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Useat monimutkaiset systeemit voidaan esittää verkkona, jossa kaaret yhdis-
tävät solmuja. Soluissa molekyylien, kuten proteiinien, vuorovaikutukset muo-
dostavat verkon, ja sosiaalinen systeemi voi koostua yksittäisten toimijoiden
suhteista. Verkkojen analysointi on kehittynyt pienen ihmisjoukon välisten suhtei-
den tutkimisesta valtavien monimutkaisten verkkojen, kuten Facebookin ja My-
Spacen tapaisten kommunikaatioverkkojen tai solun laajuisten molekyyliverkko-
jen, analysointiin. Sen lisäksi, että käytännön verkot ovat erittäin suuria, ne
ovat tyypillisesti harvoja ja epätäydellistä. Tällaisten verkkojen menestyksekäs
analysointi vaatii kehittyneiden laskennallisten menetelmien käyttöä.

Tämän diplomityön aiheena on uusi generatiivinen todennäköisyysmalliperhe,
vuorovaikutuskomponenttimallit. Se on suunniteltu tiheästi kytkettyjen ali-
verkkojen löytämiseen kohinaisesta verkkodatasta. Tällaisilla aliverkoilla on mo-
nia tulkintoja käytännön sovelluksissa, kuten toiminnalliset geenimoduulit prote-
iinien vuorovaikutusverkoissa tai yhteisöt sosiaalisissa verkoissa. Malliperhe
on suunniteltu mahdollisimman yksinkertaiseksi, jotta se olisi ymmärrettävä ja
laskennallisesti toteutettavissa.

Tässä työssä mallia sovelletaan uuteen ongelmaan, proteiinien vuorovaiku-
tusverkkoihin, ja tavoitteena on löytää biologisesti järkeviä toiminnallisia mo-
duuleita. Vaihtoehtoja mallin laajentamiseksi ymmärtämään myös verkkoja
rikkaampaa dataa, kuten solmujen ominaisuuksia, esitellään ja kokeillaan.
Tehdyissä kokeissa mallit löytävät tulkittavia klusterirakenteita verkoista useilla
sovellusalueilla. Ehdotetut muutokset parantavat mallin suorituskykyä.

Avainsanat: Bayesilainen päättely, geeniekspressio, proteiinien vuorovaiku-
tus, relationaalinen data, toiminnallinen moduuli, verkkodata,
vuorovaikutuskomponenttimalli



helsinki university of technology abstract of the
master’s thesis

Author: Juuso Parkkinen

Title: Generative Probabilistic Models of Biological and Social Network Data

Date: 3.9.2008 Language: English Number of pages: 9+61

Faculty: Faculty of Electronics, Communications and Automation

Professorship: Computer and Information Science Code: T-61

Supervisor: Professor Samuel Kaski

Instructor: Janne Sinkkonen, Ph.D.

Many complex systems can be represented as networks in which nodes are con-
nected with edges. In cells, interactions between molecules, such as proteins, form
a network, and social systems can consist of relationships between individual ac-
tors. Network analysis has developed from early studies of relationships between a
small group of people to the analysis of huge complex networks, such as communi-
cation networks like Facebook and MySpace, or cell-wide biomolecular networks.
In addition to being very large, the networks arising from real-world systems are
typically sparse and contain missing and incomplete data. Successful analysis of
such networks thus requires advanced computational methods.

The topic of this thesis is a new generative probabilistic modeling framework,
interaction component models, which is designed to detect densely connected sub-
networks from noisy network data. Such subnetworks have many interpretations
in practical applications, such as functional gene modules in protein interaction
networks or communities in social networks. The model family is designed to be
as simple as possible, to keep it understandable and computationally feasible.

In this thesis, the model is applied to a new problem domain, namely protein
interaction networks, in order to detect biologically relevant functional modules.
Extensions to include additional data, such as attributes of the nodes, into the
analysis are proposed and tested. Improvements to model inference are also in-
troduced and their effect studied. In the experiments, models are able to find
meaningful cluster structures from networks in several problem domains. The
proposed modifications improve model performance.

Keywords: Bayesian inference, functional module, gene expression, interaction
component model, network data, protein interaction, relational data
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1 Introduction

1.1 Problem setting

Large data collections in many fields can be presented in the form of networks or
graphs. For example, proteins in a cell exhibit complicated interaction patterns,
forming a cell-wide interaction network. In social context, networks can represent
different types of relationships between individuals, such as friendships.

Real-world networks are analyzed to understand the structure and properties of the
networks. In social networks, for instance, interesting questions for network analysis
include the formation of communities, that is, strongly connected subgraphs, and
the evolution of the networks over time. Analysis of network structure has also appli-
cations in network comparison, visualization, anonymization, experimental design,
and optimization, to name a few examples.

Network analysis has developed from traditional interview-based analysis of very
small social networks to computational models of huge communication networks.
One common target for network analysis in many scientific fields is the detection
of clusters or groups of nodes that are similar in some sense. The similarity may
reflect the network topology or some other attributes, such as the participation of
genes to the same biological processes.

In mathematics and computational science, networks have been studied as graphs
that consist of a set of nodes and edges that connect nodes to each other. Graphs
have been studied for decades and there exists an established genre of analysis
methods. Many methods have been successfully applied to analysis of real-world
networks represented as graphs.

Although a graph as an abstraction of real-world network data is in many cases
flexible and useful, it has its drawbacks. Representing data as simple binary relations
between entities may cause loss of essential information, such as node information
and relation types. An alternative is to use a richer relational model. Choosing a
suitable abstraction for data is always a compromise between representative power
and computational capacity. As part of the thesis, solutions to this problem are
sought and discussed.

Networks are a central representation for data in bioinformatics. Many cellular
systems can be presented in the form of networks, where molecules interact with each
other to perform biological processes. Typical examples of biological networks are
metabolic pathways, regulatory networks and protein interaction networks. Better
understanding of the structure and function of these systems may result in new
biological knowledge and medical treatments, for instance.

Analyzing large networks is an example of complex systems research. Complex
systems are composed of interconnected parts that as a whole exhibit properties
that are not obvious from the properties of the individual parts. Complex systems
can be found everywhere, for example in human economies, social structures, and
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cells. Complex systems are studied by many schools of natural science, mathematics,
and social science.

Computational methods of network data have to cope with several challenges: The
data is typically sparse, noisy and incomplete. Many computational approaches have
been presented for solving these problems. In this thesis, the focus is on generative
probabilistic models, a genre of machine learning methods where the assumptions
of the data are encoded into the model structure, and statistical inference is then
used to learn the parameters from the data. The parameters can then tell about the
captured structure of the data, for instance clustering of the nodes in a network.

In the thesis, a generative model framework for network data is applied to clustering
tasks in biological and social networks. The suitability of the model for different
problem domains is interesting in general, as the research questions can be very
similar despite the heterogeneity of the different real-world networks. They have also
been shown to share structural and functional properties. In addition to studying
the suitability of the model for clustering tasks in different problem domains, the
integration of multiple data sources into the analysis of simple network data is
studied.

The ultimate goal guiding this work is to develop efficient, yet easy-to-use and
interpretable computational methods for analyzing real-world network data. They
could then be used to formulate testable hypotheses of the studied systems, such as
protein interaction networks.

1.2 Contributions of the thesis

In this thesis applications and extensions are presented to a generative network
model framework called Interaction Component Model (ICM). It was originally de-
veloped and introduced in the research group by Janne Sinkkonen, Janne Aukia and
Samuel Kaski [53] for detecting communities from large social networks.

The method framework is here applied to a new problem domain, namely biological
networks. In particular, the developed models are applied to a protein interaction
network in order to seek functional modules, and also to study possibilities to in-
corporate functional gene data into the analysis. The integration of node attributes
to the model is also studied and compared in a relational data setting. The model
inference is developed with a hyperparameter estimation procedure and a new con-
vergence estimator. The effects of these improvements are studied with experiments
on citation networks.

1.3 Structure of the thesis

This thesis is organized as follows: Sections 2–4 give necessary background for un-
derstanding the main content of the thesis. In Section 2, background information is
given about networks and relational data. Section 3 takes a closer look at biological
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and social networks and their characteristic properties, with a brief comparison. In
Section 4, background information is given about Bayesian inference and probabilis-
tic graphical models, which form the basis for the computational tools used in the
thesis. This section also includes a brief survey on related work.

In Section 5, the general idea of the ICM framework is first presented with technical
details. Second, several extensions and improvements to the model framework are
introduced, which are the main contributions of the thesis. The experimental part
is divided into biological (Section 6) and social (Section 7) sections. These sections
contain the experimental setup, including the used data sets and necessary details
of each conducted experiment, as well as the results and conclusions. Finally, the
thesis is wrapped up with discussion in Section 8.
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2 Networks as data

Real-world systems that take the form of networks are abundant in various scientific
fields. Examples include many biological networks, social networks of relationships
between individuals, the Internet, networks of citations between documents, and
many others.

Network data arising from different origins may seem very heterogeneous, indicating
that their analysis should always be tailored for the domain-specific needs. Inter-
estingly, it has been shown that there exist many fundamental commonalities in
the properties of different types of real-world networks, forming the basis for in-
terdisciplinary network analysis. On the other hand, the question remains whether
these commonalities arise due to the common representation or are a sign of deeper
relationships.

The simplest and most common representation for network data is a graph of nodes
with edges connecting nodes to each other. Using a graph representation has many
benefits, as there is a wide established genre of analysis methods for graph data
that can be utilized whenever a real-world system is represented as a graph. In
common language, networks and graphs are often used to describe the same objects,
although there is an important distinction between them. A graph is a rather simple
mathematical object, whereas a network can include much more information than
the simple graph-like structure. For example, a social friendship network could
consist of not only the people and their relationships (a graph), but also a variety
of attributes for the people and their relationships. In this thesis the term ’network’
is used for this kind of data structures.

On the other hand, networks can be thought of as relational data. Relations in
principle correspond to the edges of a graph, but in a typical relational data setting
there are multiple relations between the entities, and a graph representation is not
sufficient to capturing all necessary aspects of the data. Such a multi-relational
setting is close to many real-world networks. Analysis of networks on the one hand
and relational data on the other have traditionally been distinct, but it has become
increasingly evident that they have much in common.

The focus of this section is on the basic properties of networks as data. In addition,
a brief background of relational data is given as well, to make the connection with
networks clear and to help understanding the multi-relational model extensions and
experiments.

2.1 Basics of network and relational data

In mathematics, a graph is an abstract representation of a set of objects where
some pairs of the objects are connected by links. The objects are represented by
mathematical abstractions called vertices, and the links that connect some pairs of
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(a) (b) (c)

Figure 1: Examples of various types of graphs: (a) an undirected graph with only
a single type of vertex and a single type of edge, (b) a directed graph in which
each edge has a direction, (c) a graph with varying vertex and edge weights. Figure
adapted from Newman [42].

vertices are called edges1. Typically, a graph is depicted in diagrammatic form as a
set of dots for the vertices, joined by lines or curves for the edges, as in Figure 1.

In numerical form, graphs can be presented as a sparse array of connected node
pairs, with possibly additional information about the connection. Another analo-
gous representation is the adjacency matrix with rows and columns corresponding
to the nodes. In its simplest form, each cell of the matrix has a binary value {0, 1},
indicating the (non-)existence of a link between the corresponding nodes. This con-
nection between networks and matrices holds on a general level, in other words a
graph can always be represented as a matrix. This enables the use of matrix oper-
ations for graph data, and many matrix-based methods can be applied to networks
as well, such as spectral methods.

Figure 1a illustrates a simple binary graph, a common form for presenting networks.
Network data can, though, contain much more than simple binary links between
nodes. First, links may be directed, making a distinction between sending and
receiving nodes (Figure 1b). Another commonly appearing feature of links is weight,
which describes the strength or probability of a link. Nodes can also have weights
(Figure 1c).

2.1.1 Graph theory

A traditional school of network analysis is called graph theory, the ideas of which can
be tracked back to the 18th century when Leonhard Euler presented his solutions
to the Königsberg bridges problem [21]. Graph theory is a purely mathematical
approach for studying graphs, with numerous definitions and formulations on graph
properties.

An important part of graph theory is the development of algorithms as solutions to
practical graph-theoretic problems, such as the minimum-connector problem or the
shortest and longest-path problems. A famous example is Dijkstra’s algorithm for

1Different words for these are used in different contexts; in this thesis the words vertex and
node are used inter-exchangeably, as well as edge, link and interaction.
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Figure 2: Example of a relational schema for a movie domain. There are two types
of entities (actors and movies), and each have different attributes (name, gender,
genre). There are also relations between actors and movies (roles), with various
types (hero, heroine, villain, love-interest). Figure adapted from Getoor et al. [27].

searching for the shortest path from a single node to all other nodes in the graph
[17]. The algorithm is widely applied in routing tasks, such as finding the fastest bus
connections within a city. Interestingly, many problems of practical interest can be
represented by graphs and solved with graph-theoretic approaches and algorithms.

2.1.2 Relational data

Relational data and relational model as concepts have their origins in database
management. The concept of relational database was originally defined by Edgar
Codd [15]. The fundamental assumption of the relational model is that all data are
represented as mathematical n-ary relations, an n-ary relation being a subset of the
Cartesian product of n domains. For example a relationship between two entities is
a binary relation.

Figure 2 shows a simple example of a relational schema for a movie domain. Another
way to present the same data would be as a network, where the relations would
be presented by a graph of role-edges between actors and movies, and then each
entity and relation would have additional attributes. This illustrates the connection
between networks and relational data.

Relational representation becomes handy for network analysis in cases where the
network data is enriched with additional attributes for either links or nodes or
both, as in the actor-movie-example (Figure 2), where we have different types of
roles relating actors to movies. This kind of rich data is often referred to as multi-
relational data, stressing the fact that there are now multiple types of relations
between the entities.
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2.1.3 Network data representations

A question arises about the differences in using a simple graph representation of
data compared to a richer relational model. The question generalizes to that of
choosing a suitable level of abstraction in representing data. In the case of relational
data, this in practice means choosing what type of data we think is important for
the analysis. For example, are the possibly different types, directions and weights
for links essential, or is a simple binary link representation enough? As a part of
this thesis, ways to incorporate node-wise data into simple network analysis are
developed and analyzed and their benefits and drawbacks are discussed.

John Young stated in 1986 that drawbacks of a relational database include the heavy
use of computer resources and the implications for data integrity. Flexibility may
be obtained at the expense of performance [66]. In many cases the simplest network
approach may indeed prove effective enough, as numerous successful studies have
shown.

The problem of choosing a suitable representation becomes apparent as well when
analyzing large networks or relational datasets with computational tools: there is
always a trade-off to be made between trying to model everything and what is
computationally possible. Traditional statistical learning methods force people to
convert their data into a form that loses much of the relational structure. However,
some recent developments in probabilistic modeling have made possible the use of
much richer dependencies in data [27]. This will be discussed more in Section 2.3.3.

2.2 Data analysis with machine learning

Data analysis is the process of gathering, modeling, and transforming data with the
goal of highlighting useful information, suggesting conclusions, and supporting deci-
sion making. Computational tools have been developed for analyzing large amounts
of data which would be in practice impossible manually.

Many method genres have emerged that could be called computational data analy-
sis, such as data mining, neural networks, machine learning and pattern recognition.
Although these have developed from different backgrounds, they are actually largely
overlapping. For instance, machine learning has its roots in computer science and
statistics, whereas pattern recognition has developed from engineering, but nowa-
days these can be viewed as two facets of the same field.

Machine learning is a relatively recently developed branch of computer science, in
which algorithms are developed that allow computers to learn based on data. A
major focus here is to automatically learn to discover and recognize complex patterns
and make intelligent decisions and predictions based on data. Machine learning
techniques are often used for exploratory data analysis, where the aim is to formulate
new hypotheses about the data, as opposed to confirmatory data analysis, where
predefined hypotheses are being tested by statistical means [61].

A distinction is commonly made between two types of machine learning methods:
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supervised and unsupervised learning methods. In supervised methods the data
comprises examples of the input vectors (features of data elements) along with their
corresponding target vectors (known classes of the elements, or labels). The task can
then be classification of data, where the aim is to assign each input vector to one
of a finite number of predefined discrete categories. If the desired output consists of
one or more continuous variables, the task is called regression. [9]

In other problems the training data consists of a set of input vectors without any
corresponding target values. The goal in this unsupervised setting may be to discover
groups of similar examples within the data, in which case it is called clustering, or
to determine the distribution of data within the input space, known as density
estimation. Another common task is visualization, where the data is projected from
a high-dimensional space down to two or three dimensions and then visualized. [9]

This division is however not clear-cut, for example, recently the concept of semi-
supervised methods has been introduced [14]. In a semi-supervised setting some data
is labeled, but also a large amount of unlabeled data, and the task is to combine
them into an efficient learning method for classification purposes.

2.3 Analysis of networks and relational data

Computational methods for data analysis are in principle applicable to a large variety
of application fields; for example a simple clustering method called k-means and its
advanced versions have been applied in computer vision for image segmentation [38]
and in bioinformatics for clustering gene expression profiles [57]. This follows from
the fact that many kinds of real world data can be presented in a similar form,
making the same methods directly applicable for data from different sources.

However, there is a fundamental difference between the typical statistical data anal-
ysis case, where the data consists of independent observations, and relational data,
where there observations are related and hence dependent. Key concept here is the
independent and identically distributed (i.i.d.) property of data, an assumption that
often simplifies the mathematics of statistical methods. This data representation
is sometimes called flat. Dependency of data points causes more complexity to the
data, which has to be accounted for in the models, and this is why many commonly
used algorithms cannot be directly applied on network data.

However, the problem described above can often be overcome with modifications to
the original models, for example previously mentioned k-means was very recently
applied on graph clustering [47]. In subsequent sections, several approaches for
analysis of network and relational data are covered more closely, many of which
have their origins in elsewhere.
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2.3.1 Complex networks analysis

An active branch of network analysis is focused on complex networks, studying com-
plex graphs with non-trivial topological features — features that do not occur in
simple networks. Complex network analysis is focused on the empirical study of
similarities and differences of real-world networks, motivated by questions like “How
are the networks generated?” or “How do they evolve over time?”

Study of complex networks was pioneered by the random graph model of Erdös and
Rènyi [20], which is among the simplest useful graph-generating models [42]. In the
model each possible edge is independently present with some probability p. Very
important concept in complex networks is the small-world effect [64], originating
from the famous experiment by Stanley Milgram in 1960s [59]. The small-world
concept states that most pairs of nodes in real-life networks seem to be connected
by a short path through the network.

A lot of work has been carried out to study the degree2 distributions of networks.
A common feature of complex networks has been found to be that their degree
distribution follows the power law : the fraction pk of nodes in the graph having
degree k follows pk ∼ k−α for some constant α. Put in other words, the degree
distribution of a network does not have any specific scale, hence the name scale-free
is also often used in the context of complex networks [42].

Quite recently, Barabàsi and Albert presented [8] an improved version of the random
graph model, called preferential attachment model. In this model, new links are
added more likely to nodes that already have many links. This kind of network
generation process leads to a scale-free network. In a more recent paper the same
authors review the statistical mechanisms and dynamics of complex networks [4].

Observations of power-law nature in the connectivity of complex networks, such as
biological an social networks, were inferred as a “universal architecture” of complex
systems. Closer examination, however, challenged the assumptions that such distri-
butions are special and signify a common architecture, independent of the system’s
specifics [34]. Also the recent work of Jure Leskovec et al. [36] has shaken the con-
ventional views of how real-world-like networks should be generated, proposing an
alternative to the preferential attachment model.

2.3.2 Graph clustering

One of the most popular goals in network data analysis is clustering. As described
earlier, clustering of data aims at grouping similar elements together. Within graphs,
the similarity is based on the topology of the nodes; typically clusters are thought
of as sets of nodes that have a lot of connections between them and less connections
to nodes in other clusters. In social networks such clusters are called communi-
ties. Examples of communities are shown in Figure 3. Network clustering has been

2The degree of a node in a network is the number of edges incident on, that is, connected to
that node.
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Leskovec, Lang, Dasgu

Figure 3: Example of network with community structure. Out of the five colored
node sets B has the highest ratio between the number of edges inside and the number
of edges outside, and is thus the most community-like set of nodes. Figure adapted
from Leskovec et al. [36].

widely studied for a long time, with various approaches ranging from graph theory
to statistics and machine learning.

The degree to which nodes in a graph are clustered together can be measured with
the clustering coefficient (CC), which is defined for one node i (local clustering
coefficient Ci) as the proportion of links between the nodes within its neighborhood
divided by the number of links that could possibly exist between them. Formally
this becomes (for undirected graphs)

Ci =
2Ei

ki(ki − 1)
, (1)

where Ei is the number of edges connected to node i and ki is the degree of node
i. The clustering coefficient for the whole graph is then the average of those of each
node in the graph. The coefficient can be used to characterize graphs, but not for
finding an optimal clustering of nodes.

One approach for clustering the nodes is to define a measure of goodness for a
given division of nodes into groups, and then design and algorithm to optimize
this measure. An example measure that has drawn a lot of attention is modularity
[43]. Modularity Q is high for those modules, which have dense internal connections
between the nodes within modules but only sparse connections between different
modules. Formally it can be defined as follows (for a particular division of network
into two modules):

Q =
1

4m

∑
ij

(
Aij −

kikj
2m

)
sisj, (2)

where m is the is the total number of edges in the graph, Aij is the number of edges
between nodes i and j (normally zero or one), ki is the degree of node i and si = 1
if the node i belongs to group 1 and si = −1 if it belongs to group 2. Modularity
for more than two modules is straightforward to derive based on this.



11

Newman presented a spectral algorithm for optimizing modularity and hence for
clustering a graph. The algorithm is based on a special characteristic matrix of the
network called modularity matrix [43]. Spectral clustering for graphs has become
popular and improved versions have been developed since then, for example by Jiang
et al. [33].

The spectral clustering methods presented above are called deterministic methods,
meaning that the outcome of the algorithm is always the same. Another category
of methods used in clustering are probabilistic methods, which in contrast to deter-
ministic methods incorporate randomness in their functioning.

Recent and widely applied example of a probabilistic machine learning method for
network clustering is called Markov Clustering (MCL) [18]. MCL is an unsupervised
cluster algorithm for graphs based on simulation of stochastic flow in graphs, and it
has been successfully applied on biological networks [11], among others.

In contrast to the methods described above, clustering of networks can also be
performed by grouping such nodes together that link to same other nodes. A recent
machine learning approach utilizing this assumption is the Simple Social Network
Latent Dirichlet Allocation (SSN-LDA), presented in more detail in Section 4.3.2.
Closely related family of network models are stochastic block models, where nodes are
grouped based on their interaction patterns with other groups. A recent example of
a block model is the Mixed-Membership Stochastic Block model (MMSB) by Airoldi
et al. [2]

Network clustering algorithms can be categorized into hard and soft clustering,
which makes a distinction between assigning nodes strictly into one cluster (hard)
and allowing them to belong to many clusters, typically with some probability (soft).
Choice between these depends on the application, for example proteins tend to
participate in multiple cellular functions, indicating that soft clustering should be
preferred. On the other hand, in a simple case of clustering people to different
nationalities based on their friends can be performed as hard clustering.

Clustering methods vary also in practical properties, such as complexity, scalability
and ease of use, affecting the choice of methods for any particular task. Many
methods that have shown to perform well are very difficult to apply in practice, if
they have a lot of parameters to set, a badly written documentation or uncommented
implementations. Model complexity and scalability on the other hand set limits to
the size of data sets the models can be applied to; for example a social network
with millions of nodes and edges can only be efficiently analyzed with a very limited
number of methods.

These practical things might well be the factors that lead to a decision in the end for
example when a biologist wants to analyze her network data with some clustering
algorithm, no matter how good the alternative methods have shown to be in theory.
For example Markov Clustering is widely recognized as a fast, scalable and easy-
to-use method that has been brought to practical applications by a large group of
biologists.
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2.3.3 Analysis of relational data

Analysis of relational data has drawn attention among researchers from different
backgrounds, including machine learning, statistics, inductive logic programming,
and databases, and there are different, partly overlapping schools of research active
in the field. Relational data mining studies methods for knowledge discovery in
databases having information about several types of objects. Relational data mining
has its roots in Inductive Logic Programming (ILP), an area in the intersection of
machine learning and programming languages. [19]

Statistical relational learning (SRL) is a category of methods developed for ana-
lyzing relational data with statistical approaches. SRL builds on ideas from prob-
ability theory and statistics to address uncertainty while incorporating tools from
logic, databases and programming languages to represent structure. Probabilistic
relational models (PRMs) are a class of SRLs that can represent rich dependency
structures, involving multiple entities and the relations between them, instead of the
traditional flat representations [24, 27].

Figure 4 shows an example of a PRM structure. In PRMs the properties of an object
are allowed to depend probabilistically both on other properties of that object and
on other properties of related objects. The basic goal is to model the uncertainty
about the values of the probabilistic attributes of the objects in the given domain.
An example application is a recommendation system: based on the attributes of
two entities (e.g., user and movie), one wants to predict relational attributes like
the preference (e.g., rating of the user for the movie). [24]

Recent examples of PRMs include the Infinite Relational Model (IRM, [35]) and
Infinite Hidden Relational Model (IHRM, [65]). The underlying principle in these
methods is to infer a stochastic block model of the graph structure, which is in fact
very closely related to the block models mentioned in the previous section.

The connection between PRMs and probabilistic models for network data is evident,
and it would thus be interesting to see an empirical comparison of their relative
performance in similar tasks. As a part of the thesis the multi-relational extension
of the ICM model framework is compared to the IHRM on a recommendation task.



13

Figure 4: The probabilistic relational model structure for a simple genetics domain.
Fixed attributes are shown in regular font and probabilistic attributes are shown
in italics. Dotted lines indicate relations between entities and solid arrows indicate
probabilistic dependencies. Figure adapted from Friedman et al. [24].
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3 Real-world networks

Network analysis has been motivated by the study of many real-world systems that
can be presented as networks. Special attention has recently been paid on the com-
parative study of networks from different origins, with emphasis on their common
properties and development of mathematical models that capture these properties.
Following [42], the four most prominent categories of real-world networks are social
networks, information networks, technological networks, and biological networks.
In this thesis biological and social networks are studied. In this section background
information about these specific types of real-world networks are given.

Although biological and social systems seem to be different, representing them as
networks brings them closer to each other. This allows the study of the structural
and functional similarities of the networks. However, as discussed in the end of
Section 2.3.1, there seems to be no universal structure across real-world networks.
For instance, geometric random graphs have been proposed as an alternative to
scale-free models for protein interaction networks [46].

It is anyway interesting to see how methods developed for one problem domain
can be applied to another, when the data is represented similarly. It seems that,
for example, in the case of network clustering, many methods can be successfully
applied to several problem domains.

3.1 Biological networks

Biological networks cover a wide set of different types of networks, from food webs
of ecosystems to neural networks and biomolecular systems. In bioinformatics the
focus is on the cellular level. Examples include metabolic pathways, gene regulatory
networks or protein interaction networks. Aims of these analyzes is in general the
derivation of new biological knowledge in the form of testable hypotheses of the way
cells work.

Basic elements in biological systems are organic molecules, such as proteins and nu-
cleic acids. They interact with each other in order to perform biological processes,
and thus form a complex network of interactions. Characteristic to these biomolec-
ular networks is that they are dynamic, making their analysis a challenging task.
Other obstacles for research are the physical size of the molecules and the speed of
some interactions, making the observation of these systems hard.

From the many types of molecular networks the one involving protein interactions
is especially tempting as an application for the generative model framework used in
the thesis, because the data is known to be noisy and the detection of connected
subgraphs has natural interpretations as biologically relevant modules, as described
in the following sections. The other networks, such as gene regulatory networks, are
also highly interesting, but they require models based on quite different assumptions.
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3.1.1 Protein interaction networks

In the biological part of this thesis protein interaction networks are analyzed. They
are widely studied molecular networks of protein-protein interactions (PPIs). These
can be direct-contact association of protein molecules, but also longer-range inter-
actions through the solution surrounding neighbor proteins. PPIs are important in
numerous biological functions, such as signal transduction.

Interactions between proteins have been measure with various techniques, each with
their own specific characteristics. In yeast two-hybrid (Y2H) methods protein pairs
are tested for possible direct binary interactions, whereas tandem affinity purifi-
cation followed by mass spectrometric analyses (TAP-MS) captures stable protein
complexes. PPI sets obtained with these two methods are very different from each
other due to the types of interactions they detect. They also contain a lot of mea-
surement noise — even sets measured with the same method can have relatively low
overlap [16].

Recently, Tarassov et al. [56] applied a new technique called protein-fragment com-
plementary assay on a yeast interactome, giving an in vivo view of PPIs. This
technique is supposed to give a more reliable set of interactions, as it measures them
as they really exist in the cell, in contrast to Y2H and TAP-MS methods. Another
source of PPIs is the biomedical literature, for example the PubMed publication
database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed) has millions of
papers with published and curated biomedical knowledge, such as information about
interacting proteins. A bunch of literature mining methods have been applied to
the task of extracting relations between proteins, for example by Zhou et al. [68].

Given the differences between measurement techniques and the substantial amount
of measurement noise within any technique, it is evident that the resulting networks
are incomplete. Many approaches have been presentend for reducing the level of
noise and producing more confident networks, for example by Collins et al. [16].
Despite the notable incompleteness of the PPI networks, they have been successfully
analyzed with various applications and methods, for example in a protein evolution
study [23] and a study of cancer mechanisms [32].

3.1.2 Functional gene modules and protein complexes

An important goal for PPI network analysis is the detection of functional mod-
ules, that is, sets of genes that are correlated across a set of biological properties
and participate in the same biological process. Biological properties can represent
any source of information on genes and their products, including gene expression,
phenotype and protein interactions. [55]

A closely related term to functional module is protein complex, a group of two or
more proteins formed through PPIs that acts as a functional module. A hypothetical
protein interaction network with densely connected subgraphs is shown in Figure 5.
The detection of functional modules and protein complexes is to a large degree an
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Figure 5: A schematic representation of a hypothetical protein-protein interac-
tion network. Each sphere represents a protein and the connecting lines represent
protein-protein interactions. Within an interaction network, smaller local interaction
networks or ’clusters’ may form (A-E). Proteins in clusters generally have similar
functions, allowing prediction of the cellular function of uncharacterized proteins
(U in cluster D) from the function of characterized proteins within the cluster (F).
Figure adapted from Giorgini et al. [28].

overlapping task in the context of PPI networks. Detected modules and complexes
can be used to predict functions for unknown proteins, based on known functions of
other proteins in the same module.

Functional modules and protein complexes have been sought from protein interaction
data with various clustering-type methods. The methods should be able to handle
the extensive noise in the networks. Markov Clustering, presented in Section 2.3.2,
has been recognized as a very effective method for this task [11].

In addition to the noisy data, non-stationarity of the modules makes the detection
even harder. For example, one protein complex may consist of several subcomplexes,
and the combination of subcomplexes may vary when the main complex participates
in different cellular processes. The context (e.g., location, state of cell cycle, external
conditions) thus acts as an additional dimension in the analysis. In many cases such
data is available, and methods that can effectively incorporate this data into the
analysis could prove very valuable to systems biology.

3.1.3 Fusion of multiple data sources

Protein interactions are definitely not the only data source that can be studied in
order to detect functional modules. Examples of other data sources include gene
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expression, protein localization, and protein motif information. Gene expression3 has
been widely studied to detect gene groups that exhibit coherent expression profiles
over various conditions.

Although the protein interactions and gene expression are very different as data
sources, many attempts to integrate them into a single modeling framework have
been proposed recently, for example by Eran Segal [50]. Another approach by Nariai
et al. combined even more data [41]. In computational data analysis, merging of
heterogeneous data sources is called data fusion, and it is becoming very popular
especially in bioinformatics.

An assumption that is frequently made when combining PPI data with gene expres-
sion data is the one-to-one mapping of genes to proteins, although it is known that
one gene may have multiple different products, that is, proteins. A more sophisti-
cated model could take this into account in addition to the context mentioned in
the previous section.

3.2 Social networks

A social network is a set of people or groups of people with some pattern of contacts
or interactions between them [42]. Examples include friendship networks, scientific
networks where documents are linked through citations, and collaboration networks.
Analysis of such networks is called Social networks analysis (SNA), and it typically
aims at modeling the structure of the network and studying how this structure
affects the functioning of individuals or groups in the network [63].

Traditional social network data was collected through interviews or questionnaires.
This was very labour-intensive, resulting in rather small data sets. More reliable
network data has been collected from collaboration information, such as actors acting
in the same movies or scientists co-authoring a publication. Another widely used
data source has been different kinds of communications records, such as phone calls
or emails. [42]

Development of information technology has led to the emergence of very large, even
planet-wide social networks, such as Facebook or Myspace, and thus created network
data sets that were totally impossible to collect with traditional methods. Such huge
data sets are a challenge for computational analysis methods. In addition to the
static structure of large social networks, a lot of research activity is on the generation
and evolution of such networks.

3Gene expression tells the activity level of a gene, as measured by the amount of mRNA
molecules found in a cell at a given time. Expression profile is obtained by repeating the measure-
ment under different conditions.
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3.2.1 Communities

In social networks analysis, a lot of work is focused on the analysis and detection
of communities, which is also an important part of this work. Definitions for a
community are ambiguous, but in general a community is understood as a group
of nodes with a lot of interactions within but less to nodes outside the community
[22]. Community structures were illustrated in Figure 3. Sometimes communities
are allowed to occur hierarchically or overlap.

Again, many different kinds of approaches have been presented for community detec-
tion. Graph partitioning methods try to divide the network into connected subgroups
by maximixing a given formalization of communities, such as modularity discussed
in Section 2.3.2. In general, numerous network clustering methods are applicable to
both biological and social networks.

3.2.2 Rich networks

Although social network data are typically represented and studied as binary net-
works, social systems are rarely as simple. Instead, they exhibit heterogeneous
types of relationships between the actors in the network, in other words they are
multi-relational in nature. This inherent nature has been used in community de-
tection only recently [13]. Also node attributes, such as word content of scientific
documents, have been integrated into modeling [37].
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4 Bayesian modeling and probabilistic graphical mod-
els

Large collections of noisy data set a challenge for the computational methods that
are used. The general modeling framework used here is called Bayesian modeling.
It offers an explicit way to use probabilities for quantifying uncertainty in inferences
based on statistical data analysis. This is an especially tempting property as all the
data used in the experiments are known to contain a lot of noise. In this section
basics of the Bayesian modeling framework are given, along with a brief introduction
to probabilistic graphical models.

4.1 Basics of Bayesian inference

Bayesian inference is the process of fitting a probability model to a set of data and
summarizing the result by a probability distribution on the parameters of the model
and on unobserved quantities such as predictions for new observations [26].

In Bayesian statistics, probability is used as the fundamental measure of uncertainty.
Bayesian methods enable statements to be made about the partial knowledge of a
system using probability as yardstick. The guiding principle is that the state of the
knowledge about anything unknown is described by a probability distribution. As
a classical example, the probability of ’heads’ in a coin toss is widely agreed to be
0.5 [26].

4.1.1 Bayes’ rule

Bayesian inference begins by setting up a model, providing a joint probability dis-
tribution p(θ, y) for the model parameters θ and the observed data y. This can be
written as a the product of the prior distribution p(θ) and the data distribution or
likelihood function p(y|θ) respectively: p(θ, y) = p(θ)p(y|θ). Conditioning on the
known data y and using the basic property of conditional probability known as the
Bayes’ rule, yields the posterior distribution

p(θ|y) =
p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

, (3)

where p(y) =
∫
p(θ)p(y|θ)dθ. An equivalent form of (3) yields the unnormalized

posterior distribution:
p(θ|y) ∝ p(θ)p(y|θ) . (4)

These simple expressions encapsulate the technical core of Bayesian inference: de-
velop the model p(θ, y) and perform the necessary computations, known as inference,
to summarize p(θ|y) in appropriate ways [26].

The simplest way to summarize the posterior p(θ|y) is the Maximum a posteriori
(MAP) estimate, a value of θ that maximizes the posterior probability. The MAP
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estimate is close to the Maximum likelihood (ML) estimate, the difference being in
the incorporation of the prior into the model in the posterior. In Bayesian modeling
the prior is always involved, bringing subjective information into the modeling. The
effect of the subjective information can sometimes be minimized or eliminated by
choosing a non-informative prior.

Many statistical applications involve multiple parameters that can be regarded as
related or connected in some way by the structure of the problem. It is natural to
model such a problem hierarchically, with observable outcomes modeled condition-
ally on certain parameters, which themselves are given a probabilistic specification
in terms of further parameters, known as hyperparameters. A hierarchical model
is even more useful when the data are organized in multiple levels. The model
framework used in the thesis is an example of a hierarchical model.

4.1.2 Marginalization

Models for complex data involve a large number of unknown parameters, and it
is in dealing with such problems that the Bayesian framework reveals its principal
advantages over other inference methods. In practice, one is typically interested
in only a part of the model parameters at a time, and thus aims at obtaining the
marginal posterior distribution of these particular parameters of interest. This is
achieved by marginalizing over the unwanted nuisance parameters as follows [26]:

p(θ1|y) =

∫
p(θ1, θ2|y)dθ2 . (5)

where θ1 denotes the parameters of interest and θ2 are the nuisance parameters.

4.1.3 Model selection

Model selection is an important concept in Bayesian modeling. Suppose that the
analyzed data arise form one of a set of possible models,M1, . . . ,Mk. Model selection
refers to the problem of using data to select one of the possible models Mi. A fully
Bayesian way would be to integrate over all M, . . . ,Mk, but this is impractical due
to computational reasons and the large number of possible models. Instead, the set
of possible models is usually restricted and the problem is then to choose a suitable
model from the resulting subset.

One way to choose the best model would be to compute the conditional probabil-
ity p(D|M) (D denotes data), called evidence, which is often laborious in practice.
Other possibilities for model selection include many approaches used widely in com-
putational data analysis, such as cross validation and different information criteria.
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4.2 Parameter inference

The process of finding (marginal) posteriors of model parameters is usually referred
to as inference, other commonly used notion is parameter optimization. In Bayesian
inference, the most conventional parameter inference procedure is random draws
from the posterior distribution of the model parameters [26].

In simple cases the posterior p(θ|y) of the parameters of interest can be computed in
analytic form, and draws from the posterior can thus be obtained directly. In prac-
tical applications, however, the exact computation of complex models is intractable
and the posterior needs to be estimated with approximate methods. Simple pos-
sibilities that can be used include evaluating the posterior at a grid of parameters
and rejection sampling, see [26] for details. Nevertheless, there is often need for
more sophisticated approximate methods. In the following sections some of these
are described in more detail.

4.2.1 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm is a general technique for finding ML
or MAP solutions for probabilistic models having latent variables or assignments.
EM is an iterative method which alternates between performing an expectation (E)
step, which computes an expectation of the log likelihood with respect to the current
estimate of the distribution for the latent variables, and a maximization (M) step,
which computes the parameters which maximize the expected log likelihood found
on the E step. These parameters are then used to determine the distribution of
the latent variables in the next E step. The E and M steps are then repeated until
convergence. [9]

4.2.2 Markov chain Monte Carlo methods

Markov chain simulation, also called Markov chain Monte Carlo (MCMC), is based
on drawing values of θ from approximate distributions, and then correcting those
draws to better approximate the target posterior distribution, p(θ|y). The samples
are drawn sequentially, with distribution of the sampled draws depending on the
last value drawn. The key to the method’s success is that the approximate distribu-
tions are improved at each step in the simulation, and they converge to the target
distribution. [26]

MCMC simulations are used when it is not possible (or computationally efficient)
to sample θ directly from p(θ|y); instead we sample iteratively in such a way that at
each step of the process we expect to draw from a distribution that becomes closer
and closer to p(θ|y). For a wide class of problems this approach appears to be the
easiest way to get reliable results, at least when used carefully. [26]

Most commonly used MCMC methods are Metropolis and Metropolis Hastings al-
gorithms, as well as Gibbs sampling. Gibbs sampler, which is in fact a special case
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of Metropolis Hastings sampler, is particularly useful in multidimensional problems.
Each iteration of the Gibbs sampler cycles through subvectors of the original param-
eter vector θ, drawing each subset conditional on the value of all other. Formally,
at each iteration t, each θj is sampled from the conditional distribution given all the
other components of θ,

p(θj|θt−1
−j , y) . (6)

Here θt−1
−j denotes all the components of θ, except for θj, at their current values:

θt−1
−j = (θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
d ) , (7)

where d is the number of subvectors the parameter vector θ is divided into. This
can equal the number of parameters, in which case each single parameter value is
updated separately. Some model parameters can be marginalized or integrated away
(see Section 4.1.2) before the sampling process.

Convergence. Iterative simulation, such as Gibbs sampling, adds two difficul-
ties to inference using simulation. First, if the iterations have not proceeded long
enough, the simulations may be grossly unrepresentative of the target distribution
and hence produce bad results. The second problem is the within-sequence corre-
lation of the simulation draws; inference from correlated draws is less precise than
from independent draws [26].

Basic solutions to the problems described above are discarding a burn-in period from
the beginning of each simulation (to assure that the simulation is converged, that is,
it is close enough to the target distribution), and then taking samples from the draws
with a certain interval (to reduce the correlation between draws). However, deciding
a suitable length for the burn-in period and sampling interval is not straightforward.
Many estimators have been proposed for monitoring the chain convergence [26].

4.2.3 Variational methods

Variational Bayesian methods are an alternative to sampling methods for making
use of a posterior distribution that is computationally too intensive to sample from
directly. They can be used to lower bound the marginal likelihood (i.e., "evidence")
of models with a view to performing model selection, and often provide an analytical
approximation to the parameter posterior probability which is useful for prediction.

In practice, the posterior distribution p(θ|y) is approximated by a variational distri-
bution q(θ): p(θ|y) ≈ q(θ), where q is restricted to a family of distributions simpler
than the original posterior. The goal is then to make q very similar with p, as mea-
sured with some distance D(q, p) between the two distributions. A typically used
distance measure is the Kullback-Leibler (KL) divergence. q is also usually chosen
such that it can be factorized with respect to disjoint groups θi of the parameter
vector θ:

q(θ) =
∏
i

qi(θi) . (8)
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Figure 6: An example of a probabilistic graphical model, with two equivalent rep-
resentations: Left: full model, right: a plate diagram representation of the model,
which will be used later in the thesis. Nodes denote random variables; observed
variables are shaded, edges denote dependencies. The box in the plate diagram de-
notes replicates of random variables that are independent and identically distributed.
Figure adapted from Airoldi et al. [3].

4.3 Probabilistic graphical models and generative models

Computational models, such as Bayesian models, are typically represented by a set
of mathematical equations which for complicated models tend to be hard to digest
even for experienced scientists. A solution that provides a simple way to visualize
the structure of a probabilistic model are the probabilistic graphical models (PGMs)
[9]. In addition to visualizing the model structure, the PGM representation allows
the use of graphical methods in the model inference.

PGMs are diagrammatic representations of probability distributions, where each
node represents a random variable (or a group of these), and the links express
dependency relationships between these variables. The graph then captures the way
in which the joint distribution over all of the random variables can be decomposed
into a product of factors each depending only on a subset of the variables [9].

An example of a PGM is shown in figure 6, corresponding to the probability model

P (Y |X,α, β) =
G∏
g

P (Xg|α) · P (Yg|Xg, β) , (9)

where Y are observed data, X are model parameters, and α and β are prior param-
eters.

Probabilistic graphical models can be interpreted as expressing the process by which
the observed data arose, in other words, PGMs capture the causal process by which
the data was generated. PGMs are thus generative models [9]. In a broader sense,
the ability to generate synthetic observations from a generative model applies to
all Bayesian models. Well-known examples of PGMs include Bayesian networks
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and Markov random fields. PGMs have become a popular tool for computational
analysis of for example biological data in a variety of domains [3].

4.3.1 Topic models

A well known example of a probabilistic graphical model is the Latent Dirichlet
Allocation (LDA) [10] that allows sets of tuples of co-occurring nominal observations
to be explained by unobserved groups, or latent components, which explain why some
parts of the data are similar. LDA is often referred to as the topic model, because it
was originally applied on document data. Topic model posits that each document
is a mixture of a small number of topics and that each word in the document is
generated by one of the document’s topics.

Important earlier methods here are latent semantic analysis (LSA) and probabilistic
latent semantic analysis (PLSA) [31]. LSA, also known as latent semantic indexing
(LSI), is a technique used in natural language processing to analyze relationships be-
tween a set of documents and the terms they contain. LSA applies matrix operations
widely used in linear algebra; it is basically a matrix factorization method.

LDA is a generative version of PLSA, as the original PLSA model did not include
proper priors. LDA can thus be seen as the latest, generative probabilistic version
of traditional matrix factorization. From another point of view, LDA can be viewed
as probabilistic principal component analysis (PCA) of discrete data, and hence the
name discrete PCA is also used [12].

LDA framework has also been widely applied outside the original document domain,
the most interesting version regarding this thesis being the Simple Social Network
LDA (SSN-LDA) [67], a modification of LDA for community detection from social
networks. The model structure of SSN-LDA is presented in more detail in the next
section.

4.3.2 Topic model for networks: SSN-LDA

The assumption behind the Simple Social Network LDA [67] model is that com-
munities are modeled as latent variables in the graphical model and defined as
distributions over the social actor space. In practice, the algorithm assigns nodes
with similar linking distributions into same clusters.

Due to the modeling assumption SSN-LDA can find both assortative and disas-
sortative structures from network data. A network is assortative with respect to
a property if the property tends to co-occur in connected nodes more often than
expected by chance [42]. The opposite, negative correlation in adjacent nodes, is
called disassortativity.

Figure 7 shows the SSN-LDA model structure as a plate diagram. A more detailed
way of presenting a generative model, such as SSN-LDA, is presenting its genera-
tive process step by step. In this way also the symbols in the plate diagram get
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SSN-LDA model is presented in Section III-C.

No
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α ω
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ιθ

K

Figure 7: Plate diagram of SSN-LDA. Figure adapted from Zhang et al. [67].

introduced. The generative process behind SSN-LDA is as follows:

1. Initialization

(a) Generate M multinomial distributions θi i = 1, . . . ,M , over latent com-
ponents ι, ι = 1, . . . , K, from a K-dimensional Dirichlet distribution
Dir(α) .

(b) Assign a multinomial distribution ϕι over the nodes i to each component
ι by sampling from the Dirichlet distribution Dir(β) .

2. Link generation (repeat for each link ω = 1, . . . , L, with sending nodes i =
1, . . . ,M)

(a) Draw a latent component ι from the multinomial θi .

(b) Choose the link endpoint j with probabilities φι; set up a directional link
ω between nodes i and j .
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5 New generative model for network data

This section presents the methods and models developed and used in this thesis,
starting from the basic Interaction Component Model framework and proceeding to
the extensions and improvements. For clarity, some technical details are presented
in a separate Appendix.

The general motivation for developing a new network model is related to the SSN-
LDA method described in the previous section. SSN-LDA does not discriminate
between the assortative and disassortative property of networks. However, commu-
nity is clearly an assortative property. If the specific goal of network analysis is to
detect communities, then a model designed explicitly for that kind of structure in
the data could perform better than a more general model due to the lower number
of parameters to be estimated. The new model is thus designed as a modification
of SSN-LDA that is specialized to model assortative community structure.

5.1 Generative model for interactions

The methods in this thesis are based on a generative probabilistic model for graphs
called Interaction Component Model (ICM; [53]). The model assumes a latent com-
ponent structure and assigns each edge on the graph to one of these components.
Based on the edge assignments, one can then infer the component membership
probabilities of the nodes. Depending on the application, the components can be in-
terpreted as communities or protein complexes, or in general any densely connected
subgraphs. The simplest model variant for binary interactions is denoted ICMc, c
standing for communities.

5.1.1 Model framework

A plate diagram of ICMc is shown in Figure 8A. The generative process behind the
ICMc is as follows:

1. Initialization

(a) Generate a multinomial distribution θ for the latent components z from
a Dirichlet distribution Dir(α) .

(b) For each component z, generate a multinomial distribution φz over the
nodes i from a Dirichlet distribution Dir(β) .

2. Link generation

(a) Draw a component z from θ .

(b) Generate a link by drawing its end nodes, i and j, independently from
each other, from φz .
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Figure 8: (A) Plate diagram of the basic ICMc model. (B) Plate diagram of the
ICMg2 model.

5.1.2 Equations and inference with collapsed Gibbs sampling

The likelihood of network data can now be formulated as the product of the proba-
bilities of single, independently generated links l as follows.

p(L,Z|φ, θ) =
N∏
l

θz(l)φz(l)i(l)φz(l)j(l) =
C∏
z

θnz
z

MC∏
iz

φqzi

zi , (10)

where N,C and M are the number of links, components and nodes, respectively, L
denotes link data, Z denotes all components assignments of the links, and in the
latter expression nz is a count of links assigned to each component, and qzi is a count
of component-node co-occurrences.

For parameter optimization, a variant of Gibbs sampling is used, known as collapsed
Gibbs, in which some model parameters are marginalized out. In particular, the
multinomial distribution parameters θ and φz are integrated out following Griffiths
and Steyvers [29], leaving only the component assignments of each link, which we
are interested in. The details of the marginalization are presented in Appendix A.1.

Finally, the marginalized probability is separated into link-wise factors, and the
probability of one left-out link l0 to be assigned to component z0, given the assign-
ments of all other links, becomes

p(l0, z0|L′, Z ′, α, β) =
n′z0 + α

N ′ + Cα
·

(q′z0i0 + β)(q′z0j0 + β)

(2n′z0 + 1 +Mβ)(2n′z0 +Mβ)
, (11)

where counts n′, q′ and N ′ denote the counts as they were if the link l0 was nonex-
istent.

The probabilities (11) can then be used to sample a new component z for a left-out
link, with the probabilities p(z|l0, L′, Z ′, α, β) = uz/u·, the denominator using the
dot notation for the sum. A Gibbs iteration follows by leaving one link out at a
time, and sampling a new latent component for it as above.
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5.1.3 Inferring the results

For clustering applications, the aim is to infer the component memberhips of nodes,
that is, probabilities p(z|i). From Bayes rule we obtain

p(z|i) =
θzφzi∑
z′ θz′φz′i

. (12)

This is, however, somewhat laborious to compute, and can in practice be approxi-
mated well with

p(z|i) ≈ qzi∑
z′ qz′i

. (13)

For prediction applications, one can reconstruct the original parameters θ and φ
from the expected values of the marginalized parameters as

θ̂ =
nz + α∑
z′ nz′ + Cα

(14)

and
φ̂z =

qzi + β∑
i′ qzi

′ +Mβ
. (15)

5.1.4 Infinite ICMc

In the basic ICMc the number of components has to be predefined. In many prac-
tical applications it would, however, be useful to infer the number based on data.
Standard model selection methods, such as different information criteria or cross
validation could in principle be used, but a more suitable method that fits the ICM
framework easily is the Dirichlet Process (DP) prior [58].

The DP prior has an infinite number of components in principle, but only a finite
number is realized in practice during the inference. Because the DP model is not
used in the experiments in the thesis, the full derivation of the corresponding Gibbs
sampler is omitted here. The resulting collapsed sampling equation, replacing the
finite equation (11), is

p(l0, z0|L′, Z ′, α, β) =
C(n′z0 + α)

N ′ + Cα
·

(q′z0i0 + β)(q′z0j0 + β)

(2n′z0 + 1 +Mβ)(2n′z0 +Mβ)
, (16)

where the function C(nz + α) ≡ nz if nz 6= 0 and C(0, α) = α . In the latter case, a
new component is generated in the process.

5.1.5 ICM and related models

The ICM framework has its roots in topic models, and it is therefore not surprising
that the generative process behind ICMc is very close to that of SSN-LDA. There is,
though, a notable difference in the modeling assumptions: SSN-LDA groups nodes
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that share similar link distributions, and can thus detect more complex structures
than ICMc, which is only designed to detect community-like structures.

From the other network models mentioned in Section 2.3.2 the stochastic block
model is also closely related to ICMc. In fact, the ICM framework was extended to
model block structures in a very recent work [45]. This extensions is not so relevant
for this thesis and is thus not covered here.

5.2 Generative model for protein interactions

In the biological part of this thesis the basic ICMc is applied to protein interaction
networks in order to seek functional modules of protein complexes. Although the
model was originally designed to detect communities in social networks, the modeling
assumptions are very similar to the common interpretation of functional modules as
densely connected subgraphs. It is thus interesting to see how well ICM performs
in the biological task.

5.3 Incorporating gene expression data into the analysis

In addition to the network clustering task described above, ways to include functional
data about the nodes into the model are introduced in the thesis. The idea is
that functional data for the genes can improve the detection of the modules. In
particular, genes with functional similarity should be included in the same modules.
In subsequent sections, two ways to combine protein interaction data with gene
expression data are presented.

5.3.1 Transforming expression profiles into relations

In the first model variant including gene expression, denoted as ICMg1, gene expres-
sion data is transformed into relations that describe the functional similarity of the
genes. These relations are then added to the original PPI network. In practice, the
Pearson correlation of expression for each pair of genes is computed, and all pairs
where the correlation exceeds 0.85 are treated as additional links4.

The motivation is that both the existence of protein-protein interactions and po-
tential co-regulation inferred from the correlation links give evidence of functional
relatedness of the genes. This approach is similar to the one used by Ulitsky and
Shamir [62], apart from the fact that we do not make any difference between the
two types of links.

4The same cutoff value as in [41].
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5.3.2 Generative process including gene expression profiles

In the next model variant, denoted as ICMg2, the same idea is taken further by
including the gene expression data into the generative model. In practice this
is achieved by generating for each component a specific expression profile from a
Gaussian distribution. Node-specific expression profiles are then generated from
Gaussian distributions with component-specific means. The underlying assumption
is that genes in a component should share similar expression profiles in addition to
being strongly connected.

Plate diagram of this model variant is shown in Figure 8B. The generative process
goes as follows:

1. Initialization

(a) Generate a multinomial distribution θ for components z from a Dirichlet
distribution Dir(α) .

(b) For each component z generate a multinomial distribution φz over nodes
i from a Dirichlet distribution Dir(β) .

(c) For each component z draw a mean vector of expression profiles µ̄z from
a prior multivariate Normal distribution N(µ̄0, V0) with zero mean µ̄0 = 0
and diagonal covariance matrix V0 = σ2

0I .

2. Link generation

(a) Draw a component z from θ .

(b) Generate a link by drawing its end nodes, i and j, from φz .

3. Node generation

(a) Draw a component z from θ .

(b) Generate a node k from φz .

(c) Generate data vector x̄k from a multivariate normal distributionN(x̄k|µ̄z, V )
with component-specific mean µ̄z and covariance matrix V = σ2I .

Note that each node could be generated multiple times in step 3. This is allowed in
the generative process to simplify computations, and it is not supposed to have any
practical effect here , as each gene has exactly one expression profile in the data. In
other application domains it could be an advantage.

5.3.3 Equations and inference with collapsed Gibbs sampling

Joint probability of ICMg2 is a product of the link-specific probabilities that are
the same as with the basic ICM, and the normally distributed expression profile
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probabilities with priors for the component-specific means. This becomes

p(L,X,Z, φ, µ, θ) = D1(α, β, σ
2)

C∏
z

θnz+mz+α−1
z

MC∏
iz

φqzi+β−1
zi

×
C∏
z

[
N(µ̄z|µ̄0, V0)

mz∏
z(k)=z

N(x̄k|µ̄z, V )

]
,

(17)

where X denotes the node data, mz is the number of nodes assigned to component
z, µ̄0 and µ̄z are the prior and component-specific means, respectively, V0 and V are
the prior and data covariance matrices, respectively.

The collapsed Gibbs sampler is derived analogously to the basic ICM, the marginal-
ization now including the component-specific means µ̄z. Details are presented in
Appendix A.2. The sampler now involves the separation of the marginalized proba-
bility into link-wise and node-wise factors. The probability of the left-out link l0 to
be assigned to component z0 becomes

p(l0, z0|L′, Z ′, α, β) =
n′z0 +mz0 + α

N ′ +M + Cα
·

(q′z0i0 + β)(q′z0j0 + β)

(2n′z0 +mz0 + 1 +Mβ)(2n′z0 +mz0 +Mβ)
.

(18)
Likewise, the probability of the left-out node-data x̄0 to be assigned to component
z0 is

p(x̄0, z0|X ′, Z ′, α, β) =
(nz0 +m′z0 + α)(q′z0k0 + β)

2nz0 +m′z0 +M ′β
·
[
|S|
|S ′|

]1/2

× exp

[
−1

2
x̄T0 V

−1x̄0 +
1

2
ATS−1A− A′TS ′−1A′

]
. (19)

For notation details, see Appendix A.2. Gibbs sampler iterates by sampling compo-
nent assignments in turn for links and expression profiles, separating one data point
at a time and using equations 18 and 19 as with the basic ICM. Inference of the
results is analogous to ICMc, see Section 5.1.3.

5.4 ICM for multi-relational data

The idea of extending the ICM model framework to handle multi-relational data
was originally presented by Sinkkonen et al. [54]. The approach is basically similar
to the ICMg2, which is actually already a multi-relational model, as similarity of
expression profiles is seen as an additional relation between the genes.

Multi-relational ICM assumes that also the node-wise data is multinomial count
data, instead of the Gaussian data as in ICMg2. The model framework is easily
applicable to any problem setting, which satisfies the modeling assumptions of data
representable as counts. In the model, the global component structure is similar to
that of the basic ICM, and then component-specific multinomial distributions are
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assumed over each data type. Corresponding collapsed Gibbs samplers are derived
separately for each data type, and the overall iteration proceeds through all of these
in turn. In a case study presented in the paper, [54], the model was applied on a
simple case of citation data with additional word content data for each document.
The resulting combined model of citation and content data outperformed approaches
that use either data source alone.

In this thesis results are reported from an experiment, where the multi-relational
ICM is applied on the MovieLens data [49]. The data consists of two types of
entities, users and movies, and several attributes for both of these. There is also a
relation between the entities, namely rating given by a user to a movie, with two
possible values, positive and negative. A relational schema for this is presented later
in Section 7.1.2. The model details are omitted for brevity.

5.5 Improved inference

In addition to extending and applying the ICM framework to new kinds of data
the thesis includes improvements made into the inference procedure. First, the
hyperparameters α and β are found to have a notable effect on the clustering results,
and should thus be chosen well [7]. Recently, Asuncion et al. highlighted the
importance of proper estimation of hyperparameters in topic models in general [6].

The hyperparameters can of course be optimized manually if the results can be val-
idated somehow, for example based on some ground truth classes of the nodes. But
in general, a more sophisticated approach would be to estimate the hyperparameters
from the data, for which one solution is introduced here. Additional improvements
are made on convergence monitoring and on assessing different Gibbs sampler chains.

5.5.1 Hyperparameter estimation by sampling

Many approaches have been presented for estimating the hyperparameters of LDA-
type models, for example by Thomas Minka [40]. The sampling scheme used in this
thesis for the hyperparameters α and β goes as follows:

1. Find the maximum of the posterior distribution with Newton’s method. It is
important to stay in a log-concave region, so at each step we have to check
whether the 2nd derivative is negative, otherwise the current parameter value
is halved.

2. Metropolis sampling. Use a normal approximation of the posterior evaluated
at the MAP estimate, obtained with Newton, as a proposal distribution. A
2.5-fold standard deviation for the normal distribution is used to achieve better
performance. Metropolis is currently iterated 15 times, rejecting the move if
the parameter value is not positive.
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Figure 9: Posteriors of the hyperparameters α (left) and β (right) for ICMc from
one run on the Cora dataset.

The same sampling procedure is used for alpha and beta. It requires evaluating
the 1st and 2nd derivatives of the log-posterior at each Newton step and then
the log-posterior itself at each Metropolis step.

The posterior of α (with a Dirichlet prior) is

p(α) ∝ p(α)p(L|α) = p(α) · Γ(Cα)

Γ(α)C

∏
z Γ(nz + α)

Γ(N + Cα)
(20)

and β’s posterior

p(β) ∝ p(β)p(L|β) = p(β) ·
∏
z

Γ(Mβ)

Γ(β)M

∏
i Γ(qzi + β)

Γ(2nz +Mβ)
. (21)

The logarithmic posteriors and their derivatives, which are needed for the compu-
tations, are presented in Appendix A.3. The corresponding equations are easy to
derive for alpha in the case of the Dirichlet Process prior, but are omitted here.

A simpler approach would be to use the MAP estimate directly for the hyperpa-
rameters. The performance would then depend on the shape of the posterior of
the parameter. Figure 9 shows the posteriors of the hyperparameters, as computed
based on a point-estimate of the assignment of links to the components in the end
of a sampling procedure. So in fact these are not true posteriors, but conditional
posteriors given the component assignments z. Conditional posterior of alpha seems
to be quite wide, whereas for beta the posterior is extremely narrow. In the latter
case the MAP estimate would probably perform well.

5.5.2 Estimating convergence

Monitoring the convergence of MCMC chains is an important part of the inference,
as noted in Section 4.2.2. One possible measure is the marginal likelihood, but it is
hard and laborious to estimate from the MCMC samples.

Instead a log-probability of the left-out link, log p(z|l0, L′, Z ′, α, β) is used. In ad-
dition to monitoring convergence this is proposed and tested as a measure of the



34

goodness of MCMC chains, indicating that choosing a chain with the highest aver-
age log-probability would give better results. Although the quantity itself is non-
standard, note its interpretation as a leave-one-out estimate for the entropy of the
predictive distribution for new links. It requires little additional computing, as the
probability is already computed during the sampling.
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6 Experiments with biological data

In the first experimental part of the thesis the ICM framework is applied to the
study of biological network data. This section contains the research questions, used
methods, data sets and evaluation criteria, followed by results and brief conclusions.

6.1 Detecting functional gene modules from biological net-
works

In this experiment the task is to detect functional modules from protein interaction
networks and gene expression data. There are two research questions:

• Can the basic ICM find biologically relevant gene modules from protein inter-
action data?

• How does the integration of gene expression data into the analysis affect the
detection of functional modules?

6.1.1 Methods

From the ICM variants the basic ICMc using PPI data and both ICMg1 and ICMg2
that utilize gene expression data are used in the experiment. In order to assess their
module detection performance, the proposed methods are compared to two recently
published methods, the Hidden Modular Random Field (HMoF; [52]) and Matisse
[62]. Both of these utilize protein interaction and gene expression data, though with
quite different ways.

In the HMoF method, the network is modeled with a modularity-optimization al-
gorithm and gene expression with k-means clustering, and a specific parameter ω is
used to control the weighting between these two data types. In Matisse, the gene
expression is transformed into similarity values between genes. An algorithm is then
devised to detect node groups that are strongly connected and highly similar. Com-
mon to both of these methods is that they do not directly take the noise in the PPI
data into account.

Matisse differs from the other methods in the sense that it leaves some genes out
from the clustering and also infers the number of clusters automatically. Due to
the probabilistic nature of all the models, the number of clusters could be set auto-
matically in several well-justifiable ways, such as cross-validation and different types
of information criteria (see, e.g., Bishop [9] for standard model selection methods).
For ICM variants a natural option would be to use a Dirichlet Process prior for the
component distribution. Dirichlet Process is a common non-parametric prior for
estimating the number of components based on the data [58].

However, since implementation of comparable model complexity control methods
would be laborious in practice for some of the methods, the number of clusters of
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the other methods is fixed to the median of 20 Matisse runs to bias the results in
favor of Matisse, to make sure that the result is not due to the additional degrees
of freedom ICM has in choosing the cluster sizes. Each method was run 20 times
to obtain confidence intervals, resulting in a different set of clustered genes for each
Matisse run.

The models have some tunable parameters which affect their performance. All these
parameter values were chosen a priori and not optimized. Our ICM models have
two hyperparameters controlling the component distribution and node distributions
within components, respectively. Based on earlier studies we set the hyperparameter
values to α = 10 and β = 0.01. This study was conducted before the development of
the hyperparameter estimation procedure and it is hence not used here. The model
variant ICMg2 has three additional hyperparameters for generating the expression
data, which we set to µ0 = 0, σ2

0 = 1 and σ2 = 0.1 to describe small variations
around the base value of zero.

The number of clusters for all other methods than Matisse was set to the median of
20 Matisse runs on both datasets, resulting in 24 and 25 clusters in the osmotic shock
response and DNA damage data sets, respectively. HMoF has a weight parameter
ω defining the relative weighting between the expression and network data in the
model. This was fixed to ω = 0.2 as in the original paper [52]. Matisse was run with
the default parameters given in its implementation.

6.1.2 Data sets and evaluation

The PPI data set is obtained by pooling two yeast Saccharomyces cerevisiae data
sets, [62], [41], which are originally obtained from various public databases. The
first gene expression data set is the Osmotic shock response (OSR) set [44] and the
other one is a DNA damage (DNAD) set [25]. Since the implementations of all
methods do not support missing samples in the sense that either expression or PPI
links would be completely missing from some genes, subsets without such missing
data are analyzed here.

Two combined data sets are obtained, one with 1711 genes, 10 250 interactions and
133 observations of gene expression (OSR), and another with 1823 genes, 12 382
interactions and 52 gene expression observations (DNAD). Pooling the expression
links with the original PPI’s for the ICMg1 results in 14 256 (OSR) and 15 547
(DNAD) links in total. Missing values in the expression data were interpolated
using the 10-nearest neighbor method [60].

For evaluating detected functional modules, two measures are used: Gene Ontology
(GO) [5] enrichment analysis and protein complex overlap. Gene Ontology contains
manual annotations of genes to known biological process classes. These classes can
be used as a reference set for validating obtained gene modules. In GO enrichment
analysis a hypergeometric p-value is computed for each pair of found module and
GO class [48]. Lower p-value means that the modules contain more of the same
gene class than would be probable if they were generated randomly. A common
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approach is then to treat all pairs under a certain cutoff-value as enriched, and a
higher number of enriched modules and GO classes is then considered as a better
clustering. In this thesis the Fisher exact test [48] is used and the number of enriched
modules and GO classes are computed on a range of p-values (p = {10−1, ..., 10−10}).
As mentioned earlier, functional modules are closely related to protein complexes.
They can thus be used as an additional validation of the modules, by computing how
well the modules overlap with known complexes. For the analysis, a set of known
complexes were obtained from the Comprehensive Yeast Genome Database at MIPS
[30]. The total number of complexes in the used MIPS collection is 267. The number
of protein complexes existing in our datasets with at least 2 proteins was 95 and 143
for OSMO and DNAD, respectively. Out of these, 33 and 46 contained at least five
proteins.

6.2 Results

The task in the biological experiment was to detect relevant functional modules from
combinations of protein interaction and gene expression data. In order to evaluate
the obtained modules, they are compared to two known sets of genes and proteins,
Gene Ontology annotations and protein complexes. Although these are manually
curated sets, they represent only part of the truth, and should thus be used with
care. They are, however, widely used in validating clusterings for genes and proteins,
and are supposed to give reliable results in comparative studies.

The results of the GO enrichment analysis are shown in Figure 10. It shows the
number of enriched modules and GO classes as a function of the cutoff p-value
for enrichments. Matisse does not perform as well as the other methods in the
enrichment analysis. The other four methods perform about equally well in the
Osmotic shock response data set, but in the DNA damage data set the three ICM-
based methods outperform HMoF as well.

Second, the overlap of the modules with known protein complexes was measured.
From the results, shown in Figure 11, it is evident that the first four methods find a
significant proportion of the protein complexes with the ICM variant outperforming
HMoF to some extent, whereas Matisse’s performance is clearly worse.

6.3 Conclusions

As the first part of the thesis the ICM framework was applied to a completely new
application domain, biomolecular networks of protein interactions. The particular
task was to detect biologically relevant functional gene modules. First, the goal was
to evaluate and compare the performance of the basic ICM applied on a plain PPI
graph in the task. The results from two experiments on yeast data show that the
model framework in general outperforms recently introduced alternatives, which do
not directly model the noise in the interactions.
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Figure 10: Gene Ontology enrichment results. The number of enriched modules and
GO classes as a function of the hypergeometric p-value cutoff. Top row: The number
of modules in which at least one GO class is enriched. Bottom row: The number
of GO classes enriched in at least one module. Left: Osmotic shock response data.
Right: DNA damage data. All values are means over the 20 runs. More enrichments
is better.

In addition, two different approaches were introduced for combining gene expression
data into the analysis. The combined approaches again outperform the two reference
methods, but when compared to the ICM variant without expression data there are
no clear differences in one way or the other. So the benefit of the proposed inte-
grative approaches involving gene expression data compared to using plain protein
interactions remains questionable.
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Figure 11: Protein complex overlap. The number of protein complexes (y-axis) with
a specific degree of overlap (x-axis). Top: complexes with at least 2 proteins, bottom:
complexes with at least 5 proteins, left: Osmotic shock response data, right: DNA
damage data. The results in which the area under the curve is concentrated on the
right end are better, as this indicates higher overlap with the protein complexes.
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7 Experiments with social network data

7.1 Clustering medium-scale social networks

In the second experimental part the task is to detect communities from medium-scale
social networks. The experiments were designed to answer the following questions:

• How does sampling of the hyperparameters α and β affect the clustering results
with ICM?

• Can the introduced convergence estimator be used for evaluating MCMC
chains in a clustering task?

• How can the model be applied on a recommendation task in a multi-relational
setting and what is the benefit of node attributes here?

7.1.1 Methods

Three variants of the ICM framework are used here: basic ICMc, and ICMc with
fixed (f) and sampled (s) hyperparameters. With multi-relational data the corre-
sponding multi-relational model is used. For comparison a set of different methods
are used in the different tasks. In basic community detection, ICM is compared with
SSN-LDA and spectral clustering, described in Sections 4.3.2 and 2.3.2, respectively.
Parameter inference for SSN-LDA was performed with an analogous collapsed Gibbs
sampler to that of ICM. In the case of multi-relational data ICM is compared with
the Infinite hidden relational model (IHRM; [65]).

All models except the spectral clustering, which is deterministic, were run ten times
for each data set to get information about the variation of the results between runs.
The number of components for the methods was set to match the known ground
truth, to allow straightforward evaluation. The hyperparameter values for ICMc and
SSN-LDA were chosen based on earlier studies [7] to give good results, see Table 1
for chosen parameter values.

Table 1: Modeling parameters for medium-scale networks. Network characteristics
and modeling parameters for the medium-size networks. In the table, I is the number
of nodes in the network, L is the number of edges, Ct is the number of ground truth
classes, Cs is the number of clusters sought by the methods and α and β are the
hyperparameters of the models.

ICMc SSN-LDA
Network I L Ct Cs α β α β
Cora 2 485 5 068 7 7 0.143 0.02 0.143 0.025
Citeseer 2 110 3 668 6 6 0.166 0.04 0.166 0.006
Polblogs 1 222 16 714 2 2 0.5 0.003 0.5 0.4
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Figure 12: Relational schema of the MovieLens data.

7.1.2 Data sets and evaluation

The Cora and CiteSeer datasets [51] consist of citations between scientific publi-
cations. Nodes outside the giant component of the network were removed, and
potential directional links were symmetrized. After preprocessing, the Cora dataset
had 2,110 papers in seven bibliographical categories, while the CiteSeer dataset had
2,485 papers in six categories. The Polblogs dataset [1], recorded in 2005, has hy-
perlinks between 1,222 weblogs on US politics. Summary of the data sets is shown
in Table 1.

For evaluating the clustering result perplexity is used. It is a measure of the ability
of a model to recover an underlying nominal category, and commonly used, for
instance, in natural language processing. Perplexity is here applied to the confusion
matrix formed of the evaluation samples, that is, to the table of frequencies with
standard classes of the samples as columns (c), and the model-given components or
clusters as rows (m). Perplexity for the evaluation sample is then defined as

perplexity = 2−
P

l log p̂(cl|ml)

N , (22)

where N is the number of evaluated data samples, indexed by l, and cl and ml

are their class and component, respectively. The probabilities p̂(c|m) are empirical
probabilities, computed by normalizing the rows of the confusion matrix.

Perplexity is a monotonic function of the empirical conditional informationH(C|M),
which has been shown to be a good measure for clustering by Meilă [39]. From the
two-way measure proposed by Meilă, only the other “way” is needed, because the
other corresponds to the fixed ground truth.

In the multi-relational experiment the ICM is applied on the MovieLens data [49],
and the task is to predict user ratings for movies, based on training data. The model
variant is denoted Simple relational component model (SRCM). An illustration of
the MovieLens data is shown in figure 12 as a relational schema.

In the data there were 702 users and 603 movies, with on average 112 ratings per
user. Ratings were binarized into positive and negative ones, the threshold being
user average. For held-out users, 156 of the 702, twenty ratings were used to predict
the rest, and the overall average accuracy of these predictions is reported. In the
attribute setup, year and genre of the movies, and age, gender, and occupation of the
users were added to the model as independent (movie, attribute) or (user, attribute)
co-occurrences.



42

7.2 Results

Results from the experiment with three medium-scale social networks are presented
in Figure 13. The probabilistic methods show better or equal performance to spectral
clustering. On the Polblogs, spectral clustering resulted in the clustering with 6
nodes in one and all other nodes in an other cluster, giving a very poor perplexity
score (not shown). After removing the 6 nodes spectral performed very well, as
shown in the results with a cross.

With the citation datasets ICMc with sampled hyperparameters was marginally
better than SSN-LDA, but there is no significant difference for Polblogs. With fixed
hyperparameters ICMc performs about equally to SSN-LDA. All the probabilistic
methods show a large variation between the runs, indicating a need for good ways
to evaluate different sampling chains.

From the perplexity results in Figure 13 it seems that the ICMc with hyperparame-
ters generally outperforms the one with fixed parameters, suggesting that the used
estimation procedure is effective.

Figure 14 shows a plot of the average leave-out log probability from one run on
the Citeseer data, showing that although the estimator has reached a stationary
level after a few thousand iterations, there is clear variation between single samples.
Moreover, subsequent samples seem to be highly correlated with each other. These
results indicate that the proposed measure can be used as a rough convergence
estimator. One should still remember to a lot of samples with a large enough
interval for reliable inference.

The values of the estimator are plotted against the perplexities for each run of the
hyperparameter-sampled ICMc in the insets of Figure 13. Corresponding correla-
tions are: Cora: -0.47, Citeseer: -0.68, and Polblogs: +0.61. Additionally, the best
ICMc(s) run according to the measure is marked by the open diamond in the perfor-
mance figures. The measure is able to choose a relatively good model for all datasets
except the Polblogs, where the overall differences between the runs was very small.

Finally, the prediction results for the MovieLens-experiment are shown in Figure
15. IHRM is better but the less complex SRCM performs well too. Both methods
have considerable variance between runs, that is, convergence to a local area of the
posterior mass. This experiment does not give evidence of any predictive benefit
from adding margin attributes of users and movies to either of the models, but see
[65] which reports a benefit from the attributes, for the IHRM.

7.3 Conclusions

As the second part of the thesis the model was extended in order to improve com-
munity detection on social networks. The experiments on a set of medium-scale
social networks show that estimating the hyperparameters improves clustering re-
sults compared to using fixed hyperparameter values. This indicates that the choice
of the hyperparameters is an important factor when the model framework is used



43

●
●

●

●
2.

5
3.

0
3.

5
4.

0

Cora

method

pe
rp

le
xi

ty

ICMc(f) ICMc(s) LDA Spectral

●
●

●

●

●

● ●

●

●

●

●

●

●

●

lh

pe
rp

●

●

●

●

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

Citeseer

method

pe
rp

le
xi

ty

ICMc(f) ICMc(s) LDA Spectral

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lh

pe
rp

●

●
●

1.
19

1.
20

1.
21

1.
22

1.
23

1.
24

Polblogs

method

pe
rp

le
xi

ty

ICMc(f) ICMc(s) LDA Spectral

●

●
●

●

●

●

●

●

●

●
●

●

●

lh

pe
rp

Figure 13: Comparison on medium-sized networks. Performance in finding true
clusters, as measured by the perplexity of predicting ground-truth classes with the
clusters. Datasets: Cora (top, left), Citeseer (top, right) and Polblogs (bottom,
left). Methods: ICMc with fixed (f) and sampled (s) hyperparameters, SSN-LDA
and Spectral clustering. The 2SE error bars are over 10 runs and the white diamond
corresponds to the best run of ICMc(s) chosen by the convergence estimator (see
see Section 5.5.2). Insets show the proposed convergence estimator plotted against
the perplexity for each separate run of ICMc(s).

for clustering, and that the proposed sampling scheme is suitable for this task. With
sampled hyperparameters ICMc was slightly bettern than SSN-LDA, but the dif-
ference was not significant in all the datasets. On the other hand, sampling the
hyperparameter for SSN-LDA as well could probably improve its performance as
well.

A common problem for both ICMc and SSN-LDA is the relatively large variation
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Figure 14: Convergence of the Gibbs sampler with sampled hyperparameters on the
Citeseer citation set (first 5000 iterations enlarged as an inset). In the sampling,
50,000 iterations over the data were ran, but about 15,000 would have been enough
for convergence, and about 3,000 for getting useful results (see the inset).

between different runs. This indicates that the sampler is not properly converged to
the posterior, and is instead stuck in some local optimum. This is a general problem
for many inference methods, especially with sparse data.

In addition to the hyperparameter estimation scheme a new convergence estimator
was proposed, based on the probabilities of the component assignments of the left-
out links. This estimator is easy to compute and based on the experiments it can be
used to monitor the convergence of the sampling chain. Moreover, the experiments
show that the estimator can be used to choose a good chain. This helps partially
for the general convergence problem described above.

The model framework is also easily extendable and it was applied on a multi-
relational problem setting. It was compared to a probabilistic relational model
in a recommendation task. Although the ICM model was not originally designed for
predictive purposes, it reached a performace level comparable to a more structure
relational model. On the other hand, adding node-wise data into the model did not
improve the performance of any of the methods significantly.
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8 Discussion

In this thesis, extensions, improvements and applications of a generative probabilis-
tic modeling framework for network data have been presented. The main goals
were to study the suitability of the model on clustering-type tasks within different
application domains, and additionally to study the effect of several modifications
on model performance. Taken together, the obtained results indicate that the ICM
framework is suitable for detecting community-like cluster structures from noisy net-
work data within various problem domains. The model inference can additionally
be improved significantly with relatively simple methods.

However, several questions remain and new ones have arisen during the work. Re-
garding the study of network analysis in general, a lot of work has been devoted
to finding common properties from real-world networks arising from different fields,
and models have been introduced that achieve good results in a variety of domains.
This has been seen as an indication of some fundamental commonalities between
these networks, especially in the complex networks research community. Not all sci-
entists agree with the claim that networks from different fields share enough common
properties to be of practical significance.

One important question here is the role of the chosen data representation. When
representing a complex network system as a simple graph, researchers have to make
strong simplifying assumptions. It is thus possible that as data are abstraced to the
same simple form, they may seem to be structurally very similar. This does not
however necessarily indicate that the important parts of the original systems are
similar.

Another questionable aspect of networks analysis is the seemingly dominant role of
clustering as a general task. Especially clustering of networks into densely connected
subgraphs is a very popular task in at least biological and social domains. Reasons
for this probably include that many real-world networks have been shown to exhibit
such structures, and that these tend to have natural interpretations in many appli-
cations. This is a tempting feature especially for computational scientists, who may
lack the deeper knowledge of the system the data is obtained from.

Many clustering methods for graphs have been proposed with various backgrounds,
ranging from purely mathematical graph theory to machine learning. Reviews have
been made in order to evaluate clustering algorithms on some specific problem do-
main. The evaluation of clusterings is however far from straightforward. Due to
the inherent dependencies between data points, many standard evaluation methods
cannot be applied as such to networks.

A typical approach is to compare the obtained clustering to some known classes of
the nodes with statistical means, as was done in this thesis. Such results depend
always on the goodness measure and theground truth classes, which are imperfect
representations of the truth and can easily be misinterpreted. Studying the eval-
uation methods for clustering has actually become an interesting goal of research
itself, and some general progress may be expected in the future.
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Another possibility is to generate artificial datasets, where the truth is known well. A
problem here is how to generate data that exhibits the nature of real-world networks
as well as possible. This is in itself a very challenging task and in fact one popular
goal in the analysis of real-world networks.

As the real-world networks have been clustered for decades now and most achieve-
ments are nothing but small improvements evaluated with questionable methods,
other approaches should probably be sought instead. Recently, the work by Jure
Leskovec [36] has shaken the traditional views of large social networks, especially
their structure and evolution. While communities have been assumed as the basic
building blocks of even very large networks, Leskovec has shown that this does not
hold when the networks and communities grow large enough. This shows that new
and critical approaches are needed to advance science around real network systems.

The modeling framework used in the thesis was motivated by the need for a simple
generative model for community structures. Some aspects of the model and current
applications should, however, be discussed.

Collapsed Gibbs sampling was used for inference, although the recent development
of variational methods raises the question of whether the current method is opti-
mal for the task. A very recent study by Asuncion et al. [6] showed that for topic
models the choice of proper hyperparameter values is essential to model perfor-
mance, indicating that the hyperparameter estimation procedure presented in the
thesis was a critical improvement and could be studied further in the future. The
same study also showed that the best sampling and variational methods show only
insignificant performance differences. Thus, given the quickness and robustness of
variational methods, they should be considered as an alternative for the collapsed
Gibbs sampler. Their applicability for sparse data should on the other hand be
studied carefully

Despite the improved inference, the difference to SSN-LDA in the experiments was
relatively small. This indicates that although ICM was designed especially for
community-like structures, whereas SSN-LDA can find a wider range of structures,
the benefit from the specialization is not enough to distinguish the methods in this
task. On the other hand, ICM may be more easily extendable, for example the
Dirichlet Process prior can be included straightforwardly, while for SSN-LDA it
would require a more complex and computationally heavier hierarchical prior.

Based on this study, it is hard to give general advice about choosing between the
compared models. However, it can be concluded that if the data is known to be
noisy, probabilistic approaches should be preferred. Spectral clustering seems to be
unreliable in some cases, as it failed totally with the Polblogs data before manual
edits of the data. ICM could be preferred over SSN-LDA, if it is clear that the
data has a community structure and the goal is to detect it. Using the estimated
hyperparameters and the proposed evaluation of different chains one can easily ob-
tain relatively good results. In more general cases where little is known of the data,
SSN-LDA may be a better choice, at least if the hyperparameters are estimated.
The proposed sampling scheme should be straightforwardly applicable to SSN-LDA
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as well.

An interesting aspect of the ICM model is that it operates on the level of links,
whereas most of the other related algorithms operate on nodes. Unfortunately,
because the real-world applications studied so far tend to deal with nodes, this
aspect cannot be exploited, and can instead be a disadvantage in such applications.

A recent development in network analysis is the incorporation of additional data
into the simple graph analysis. This also brings networks very close to the relational
model. It is intuitively clear that if we have for example additional information
about the actors in a social network, it should be included in the study and could
lead to better results.

The multi-relational experiments presented in this thesis on biological and social
domains were not, however, that promising, as the performance did not change sig-
nificantly compared to using the graph data only. The result reflects other studies
on PPI and other biological data [41, 52]. There are many possible reasons for this.
In the biological case this may truly be due to protein interaction being a stronger
indication of functional similarity than the overall similarity of gene expression pro-
files. It is also possible that the chosen evaluation criteria are biased towards bare
network data.

On the basis of these rather simple experiments, it is too early to conclude that the
additional data is useless. A more probable explanation is that the models have to
be improved on how they treat different types of data. In the multi-relational ICM
framework, for example, the interaction data has much more weight than node-wise
data, resulting in an unfavorable bias.

Related to this, an important aspect mostly neglected in current approaches is the
context-dependency of measurement data. Both protein interaction and gene expres-
sion vary a lot due to many factors, such as location and environmental conditions.
Also the measuring techniques have notable influence on the resulting data. Re-
searchers should be aware of such factors concerning the studied data, and moreover
this knowledge should be incorporated into the models.
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A Technical details

The appendix contains technical details, mainly equations, for the different Interac-
tion Component Models.

A.1 Equations for ICMc

This section contains the detailed equations for the step-by-step derivation of the
collapsed Gibbs sampler for the basic ICMc.

A.1.1 Likelihood, joint probability and marginalization

The likelihood of ICMc is

p(L,Z|φ, θ) =
N∏
l

θz(l)φz(l)i(l)φz(l)j(l) =
C∏
z

θnz
z

MC∏
iz

φqzi

zi , (23)

where in the latter expression we have counts nz of links assigned to each component,
and counts qzi of component-node co-occurrences. Adding the Dirichlet priors to the
likelihood we get the joint probability

p(L,Z, φ, θ|α, β) = D1(α, β)
C∏
z

θnz+α−1
z

MC∏
iz

φqzi+β−1
zi , (24)

where D1(α, β) is a normalizing constant from the priors:

D1(α, β) =
Γ(Cα)

Γ(α)C
·
[

Γ(Mβ)

Γ(β)M

]C
. (25)

A.1.2 Inference with collapsed Gibbs sampling

For the collapsed Gibbs sampler the multinomial distribution parameters θ and φz
are integrated out from (24). This results in the marginalized joint probability

p(L,Z|α, β) = D1(α, β)

∏
z Γ(nz + α)

Γ(N + Cα)
·
∏
z

∏
i Γ(qzi + β)

Γ(2nz +Mβ)
. (26)

Because links are generated independently, they can be separated from p(L,Z|α, β)
into link-wise factors. Separate one arbitrary link, say l0, associated to the latent
variable z0 and to nodes i0 and j0, from the product, and denote by (L′, Z ′) the
other links and their associated latent components, and by (q′, n′, N ′) the counts as
they were if the link was nonexistent. For most indices, we will have q′ = q and
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n′ = n, and always N ′ = N − 1, but for some indices q′ = q− 1 and n′ = n− 1. Due
to the gamma function property

Γ(x) = (x− 1)Γ(x− 1)

Γ(x) = (x− 1)(x− 2)Γ(x− 2) ,

we can write the recurrence formula

p(L′, Z ′, l0, z0|α, β) = p(L′, Z ′|α, β) · uz =

D1

∏
z Γ(n′z + α)

Γ(N ′ + Cα)
·
∏
z

∏
i Γ(q′zi + β)

Γ(2n′z +Mβ)
· uz , (27)

where

uz ≡ p(l0, z0|L′, Z ′, α, β) =
n′z0 + α

N ′ + Cα
·

(q′z0i0 + β)(q′z0j0 + β)

(2n′z0 + 1 +Mβ)(2n′z0 +Mβ)
, (28)

which is the same as (11) in the main text.

A.2 Equations for ICMg2

Next, detailed equations for the step-by-step derivation of the collapsed Gibbs sam-
pler are presented for the model variant ICMg2.

A.2.1 Joint probability and marginalization

Joint probability of ICMg2 is a product of the link-specific probabilities that are
the same as with the basic ICMc, and the normally distributed expression profile
probabilities for the nodes, with priors for the component-specific means:

p(L,X,Z, φ, µ, θ) = D1(α, β)E1(µ̄0, V0, V )
C∏
z

θnz+mz+α−1
z

MC∏
iz

φqzi+β−1
zi

·
C∏
z

[
N(µ̄z|µ̄0, V0)

mz∏
z(k)=z

N(x̄k|µ̄z, V )

]
,

(29)
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where D1 and E1 are normalizing constants. The node data generation part can be
written

p(X,µ) =
C∏
z

[
N(µ̄z|µ̄0, V0)

mz∏
z(k)=z

N(x̄k|µ̄z, V )

]

=
C∏
z

(2π)d/2(mz+1)|V0|−1/2|V |−mz/2

· exp

[
−1

2

(
(µ̄z − µ̄0)

TV −1
0 (µ̄z − µ̄0) +

mz∑
k

(x̄k − µ̄z)TV −1(x̄k − µ̄z)
)]

= (2π)d/2(M+C)|V0|−C/2|V |−M/2︸ ︷︷ ︸
=E2=constant

·
C∏
z

exp

[
−1

2

(
µ̄Tz V

−1
0 µ̄z − 2µ̄Tz V

−1
0 µ̄0 + µ̄T0 V

−1
0 µ̄0 + · · ·

+
mz∑
k

(µ̄Tz V
−1µ̄z − 2µ̄Tz V

−1x̄k + x̄Tk V
−1x̄k)

)]

= E2

C∏
z

exp

[
−1

2

(
µ̄Tz (V −1

0 +
mz∑
k

V −1)︸ ︷︷ ︸
=S−1

µ̄z − 2µ̄Tz S
−1 S(V −1

0 µ̄0 + V −1

mz∑
k

x̄k)︸ ︷︷ ︸
=A

+ · · ·

+ ATS−1A− ATS−1A+ µ̄T0 V
−1
0 µ̄0 +

mz∑
k

(x̄Tk V
−1x̄k)

)]

= E2

C∏
z

exp

[
−1

2

(
µ̄Tz S

−1µ̄z − 2µ̄Tz S
−1A+ ATS−1A · · ·

− ATS−1A+ µ̄T0 V
−1
0 µ̄0 +

mz∑
k

(x̄Tk V
−1x̄k)

)]
.

(30)

By adding the normalizing constant of the Gaussian we get

p(X|µ̄) = E2

C∏
z

(2π)d/2|S|1/2N(µ̄z|A, S)

· exp

[
−1

2

(
−ATS−1A+ µ̄T0 V

−1
0 µ̄0 +

mz∑
k

(x̄Tk V
−1x̄k)

)]

= E3 exp

[
−1

2

M∑
k

(x̄Tk V
−1x̄k)

] C∏
z

N(µ̄z|A, S)f(mz, x̄z),

(31)
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where where posterior covariance matrix S, posterior mean A, an auxiliary function
f and a normalizing constant E3 are as follows:

S = (V −1
0 +mzV

−1)−1 (32)

A = S · (V −1
0 µ̄0 + V −1

mz∑
k

x̄k) (33)

f(mz, x̄z) = |S|1/2 exp

[
1

2
ATS−1A

]
(34)

E3 = (2π)−(Md)/2|V0|−C/2|V |−M/2 exp

[
−C

2
µ̄T0 V

−1
0 µ̄0

]
. (35)

The whole joint probability of equation (29) can now be written

p(L,X,Z, φ, µ, θ) = D1E3

C∏
z

θnz+mz+α−1
z

MC∏
iz

φqzi+β−1
zi

×
C∏
z

[
N(µ̄z|A, S)f(mz, x̄z)

]
· exp

[
−1

2

M∑
k

(x̄Tk V
−1x̄k)

]
.

(36)

A.2.2 Inference with collapsed Gibbs sampling

A collapsed Gibbs sampler is derived analogously to the basic ICMc, the marginaliza-
tion now including the component specific means µz, which are integrated out from
(29). The marginalized probability is then separated into link-wise and node-wise
factors, using auxiliary results derived in the next section.

Sampling equation for links is analogous to that of ICM:

p(L′, Z ′, l0, z0) = p(L′, Z ′) · u0 = D2

∏
z Γ(n′z +mz + α)

Γ(N ′ +M + Cα)

×
∏
z

∏
i Γ(q′zi + β)

Γ(2n′z +mz +Mβ)
×

C∏
w

f(mw, x̄w)× exp

[
−1

2

M∑
k

(x̄Tk V
−1x̄k)

]
· u0 , (37)

where

u0 ≡ p(l0, z0|L′, Z ′) = (n′z0 +mz0 + α) ·
(q′z0i0 + β)(q′z0j0 + β)

(2n′z0 +mz0 + 1 +Mβ)(2n′z0 +mz0 +Mβ)
.

(38)
For nodes we get

p(x̄′, Z ′, x0, z0) = p(x̄′, Z ′) · u0 = D2

∏
z Γ(nz +m′z + α)

Γ(N +M ′ + Cα)

×
∏
z

∏
k Γ(q′zk + β)

Γ(2nz +m′z +M ′β)
×

C∏
w

f(m′w, x̄
′
w)× exp

[
−1

2

M ′∑
k

(x̄Tk V
−1x̄k)

]
· u0 , (39)
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where

u0 ≡ p(x̄0, z0|X ′, Z ′) =
(nz0 +m′z0 + α)(q′z0k0 + β)

2nz0 +m′z0 +M ′β
·
[
|S|
|S ′|

]1/2

· exp

[
−1

2
x̄T0 V

−1x̄0 +
1

2
ATS−1A− A′TS ′−1A′

]
. (40)

A.2.3 Auxiliary results

For Gibbs sampling we want to separate the effect of one node from the joint prob-
ability. This is shown in counts m′ and M ′ and in the data sum , which are denoted
with , e.g., m′z0 . In (36) this changes S, A and the data sum. We want therefore
factorize (36) as.

h(m′z0 , x̄0)E3 exp

[
−1

2

M ′∑
(x̄Tk V

−1x̄k)

] C∏
z

|S ′|1/2 exp

[
1

2
A′TS ′−1A′

]
. (41)

Here an arbitrary node indexed by 0 is separated from the others, with data x̄0,
component z0 and m′z0 = mz0 − 1. The factor h can be divided into factors hn,
when h =

∏
n hn. Symbols: m = mz0 = m′z0 + 1, m′ = m′z0 and

∑′ xk =
∑m′ xk =∑m xk − x0). The factors of h can now be solved:

1. We want h1 to fulfill

h1(m
′) · |S ′|1/2 = |S|1/2 ⇒ h1 =

[
|S|
|S ′|

]1/2

. (42)

2. We want h2 to fulfill

h2(x0) · exp

[
−1

2

M ′∑
(x̄Tk V

−1x̄k)

]
= exp

[
−1

2

M∑
(x̄Tk V

−1x̄k)

]
⇒ h2(x0) = exp

[
−1

2
x̄T0 V

−1x̄0

]
. (43)

3. We want h3 to fulfill

h3(m
′, x0) · exp

[
1

2
A′TS ′−1A′

]
= exp

[
1

2
ATS−1A

]
⇒ h3 = exp

[
1

2

(
ATS−1A− A′TS ′−1A′

)]
. (44)

For h we then get

h =

[
|S|
|S ′|

]1/2

· exp

[
−1

2
x̄T0 V

−1x̄0 +
1

2
ATS−1A− A′TS ′−1A′

]
. (45)
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A.3 Hyperparameter sampling

This appendix contains the equations needed for the hyperparameter sampling pro-
cedure used in the thesis.

A.3.1 Hyperpriors

Possible hyperpriors are normal and inverse gamma distributions. Currently a
gamma prior with shape a = 1.5 and inverse scale b = 1.0 are used.
The density of the gamma distribution for parameter θ with hyperparameters a and
b is

p(θ|a, b) =
ba

Γ(a)
θa−1e−bθ . (46)

Taking the logarithm produces

log p(θ|a, b) = a log b− log Γ(a) + (a− 1) log θ − bθ . (47)

Differentiating with respect to θ gives

∂ log p(θ|a, b)
∂θ

=
a− 1

θ
− b , (48)

and another differentiation gives

∂2 log p(θ|a, b)
∂θ2

=
1− a
θ2

. (49)

Equivalently, the inverse gamma distribution for parameter θ with hyperparameters
a and b is

p(θ|a, b) =
ba

Γ(a)
θ−a−1e−b/θ . (50)

The derivatives are now

∂ log p(θ|a, b)
∂θ

=
−(a+ 1)

θ
+

b

θ2
(51)

and
∂2 log p(θ|a, b)

∂θ2
=
a+ 1

θ2
− 2b

θ3
. (52)

A.3.2 Posteriors

Recall the notation: C = #components, N = #links, M = #nodes.

Alpha’s posterior includes the prior p(α), which can be either a gamma or an inverse
gamma distribution (see previous section). The posterior is

p(L, α) ∝ p(α)p(L|α) = p(α) · Γ(Cα)

Γ(α)C

∏
z Γ(nz + α)

Γ(N + Cα)
, (53)
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or in the log domain

log p(L, α) = log p(α) +

log Γ(Cα)− C log Γ(α) +
∑
z

log Γ(nz + α)− log Γ(N + Cα) . (54)

Differentiating with respect to α gives

∂ log p(L, α)

∂α
=
∂ log p(α)

∂α
+

CΨ(Cα)− CΨ(α) +
∑
z

Ψ(nz + α)− CΨ(N + Cα) , (55)

where the Digamma function Ψ() is the derivative of the logarithmic Gamma func-
tion. Differentiating again produces

∂2 log p(L, α)

∂α2
=
∂2 log p(α)

∂α2
+

C2Ψ′(Cα)− CΨ′(α) +
∑
z

Ψ′(nz + α)− C2Ψ′(N + Cα) , (56)

where the Trigamma function Ψ′() in turn is the derivative of the Digamma function.
Posterior of β is equivalently proportional to

p(L, β) ∝ p(β)p(L|β) = p(β) ·
∏
z

Γ(Mβ)

Γ(β)M

∏
i Γ(qzi + β)

Γ(2nz +Mβ)
, (57)

or in the log domain

log p(L, β) = log p(β) +∑
z

[
log Γ(Mβ)−M log Γ(β) +

∑
i

log Γ(qzi + β)− log Γ(2nz +Mβ)

]
.. (58)

Differentiating the logarithmic form with respect to β gives

∂ log p(L, β)

∂β
=
∂ log p(β)

∂β
+∑

z

[
MΨ(Mβ)−MΨ(β) +

∑
i

Ψ(qzi + β)−MΨ(2nz +Mβ)

]
. (59)

Differentiating again gives

∂2 log p(L, β)

∂β2
=
∂2 log p(β)

∂β2
+∑

z

[
M2Ψ′(Mβ)−MΨ′(β) +

∑
i

Ψ′(qzi + β)−M2Ψ′(2nz +Mβ)

]
. (60)
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