters and preprocessing were chosen to repre-
In this paper, distributed semantic feature represemtatiosent an LSA approach, in order to avoid tuning the method
for words are extracted using contextual information fronto favor ICA. This is reflected in the fact that we were able to



reach a precision of 81.25 % with full SVD for the TOEFL [6]
synonym questions, that did equally well to the best single
reported method but does not reach the level of a combinatiom
of different methods.

The results shown in this article indicate that it is possibl
to create automatically a sparse representation for wordg.;]
Moreover, the emergent features in this representatiom see
to correspond with some linguistically relevant features.[9
When the context is suitably selected for the ICA analysis,
the emergent features mostly correspond to some semantic
selection criteria. Traditionally, linguistic featureave been
determined manually. For instance, case grammar is a clilsq]
sical theory of grammatical analysis [23] that proposes to
analyze sentences as constituted by the combination of a
verb plus a set of deep cases, i.e., semantic roles. Numer
different theories and grammar formalisms exist that ptevi
a variety of semantic or syntactic categories into whichdsor
need to be manually classified. [

Statistical methods such as SVD and ICA are able to
analyze context-term matrices to produce automaticaky us(14]
ful representations. ICA has the additional advantage, egs)
pecially when combined with some additional processing
steps reported in this article, over SVD (and thus LSA) that
the resulting representation is sparse and each compongg
of the representation is meaningful as such. As the LSA
method is already very popular, we assume that the additiona
advantages brought by this method will further strengtien t [17]
movement from manual analysis to an automated analysis.
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