

META-NET Workshop in ICANN 2011: Context in Machine Translation

Visual context for natural language processing

Mats Sjöberg, mats.sjoberg@aalto.fi

Aalto University School of Science Department of Information and Computer Science

14 June, 2011

Visual concept detection

 A popular approach to alleviate the semantic gap is to train a dictionary or ontology of semantic mid-level concepts

court

office

studio

building

desert

sports

road

sky

snow

crowd

face

person

military

prisoner

airplane

car

bus

police/

security

truck

walking/ running

animal

people marching

explosion/ fire

natural disaster

charts

Image category detection: the problem setting

Image category detection: the problem setting

PERSON

Image category detection: the problem setting

INDOORS

Some categories are more visual than others

CAR

Some categories are more visual than others

Some categories are more visual than others

TAKEN IN 2007

Category detection often formulated as a supervised learning problem -> examples

Positive examples

Negative examples

Category detection often formulated as a supervised learning problem -> examples

Positive examples

Negative examples

Is this a cow?

Concept ontologies

Concepts have structure which can be utilized:

Also: co-occurrences, context

Semantic feature space

Given a set of visual concepts C₁,..., C_K, we can construct a concept vector for the object x_i:

$$\mathbf{c_i} = \left(\begin{array}{c} \mathbf{p}_{i,1} \\ \vdots \\ \mathbf{p}_{i,\mathcal{K}} \end{array} \right),$$

where $p_{i,j} \in [0, 1]$ is the concept membership score of object x_i in concept C_i

c_i can be considered as the visual context of x_i