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Abstract

Handheld communication devices equipped with sensing capabilities can recognize some aspects of their context to enable novel applications. We seek to improve the reliability of context recognition through an analogy to human behavior. Where multiple devices are around, they can jointly negotiate on a suitable context and behave accordingly. We have developed a method for this collaborative context recognition for handheld devices. The method determines the need to request and collaboratively recognize the current context of a group of handheld devices. It uses both local context time history information and spatial context information of handheld devices within a certain area. The method exploits dynamic weight parameters that describe content and reliability of context information. The performance of the method is analyzed using artificial and real context data. The results suggest that the method is capable of improving the reliability of context information.

1. Introduction

Context-awareness has recently become a hot topic in the areas of pervasive computing and human-machine interaction. Meanwhile, mobile communication has became commonplace, in some areas practically ubiquitous. It is becoming very attractive to offer context-related information for the users of these devices. A central problem in the field is reliably acquiring the necessary context. In this paper, we discuss a method for recognizing and sharing context with handheld devices.

Humans routinely use context in communication with other actors. For more natural and effective interaction with people, handheld devices should also use context information. When the interaction takes place in physical space, the context gives valuable information to enhance the interaction. For instance, people routinely refer to the surrounding space in communication ("You will find the restaurant by the river four blocks down the road"), which enables concise, descriptive sentences. Without such context information, interaction with handheld devices will feel unnatural for users who are moving about in physical space.

Handheld devices should be made more aware of their surroundings. To become successful sensors and actors that share situations with humans, the devices must develop some sense of the contexts. For handheld devices this is a hard task, as the environment is constantly changing.

Various sources for context information have been reported: sensors in the handheld devices and in the environment, tags and beacons, positioning systems, auditory scene recognition, image understanding, and biosensors on users, to name a few. Often the obtained data is noisy, ambiguous, and hard to interpret. Static context clues, emitted by stationary tags, can become out of date when the environment changes. In some situations, more precise context data sources can be used, such as on-line calendars. However, interpreting this data and tying that into the users' context will require non-trivial reasoning for most applications. 

We propose an easier partial solution: benefit of the social context to provide valuable context clues. People are used to adjusting their behaviour depending on their social context. Handheld devices could use context information from surrounding ones. Where a number of people are gathered, it is reasonable to assume that many of the devices should be in the same context. In a given setting, different people will want different behaviour from their devices, but the basis for the context recognition could be the same. This collaboration helps context recognition by providing a first approximation for further refinement at each device. The devices can form a network where nodes adapt their context to contexts of their neighbours. This requires some means of proximity networking, such as personal area networks over Bluetooth, or a way to communicate with the immediate neighbours over a long-range link. Moreover, a collaboration method is needed for agreeing on the more reliable joint context over the proximity network. This paper presents the method with experiments. In [1] the discussion how to use the method to support handheld device applications is provided.

2. Context recognition with handheld devices

Handheld devices equipped with sensors are able to recognize some aspects of the surrounding context. However, extraction of context information in a single device requires sophisticated algorithms, sometimes involving heavy processing. The more data is available from the sensors, the more welcome would be rough initial assumptions of the context. 

To enhance usability of handheld devices, the human computer interaction research community has experimentally integrated various kinds of sensors into the devices. This makes possible to develop implicit user interfaces [2, 3, 4]. Research efforts have also been carried out for recognizing the activity and locations of a handheld and wearable device user [5, 6].

There exist several studies concerning development of context recognition and extraction systems. Context recognition for wearable computers has been studied by means of wearable cameras, environmental audio signal processing, and Hidden Markov Models [6]. Context recognition from multidimensional sensor signals can be carried out for example by combining the benefits of neural networks and Markov models [2, 7]. The information from multiple sensors can be processed to multidimensional context vectors, from which relevant context information can be extracted and compressed by using statistical methods [8]. Time series segmentation and clustering can be used to extract higher-level descriptions of contexts [9, 10, 11]. 

Various “real world” problems plague sensor-based systems: noise, faulty connections, drift, miscalibration, wear and tear, humidity, to name a few. Contexts are fuzzy, overlapping, and changing with time. When the context atoms describe activities of people, they will be just approximations at best. It seems difficult to devise context representations that can accommodate all these sources of uncertainty. We hope to avoid some of the problems by exploiting redundant context data that is available from neighboring devices. This obviously requires ways to communicate the context between the devices.

2.2 Context recognition framework

For our purposes, we define context to be the information available for mobile devices that characterises the situation of the devices, their users, the immediate environment and the mobile communication networks. The definition is adapted from [12]. 

The first task in any context recognition process is feature extraction. We pay special attention to abstracting the data in such a way that the features describe some common notions of the real world, and compressing the information using various signal processing methods, which produce features describing the information more compactly. For feature extraction and recognition we have applied interpretation of user gestures, frequency and time domain analysis and statistical methods. We call the extracted features context atoms. Each atom describes the action of the user and/or state of the environment. 

We apply fuzzy set quantization to the features. The primary motivation for using fuzzy sets is that many events in the world are not easily represented with crisp values. For example, shifting from the action of walking in normal speed to walking fast is fuzzy. By fuzzification, the representation of the speed of walking is more expressive, since the action can be something in between the two values. For more information see [10].

We define the context atom as a continuous variable from 0 to 1. A context atom is a single feature that has been extracted from the environment of the node. We use a data structure that simply presents the values of the context atoms in a prespecified order at each discrete time instant. The order of context atoms is supposed to be the same in all devices. An example of context atoms from a user scenario is presented in Fig. 1. In the scenario the user is walking from inside to outside. Values of context atoms in two context atom vectors, one from inside (t=22 s) and one from outside (t=32 s), are tabulated in Fig. 1. 

3. Framework for collaborative context recognition

We have developed a method for collaboratively recognizing the context of a group of context-aware handheld devices. Assumptions are that handheld devices equipped with context sensing are able to recognize some quantities of context, devices within a certain area share common aspects of a current context, and devices have short-range communication capabilities. Through collecting the context from other devices, one can summarize a description of the current context that may be more accurate than the context recognized by individual devices. The description of the context of a device can be defined as a time and spatially dependent collection of the contexts of other devices within the certain area. The contribution of various devices to collaborative context recognition is highly dynamic, depending on the content and reliability of context information. This section presents a description of the method. 
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Figure 1. An example of context atoms from a user scenario. Black means maximum activity (one) while white means zero activity. Data is recorded from a scenario where a user is moving indoors and outdoors with a context-aware handheld device.

3.1 A node and its neighborhood 

A node and its neighborhood are basic entities for updating the context information collaboratively. We have a set of nodes M that are able to communicate context information with each other. Nodes are indexed using identification numbers m ( N. Consequently, the neighborhood Vm ( M of the node m is the set of the nodes in the range of m (including m itself). 

We call the current context of the node m local context, and context recognized with the procedure collaborative context. More specifically, each node maintains the following information onboard:

· Local context consists of the context atoms that a single device can deduce using its context information sources and context extraction algorithms. The history of the local context is stored for a certain period of time. 

· Local context reliability reflects the stability of the local context. It is updated based on the local context history. The local context reliability is considered high when temporal changes in the context of a single node are small. The stability decreases when larger temporal changes occur in the local context. Consequently, the more stable the context atom is currently, the more reliable it is considered.

· Collaborative context consists of the same context atoms as the local context. However, it reflects the impression that the device has about its environment. This impression is a summary of the situation of other devices in the local range corrected by the local context. Consequently, it may be different in each device depending on the dynamics of the system. Although the collaborative context is stored locally in each device, it is updated partly in a distributed fashion. 

· Collaborative context reliability reflects the level of accordance that the device has to the collaborative context. In general, the reliability decreases when the context varies locally within neighboring nodes.

Local context information for node m is stored in a local context buffer Cloc, which can be presented in a matrix format:

Cloc ( n ) =[cloc( n )   cloc(n ( 1) ((( cloc(n ( T)].

Here n is the current discrete time instant and T denotes the length of the history, and the columns cloc(n ( k), k = 0, …, T of the matrix Cloc are local context vectors that store the locally derived context information for node m for time n ( k. The first column cloc(n) of the buffer is the current local context vector. Updating Cloc for the upcoming time instant n+1 is repeatedly done in a straightforward manner:

Cloc( n+1 )=[cloc( n+1 )   cloc( n  ) ((( cloc( n – T + 1)],

where cloc denotes the local context vectors supplied by the onboard context recognition system. The oldest local context vector cloc(n – T) is discarded or possibly archived. Each node updates repeatedly also a local context summary:


[image: image18.png]MeSpeFlux
VarSpeFlux
VarZCroRate
MeCeReSyReMag
MeSpeRolPo
VarSpeRolPo
Running
WalkingFast
Walking

Loud

Modest

Silent
TotalDarkness
Natural

Dark

Normal

Bright

AtHand
Unstable
Stable
SidewaysLeft
SidewaysRight
AntennaUp
AntennaDown
DisplayUp
DisplayDown

0.6

0.5

0.4

03

0.2

0.1




(1).
From now on, the time indexing has been left out to keep the presentation more compact. The local context summary and current local context are used for updating local context reliability for the node m. It is denoted as a local context reliability measure wloc. wloc is calculated as a deviation of context information in a local context buffer Cloc
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where K denotes the Gaussian kernel, (loc is a parameter determining the kernel width:
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where ||a – b|| means the Euclidean distance between a and b. ( is a parameter determining the kernel width. The Gaussian kernel K is also used in calculating other reliability measures. In general, it is required that values of reliability measures w ( [0,1]. The reliability measures are motivated by reason that the reliabilities act as weights. Particularly, the value of local context reliability measure wmloc ( 0 when there exist temporal fluctuation in local context information, and wmloc ( 1 when local context information is temporally stable. 

3.2 Updating collaborative context 

The collaborative context ccol of the node m is updated distributedly and using a triggering mechanism which is described in next section. In the following, m1 is the node that triggers the process for updating collaborative context information. Nodes Vm1= {m1  m2  …  mn} are the nodes in the immediate vicinity of a triggering node. The numbers of the steps refer to Fig. 2, presenting the signaling scheme for the procedure. 

The steps in the procedure are:

i) Request for context information If some of the triggering conditions are satisfied in node m1, it sends a request for context information to its neighborhood Vm1.

ii) Submitting the local context information The nodes Vm1 reply by sending their current local context vectors cloc.

iii) Forming the spatial context buffer and computing the context summary Node m1 receives n local context vectors and stores them in a buffer called spatial context buffer CV denoted in this case as:

Cm,1V=[cm,1loc   cm,2loc …  cm,nloc].

This buffer resembles the local context history buffer. However, while Cloc contains information on local temporal context behavior of the node m, CV contains information on the current context of the spatial environment of the node m1.

Node m1 computes a spatial context summary, which is calculated as a weighted average:
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where the weights are determined by 
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Here K is the Gaussian kernel Eq. (3) and (V is a parameter defining the kernel width. The idea of the weighting in this stage is to give less weight for outliers, that is, to contexts differing from the majority.

iv) Distributing the spatial context summary Node m1 sends 
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back to Vm1. 

v) Updating the collaborative context All nodes mi ( Vm1 continue by determining how reliable they consider the received 
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 to be. In the experiments, this is determined by a Gaussian kernel K Eq. (3) that depends on the difference between local context summary and spatial context summary:
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where (col is again a parameter defining the kernel width. Finally, the nodes determine their new collaborative context that is a weighted average between the local context summary and the received spatial context summary. 
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3.3 Triggering conditions

All nodes m process context information continuously. In general, node m initiates collaborative context recognition i.e. requests context data if any of the following conditions occurs:

· A value of local context reliability wloc falls below a prespecified threshold (loc.

· A value of collaborative context stability wcol falls below a prespecified threshold (col.

· Mismatch between current values of cloc and ccol increases over a certain threshold (. Mismatch is calculated using distance measure, e.g., Euclidean, between cloc and ccol . This ensures that cloc and ccol can not drift to represent different contexts.

Thresholds are determined on the basis of the stability measures of local and collaborative contexts. In the next section we present simulation results. The method emphasizes the contribution of nodes that are in similar context, and particularly the contribution of nodes that have reliable context information. 
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Figure 2. Signalling scheme for collaborative context recognition.
4. Experiments and results

In order to examine the performance of the method, we present experiments and results with artificial and real context data simulations as well as the discussion about their implications. We used the framework described in previous section. 

Suitable values for the parameters (loc, (V, and (loc to determine the widths of Gaussian Kernels were selected heuristically. 

4.1 Performance measure

To examine the performance of the method, we define a similarity measure:
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(8),

where ccol is collaboratively recognized context vector of a node in context X where X=A or X=B. cX is the true context vector that a node being in context X should have. The denominator is a scaling factor which ensures that the ratio is in maximum 1, i = 1,…, N is number of nodes in context X. 

4.2 Simulation setup

Simulations were carried out by using MATLAB software from MathWorks Inc. In the first experiments, the performance of the method was examined with artificial data sets which were generated for simulating 2 to 20 nodes moving between two contexts A and B. Artificial data sets consisted of data with different signal-to-noise ratios (SNRs). In these experiments actual values of contexts were known exactly. Secondly, experiments with real context data recorded in real usage situations with customized equipment were performed. Data set used in experiments consisted of 2 to 20 nodes moving between two contexts: context A denoting  “walking inside”, and context B denoting “walking outside”.

4.3 Experiments with artificial data

Artificial data sets are generated as follows: First, two types of signals with amplitudes 1.1 and 0.05. Different combinations of signals are concatenated to prototype signals simulating the time series of the context of a certain node e.g. from a context A to a context B, or a node is in context A during the entire simulation. Prototype signals are combined into a data set of 20 signals, describing time series of contexts of a group of nodes. Two different data sets are generated by adding two levels of Gaussian i.i.d noise to the signals. For the relative noise level (SNR; ratio of variance of signal to variance of noise) levels 100 and 1 are used.  An example of collaborative context recognition with artificial context data is presented in Fig. 3. Estimated local and collaborative contexts of a node are represented. Actual contexts without the noise are illustrated with light dashed lines, local context of a node is illustrated with bold solid line, and collaborative context is marked with bold dashed line. 20 nodes are assumed to be on the transmission ranges of each other. During time interval t = 1, …, 50 a node with 8 other nodes (45% of the nodes) are in the context A, while 11 nodes (55% of the nodes) are in the context B. When t = 51, …, 100 all nodes (100%) are in the context B. When t = 1, …, 50, the values of estimated collaborative and local contexts differ from each other considerably since a context of a node is A, while the context of the majority (55%) of the nodes is B. During time interval t = 51, …, 100, the values of collaborative, local and actual context are similar. In this case variance of collaborative context is considerably smaller than the variance of local context. 
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Figure 3. An example of collaborative context recognition with artificial data.

We have also examined the behavior of collaborative contexts with a various number of nodes in the same context. Here the performance measure presented in Eq. (8) is used. Figs. 4 and 5 present the similarity measures     s(ccol ,A) for artificial data sets having 10 and 20 nodes. Fig. 4 presents results with high noise level data (SNR=1). Fig. 5 presents results with low noise level data (SNR=100).

Figs. 4 and 5 show that similarity measure values increase very rapidly when few percent (10 ( 40%) of the nodes are in the same context. The important issue in the graphs is when similarity measure s(ccol ,A) increases above level 0.5, that is, when similarity of collaboratively recognized context of nodes in context A is closer to context A. Fig. 4 shows that with high noise level, and with 10 nodes the similarity measure increases above level of 0.5 when 20% of the nodes are in context A. In the case of 20 nodes the similarity measure increases above level 0.5 when there are about 14% of the nodes in the same context. 

In Fig. 5 the similarity measure, with lower noise level (SNR=100), and with 10 nodes increases above level 0.5 when 21% of the nodes are in context A. In case of 20 nodes the similarity measure increases above level 0.5 when 11% of the nodes there are in the same context. Fig. 4 shows that with high noise level (SNR=1), the similarity measure reaches level 1 when approximately 90% of the nodes are in the same context. In the case of low noise level (SNR=100) presented in Fig. 5, the similarity measure reaches level 1 when 60% of the nodes are in the same context. 

Experiments with artificial data set suggest that the method for collaborative context recognition can provide reliable context information from noisy data. Especially, the method is able to improve considerably the reliability of context information of the nodes, which are in the minority (10 ( 40% of the nodes in the same context) within the group of nodes.
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Figure 4. Artificial data set with 10 and 20 nodes. Similarity measure s(ccol ,A) as a function of percent of nodes in context A. SNR=1, Values of free parameters are: (loc, (col = 0.5, (V =40.
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Figure 5. Artificial data set with 10 and 20 nodes. Similarity measure s(ccol ,A) as a function of percent of nodes in context A. SNR=100. Values of free parameters are: (loc, (col = 1.75, (V =40.

4.4 Experiments with real context data

Data used in experiments is recorded with tailored equipment consisting of a small handheld device with accelerometers measuring accelerations in three orthogonal directions, sensors for detecting illumination, humidity, temperature, skin conductivity for touch, and a microphone. In recordings a user carries equipment consisting of a handheld device connected to a laptop with wires. Data is represented as context atoms, each of those indicating the small amount of information about user activity and the state of environment. In scenario simulations a number of context-aware mobile nodes are in two contexts: Context A “walking inside” and context B “walking outside”. The situation in test scenario describes movements of mobile nodes in the vicinity of front door of a building, some people are leaving some are entering. Usually physical barriers like doors and walls distinguish higher-level contexts, for example, café – street, lobby – lecture, etc. 

Fig. 6 presents a particular situation from experiments with 10 nodes. A node moves from inside to outside, Fig. 6a. The node triggers collaborative context recognition since it considers local context unreliable because of the sudden change. The other nodes respond by sending their local contexts, Fig. 6b. The requesting node computes context summary, and send it back to other nodes, Fig. 6c. All nodes estimate their values for collaborative context towards their own local context, Fig. 6d. 

The performance of the method with real context data is examined by utilizing the similarity measure presented in Eq. (8). Actual context vectors cA and cB in Eq. (8) are defined as median context vectors of context A and context B. cA and cB are calculated from a large set of real context atom data time series. The similarity measures from the experiments with 10 and 20 nodes are presented in Figs. 7 and 8. In both experiments, the values of free parameters are (loc, (col = 0.5, (V = 40. In Fig. 7 the similarity measure s(ccol ,A) increases rapidly above level 0.5 indicating that the recognized collaborative context is closer to actual context when 20% of the nodes belong to context A. Correspondingly, the similarity measure s(ccol, B) decreases rapidly after 90% suggesting that a method is able to maintain the collaborative context B among the nodes in the context B even if the majority of all devices is in context A. Fig. 8 shows similar behavior with 20 nodes. The recognized collaborative context is closer to actual context when 10% of the nodes belong to context A. Accordingly, the similarity measure s(ccol ,B) decreases rapidly after 94% suggesting that a method maintains collaborative context information B among the devices in the context B although the majority of all devices is in context A. 

The results indicate that the method is suitable for collaborative context recognition with multidimensional context data. Results suggest that free parameters should be adaptive according to variability of context information. Furthermore, the results suggest that the method is capable for providing reliable context information of the current context to nodes in different contexts within a certain area—even when there are only few percent of nodes in the same context. We are not trying to model higher-level contexts. Instead, we experiment with highly mobile and distributed context-aware nodes with simple low level context representation, assuming that all nodes have a standard context representation, and context atoms are in a prespecified order.
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Figure 6. Illustration of the collaborative context recognition procedure.
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Figure 7. Real context data set. Similarity measure s(ccol ,A) as a function of percent of nodes in context A. Number of nodes =10.
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Figure 8. Real context data set. Similarity measure s(ccol ,A) as a function of percent of nodes in context A. Number of nodes =20.

5. Conclusions

The method for collaborative context recognition resembles the way people adapt their behaviour in groups. We believe that this resemblance would make the method more understandable to humans. A collaboratively agreed context may be more reliable than that of a single device. The performance of the method is examined in detail with experiments by using artificial and real context data sets. The method can give a reasonable initial guess for context recognition in each device. In some cases there may be a direct mapping from context detection to the corresponding action – for instance, collaborative cellphone silencing. Our method supports highly mobile systems, as it does not require any central context server. Future work includes the examination of the stability and the performance of the method. That is, when the contexts of neighboring devices remain different, the joint context will converge, but the result may be an artificial context that does not correspond to any physical situation. Furthermore, we will examine the adaptivity of parameters determining the width of Gaussian Kernels. 
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