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Abstract— In computational neuroscience one application

of generative models is to examine how the statistics of sen-

sory input data are related to the properties of correspond-

ing sensory neural networks. In this approach it is assumed

that neural networks are tuned to the properties of input

data, that is, that they have learned efficient internal rep-

resentations of their environment. In this paper we present

a hypothetical internal representation for natural video at

the level of early vision, or more precisely, at the level of

simple and complex cells. We define a two-layer generative

model for natural video, based on temporal relationships be-

tween simple cell outputs. Preliminary results of estimating

the parameters of the model from natural data suggest that

the learned temporal interactions between cell outputs are

similar to complex cell pooling of simple cell outputs. This

unsupervised learning of pooling separates our experimen-

tal results from empirical work based on other advanced

self-organizing models of early vision.
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I. Introduction

THE functional role of simple and complex cells has
puzzled scientists since their response properties and

structure of their receptive fields were first mapped by
Hubel and Wiesel in the 1950s (see, e.g., [1]). The cur-
rent view of sensory neural networks emphasizes learning
and the relationship between the structure of the cells and
the statistical properties of the information they process
(see, e.g., [2]). It has previously been shown [3] that a
principle called temporal coherence [4], [5], [6] leads to the
emergence of simple cell type receptive fields from natural

video. Thus, temporal coherence provides an alternative to
sparse code learning [7] and independent component anal-
ysis [8], [9], [10] as a statistical computational principle
behind the structure of the receptive fields. Temporal co-
herence is based on the idea that when processing temporal
input, the representation changes as little as possible over
time. The measure of temporal coherence used in [3] was
single-cell temporal response strength correlation. That is,
a receptive field (linear filter) was found by maximizing the
correlation of response strengths of filter output at succes-
sive time points.

In this paper we use a generative model to extend the
idea of temporal coherence to temporal dependencies be-
tween the responses of different cells. We first define a
two-layer generative model for natural video. At the heart
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of this model is an autoregressive model of cell response
strengths which captures inter-cell temporal dependencies.
After defining the model we formulate a computable crite-
rion for its estimation. We then show that the estimation
of the model from natural data results in the emergence
of receptive fields which resemble simple cells, and whose
interactions are similar to complex-cell pooling properties.
This unsupervised pooling property of the model is the
most important empirical contribution of this paper. It
separates our results from empirical work based on other
advanced self-organizing models of early vision, such as [5],
[11], in which this pooling must still be enforced somehow.

II. A two-layer generative model of natural

video

The generative model of natural video introduced in this
paper has two layers (see Fig. 1). The first layer is a multi-
variate autoregressive model relating a latent driving noise
to the strengths (amplitudes) of simple cell responses at
time t and time t − ∆t. The signs of cell responses are
generated by a second latent signal between the first and
second layer. The second layer is linear, and maps cell
responses to image features.
We start the formal description of the model with the

second, linear layer. We restrict ourselves to linear spatial
models of simple cells. Let vector x(t) denote an image
taken from natural video at time t. (A vectorization of im-
age patches can be done by scanning images column-wise
into vectors.) Let y(t) = [y1(t) · · · yK(t)]

T
represent the

outputs of K simple cells. The linear generative model for
x(t) is similar to the one in [7], [11]:

x(t) = Ay(t).

Here A = [a1 · · · aK ] denotes a matrix which relates the
image patch x(t) to the activities of the simple cells, so that
each column ak, k = 1, ...,K, gives the feature that is coded
by the corresponding simple cell. When the parameters of
the model are estimated, what we actually obtain first is
the mapping from x(t) to y(t), denoted by

y(t) =Wx(t). (1)

Conceptually here the set of filters (vectors)w1, ...,wK cor-
responds to the receptive fields of simple cells, and W =
[w1 · · ·wK ]

T
denotes a matrix with all the filters as rows.

The dimension of x(t) is typically larger than the dimen-
sion of y(t), so that (1) is generally not invertible but an
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abs (y(t))
x(t) = Ay(t) x(t)v(t)

random sign

abs (y(t)) = Mabs(y) abs (y(t−∆t)) + v(t) ×
y(t)

Fig. 1. The generative model. In the first layer the driving noise signal v(t) generates the amplitudes of simple cell responses, abs (y(t)) , via
an autoregressive model. The signs of simple cell responses are generated randomly between the first and second layer to yield cell responses
y(t). In the second layer natural video x(t) is generated linearly from simple cell responses.

underdetermined set of linear equations. A one-to-one cor-
respondence betweenW and A can be established by com-
puting the pseudoinverse solution1 A =WT (WWT )−1.
In contrast to sparse code learning [7] or independent

component analysis [8] we do not assume that the com-
ponents of y(t) are independent. Instead, we model the
dependencies between these components with a multivari-
ate autoregressive model in the first layer of our model.
Let abs (y(t)) denote taking component-wise absolute val-
ues of y(t), and let v(t) denote a driving noise signal. Let
Mabs(y) denote a square matrix with dimension K (the
reason for the subscript notation is explained below). Our
model is a constrained multidimensional first-order autore-
gressive process, defined by

abs (y(t)) =Mabs(y) abs (y(t−∆t)) + v(t), (2)

and unit variance and decorrelation constraints

Et {yk1
(t)yk2

(t)} = δ(k1 − k2)

for k1 = 1, ...,K and k2 = 1, ...,K. Note that the con-
straints are equivalent to WCx(t)W

T = I, where Cx(t) =

Et

{
x(t)x(t)T

}
, and that they imply Et

{

‖y(t)‖
2
}

= K.

We also assume that the magnitudes of filter outputs and
the driving noise are uncorrelated, that is, that

Et

{

v(t)abs (y(t−∆t))
T
}

= 0 (3)

(see Appendix for discussion about this assumption). To
make the generative model complete, a mechanism for gen-
erating the signs of cell responses y(t) must be included.
We specify that the signs are generated randomly with
equal probability for plus or minus after the strengths of
the responses have been generated.
It can be shown (see Appendix) that least mean squares

estimation of the model yields objective function

fabs(y) (W)

= Et

{(

abs (y(t))−
1

2
Mabs(y) abs (y(t−∆t))

)T

×Mabs(y) abs (y(t−∆t))

}

,

1When the solution is computed with the pseudoinverse, the solved
x(t) is orthogonal to the nullspace of W, N (W) = {b ||Wb = 0} .
In other words, that part of x(t) which would be ignored by the linear
mapping in equation (1) is set to 0.

where

Mabs(y) = Et

{

abs (y(t))abs (y(t−∆t))
T
}

C−1
abs(y(t)).

A problem with maximizing fabs(y) is that the absolute
value function is not differentiable at zero. This causes se-
vere algorithmic problems with gradient-based algorithms,
because these algorithms assume that the gradient changes
smoothly. Therefore we replace the absolute value func-
tion with a smoothed version, g (y(t)) = ln cosh (y(t)) ,
which maps each component yk(t) of y(t) to g(yk(t)) =
ln cosh yk(t). The objective function becomes

fg(y) (W) = Et

{(

g (y(t))−
1

2
Mg(y)g (y(t−∆t))

)T

×Mg(y)g (y(t−∆t))

}

,

(4)

with Mg(y) = Et

{

g (y(t))g (y(t−∆t))
T
}

C−1
g(y(t)). The

optimization of this objective under decorrelation and unit
variance constraints can be done with a gradient projection
method employing symmetric orthogonalization [3]. The
derivative of the objective function is given in Table I in
Appendix.

III. Experiment with natural video data

The natural image sequences used in our experiment
were a subset of those used in [12]. Some video clips were
discarded to reduce the effect of human-made objects and
artifacts. The preprocessed data set consisted of 200,000
pairs of consecutive 11 × 11 image windows at the same
spatial position, but 40ms apart from each other. Prepro-
cessing consisted of temporal decorrelation, subtraction of
local mean and normalization (see [3] for a description of
the effect of temporal decorrelation). For purposes of com-
putational efficiency the spatial dimensionality of the data
was reduced to 80 with principal component analysis [8] –
this still retains 95% of signal energy.
Optimization of the objective function is computation-

ally very intensive, so in these preliminary results we have
computed only a small number of filters. Figure 2(a) shows
a set of filters obtained when K = 9. The filters resemble
simple cell receptive fields in that they are Gabor func-
tions, or line/edge detectors which have distinctive on/off
regions.
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(a) (b) (c) (d) (e)

Fig. 2. The results of estimating the model from natural video when the number of filters K = 9. (a) A set of receptive fields found when the
multivariate autoregressive model is estimated from natural video data. The ordering of the filters is irrelevant for the objective function –
here the filters have been reordered to illustrate inter-cell dependencies (see text for details). (b) Two plots of matrixMg(y) for the receptive
field set. Top: a plot of the logarithms of the elements ofMg(y). Bottom: a thresholded, binary plot of those elements ofMg(y) larger than

0.1. (c)–(e) Three multi-filter activity groups which correspond to the larger areas in the thresholded plot of Mg(y).

The objective function (4) is insensitive to a different
ordering of components of y(t) / rows of W, if accompa-
nied by a corresponding rearrangement of the elements of
Mg(y). The filters in Fig. 2(a) have been ordered according
to strengths of their interactions as follows. The first filter
is the one that corresponds to the largest diagonal element
of Mg(y). Once the kth filter has been selected to be the
filter with original index j, the index of the (k+ 1)th filter
is chosen to be argmaxi

(
Mg(y)(j, i) +Mg(y)(i, j)

)
. After

the filters have been ordered, the elements of Mg(y) are
rearranged accordingly.

A plot of the logarithms of elements of Mg(y) for the
filter set of Fig. 2(a) is shown at the top of Fig. 2(b). The
diagonal values are large, indicating that for all the filters,
activities at time t −∆t and time t are highly correlated.
This is in concordance with the results in [3]. Looking at
the nondiagonal elements of Mg(y), we can observe some
grouping emerging in the set of filters. This can be seen
clearly when looking only at those values of Mg(y) which
are larger than 0.1 (Fig. 2(b), bottom). The set of filters
can be divided into five groups, which we shall call activ-
ity groups : the first and the second filter form their own
groups, then we have a group with three filters, and finally
two groups with two filters in each. The common features
of receptive fields in each of these groups is that they have
the same orientation and frequency, and are close to each
other in terms of spatial position. The same common fea-
tures are typical for simple cell receptive fields that act as
input to a single complex cell [1] (although some complex
cells receive their input directly from the lateral geniculate
nucleus). Thus these preliminary results suggest that the
autoregressive model pools simple cell responses in groups
similar to those of complex cell input groups. It should
be emphasized that the pooling effect, including the actual
connection weights, emerges in a completely unsupervised

manner. This differentiates our results from other experi-
mental results in this field [5], [11].

IV. Discussion

It is intuitively understandable that the model gives re-
sults like those in Fig. 2. Translation is the most com-
mon short-time transformation of lines and edges in natural
video [3]. Cells with receptive fields like those in Fig. 2(a)
respond strongly at successive time points in case a suit-
able stimulus is moving across the image patch [3]. Cells
with similar orientation at nearby spatial locations all re-
spond strongly in the case of a small translation, implying
large values for corresponding elements of Mg(y). This is
just the connectivity found to emerge in our experiment.

In the experiment we have used nonlinearity g (y(t)) =
ln cosh (y(t)) while estimating the model, instead of the
absolute value. This change may have an effect on the
estimation results, and requires further study.

An interesting relation can be found between the sep-
arate generation of magnitude and sign of yk(t) in our
model, and two recently proposed models for static nat-
ural images: topographic independent component analysis
[13], and Gaussian scale mixtures of wavelet coefficients
[14]. In those models, the output of a linear filter, yk, is
divided into two parts: a Gaussian random variable and a
random positive scale variable. The actual value of yk is
obtained as their product. Likewise, here we are dividing
yk(t) into two parts: its absolute value and and its sign.
Therefore this part of our model could be considered as a
highly simplified version of such a two-component model,
replacing the Gaussian variable by a binary ±1.

To conclude, we have described a two-layer generative
model of natural video, and shown preliminary results of es-
timating the model from natural data. The results suggest
that the model yields unsupervised pooling of simple cell
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receptive fields with the same orientation and frequency,
and nearby spatial location. The same pooling property is
a distinctive feature of complex cells.

Appendix

In formulating an estimate for model parameters we
need an expression for Mabs(y). The covariance between
abs (y(t)) and abs (y(t−∆t)) is given by

Et

{

abs (y(t)) abs (y(t−∆t))
T
}

= Et

{

Mabs(y) abs (y(t−∆t))abs (y(t−∆t))
T

}

+ Et

{

v(t)abs (y(t−∆t))
T
}

︸ ︷︷ ︸

=0

=Mabs(y)Cabs(y(t)).

SoMabs(y) = Et

{

abs (y(t)) abs (y(t−∆t))
T
}

C−1
abs(y(t)).

Least mean square (LMS) estimation gives

Et

{

‖v(t)‖
2
}

= Et

{∥
∥abs (y(t))−Mabs(y) abs (y(t−∆t))

∥
∥

2
}

= −2Et

{(

abs (y(t))−
1

2
Mabs(y) abs (y(t−∆t))

)T

×Mabs(y) abs (y(t−∆t))

}

+K.

Therefore LMS estimation is equivalent to maximizing
fabs(y).

Concerning assumption (3) used above, note that

Et

{

v(t)abs (y(t−∆t))
T
}

= cov {v(t),abs (y(t−∆t))}

+ Et {v(t)}Et {abs (y(t−∆t))}
T
.

If cov {v(t),abs (y(t−∆t))} = 0, which is a reasonable
assumption, uncorrelatedness holds only if Et {v(t)} = 0,
because Et {abs (y(t−∆t))} is strictly positive. By (2)
Et {v(t)} =

(
I−Mabs(y)

)
Et {abs (y(t))} . It is easy to

show that this expression is non-zero if K = 1. However,
analysis of estimated models shows that it is very close to
zero for larger values of K, so our assumption of uncorre-
latedness is approximately correct when K > 1.

Formulas needed for the computation of the derivative of
objective function fg(y) are given in Table I. In computing
∂Mg(y)/∂wij we have used the formula

∂B−1

∂z
= −B−1 ∂B

∂z
B−1

for differentiation of the inverse of a matrix. Notation
∂Cg(y(t))

∂wij
(k1, k2) denotes the element at row k1 and column

k2 of matrix ∂Cg(y(t))/∂wij .
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TABLE I

Computation of the derivative of the objective function fg(y). See text for details.

∂fg(y) (W)

∂wij

= Et

{[
∂g (y(t))

∂wij

−
1

2

(
∂Mg(y)

∂wij

g (y(t−∆t)) +Mg(y)
∂g (y(t−∆t))

∂wij

)]T

Mg(y)g (y(t−∆t))

+
(
g (y(t))−

1

2
Mg(y)g (y(t−∆t))

)T
(
∂Mg(y)

∂wij

g (y(t−∆t)) +Mg(y)
∂g (y(t−∆t))

∂wij

)}

∂g (y(t))

∂wij

= [ 0 · · · 0
︸ ︷︷ ︸

i− 1 zeros

g′(yi(t))xj(t) 0 · · · 0]
T

∂g (y(t−∆t))

∂wij

= [ 0 · · · 0
︸ ︷︷ ︸

i− 1 zeros

g′(yi(t−∆t))xj(t−∆t) 0 · · · 0]T

∂Mg(y)

∂wij

=
∂Et

{

g (y(t))g (y(t−∆t))
T
}

∂wij

C−1
g(y(t)) − Et

{

g (y(t))g (y(t−∆t))
T
}

C−1
g(y(t))

︸ ︷︷ ︸

=Mg(y)

∂Cg(y(t))

∂wij

C−1
g(y(t))

=




∂Et

{

g (y(t))g (y(t−∆t))
T
}

∂wij

−Mg(y)

∂Cg(y(t))

∂wij



C−1
g(y(t))

∂Cg(y(t))

∂wij

(k1, k2) = Et

{
∂g(yk1

(t))g(yk2
(t))

∂wij

}

= Et{δ(k1 − i)g(yk2
(t))g′(yk1

(t))xj(t) + δ(k2 − i)g(yk1
(t))g′(yk2

(t))xj(t)}

∂Et

{

g (y(t))g (y(t−∆t))
T
}

∂wij

(k1, k2) = Et{δ(k1 − i)g(yk2
(t−∆t))g′(yk1

(t))xj(t)

+ δ(k2 − i)g(yk1
(t))g′(yk2

(t−∆t))xj(t−∆t)}


