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Abstract

This paper describes the main characteristics of our approach to the ICANN-

2011 Mind reading from MEG - PASCAL Challenge. The distinguished

features of our method are: 1) The use of different sources of information

as input to the classifiers. We simultaneously use information coming from

raw data, channels correlations, mutual information between channels,

and channel interactions graphs as features for the classifiers. 2) The use

of ensemble of classifiers based on regularized multi-logistic regression,

regression trees, and an affinity propagation based classifier.

1 Type of information used for classification

The first building block of our approach is the combination of different

sources of information extracted from the MEG signals. We hypothesize

that different transformations to the brain signals could reveal diverse

types of brain signatures useful for the classification purpose. Therefore,

we have tried different information processing variants to unveil this in-

formation. In all cases, the starting point was the time series output from

the N = 727 training cases, for the k = 204 channels. For the training set,

there are a total 727 cases and 204 time series for each case. The MEG
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output data corresponds to 200-component numerical vector.

The first type of brain signal representation is constructed by splitting

the time series in segments of 5 contiguous time points, and adding the

raw signals in each segment. We obtain, for each channel, a vector of 50

features. Therefore, for a fixed frequency, each of the 727 cases will be

represented by 204× 50 = 10200 features. We call to this relatively simple

transformation of the initial information raw data.

For each of the cases, we use its corresponding raw data to compute the

correlations between each pair of channels for this case. For example,

to compute the correlations between channels i and j, their correspond-

ing vectors of 50 raw values are used. As a result, a symmetric matrix

W204×204 is obtained from each case. The final set of features of each

case will comprise a vector of n = 204·203
2 = 20706 values corresponding

to the upper triangular part of the correlation matrix (without the main

diagonal). This type of information is called channels correlations. This

approach intends to compute the interaction between different brain re-

gions during the solution of the recognition task.

In a similar way we compute, for each case, the matrix of mutual infor-

mation between the channels. First, the continuous data corresponding

to two variables, are discretized and from the discretized values the mu-

tual information is obtained. The bin size for discretizing all the data was

fixed to equal value of 11. Similarly to the computation of the correlation,

the final set of features will comprise vector of n = 204·203
2 = 20706 values

which are called the mutual information between channels. This approach

also tries to unveil interaction between different brain regions that could

be specific to each mental task.

In the fourth signal processing procedure, the correlation matrix is used

to construct interaction graphs between the different channels. The idea

is that a further analysis of the graph using topological measures from

network theory can serve to reveal local and global information that is

not directly recognizable from the correlation values.

The interaction graph G = (V,A) is such that V = {v1, . . . , v204} is the

set of vertices and arc ai,j between vertices vi and vj is defined as follows:

ai,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i < j and cri,j > 0.5

−1 if i < j and cri,j < −0.5

0 otherwise

where cri,j is the correlation coefficient between channels i and j, and
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Information− Freq Full 2H 5H 10H 20H 35H

Raw 236 0 0 0 0 0

Correlation 547 64 122 501 806 3566

MutualInf. 31 5 14 49 98 356

Interactiongraph 16 0 0 39 61 349

Table 1. Number of selected features of each type of information and frequencies.

values 1, −1 and 0 for ai,j respectively mean that there is an arc from vi to

vj , there is an arc from vj to vi, or there is no arc between vi and vj .

The interaction graph is an arbitrary way to represent strong correla-

tions (below −0.5 or above 0.5) between pairs of channels. We expect that

if there are higher order interaction patterns between the channels, at

least some of them could be unveiled by a topological analysis of these

graphs.

Once correlation graphs have been constructed, a number of (local) topo-

logical measures are computed for each node (e.g. clustering coefficient,

path length, betweenness centrality, etc.). In addition, a number of global

topological measures are computed for the complete graph (e.g. graph

density, graph diameter, etc.). The number of local features was nlocal =

204 · 13 = 2652 and the number of global features was nglobal = 7. The total

number of topological features extracted for each graph was n = 2659. We

call to this type of information channel interactions graphs.

1.1 Feature selection

In order to identify a reduced set of significant features, we applied, for

each feature, a statistical test to determine whether there exists signifi-

cant different between the 5 different classes for the given feature. The

statistical test was applied to each pair of classes. The idea was to identify

whether a given feature is effective at identifying differences between any

of the 10 possibles pairs of classes. A more stringent requirement would

be the identification of features that are significantly different between

the 5 classes altogether. However, in our approach we keep features that

detect “local” differences between classes.

The statistical test of choice was the Wilconxon rank sum test of equal

medians and the parameter α = 10−5 was fixed for all the statistical tests.

Table 1 shows the number of significant features found for each frequency
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Raw data Correlation

Class 1 2 3 4 5 1 2 3 4 5

1 − 63 96 10 8 − 61 67 2326 2922

2 − 221 46 0 − 281 2374 3437

3 − 12 55 − 1852 2456

4 − 0 − 3102

Mutual information Interaction graph

Class 1 2 3 4 5 1 2 3 4 5

1 − 10 3 249 221 − 0 5 92 151

2 − 25 270 254 − 4 281 147

3 − 211 174 − 244 133

4 − 330 − 278

Table 2. Number of significant features for all pairs of classes and types of information.

and each type of information. Table 2 shows the number of significant

features found for each pair of classes and using all sources of informa-

tion. Notice that a feature may be significant in the comparison of two or

more pairs of variables. Emphasized in bold are the marked differences

between the raw data and the interaction graph types of information in

terms of the number of relevant features they respectively find for class

pairs (1, 2) and (4, 5). These differences confirm our hypothesis that dif-

ferent types of information may reveal different types of brain signatures.

For the classification purpose we use the combined set of all the 6860

relevant features included in Table 1.

2 Classification approaches

Three different classification approaches were used: Elastic net regular-

ized multi-logistic regression [3], regression trees [1] and affinity propaga-

tion [2]. The first two methods are supervised classification methods and

were initially evaluated in the training set using a 5-fold cross-validation

scheme. The second method is an unsupervised classification method that

we directly used as a way to classify the test cases similarly as described

in [4].

Using 5-fold cross-validation on the training set with the complete set
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of 6860 variables we observed that elastic net multi-logistic regression

was able to reach a 0.83 classification rate for different values of β ∈
{0.01, . . . , 0.9}. We then trained the model using the complete set of 727

solutions and used it to classify the test set. 21 different classifications

corresponding to different pairs of (α, β), those that achieved and accu-

racy over 0.98 in the complete training set, were obtained. We called this

set of solutions MLRSet.

To evaluate the regression trees, the set of 6860 variables was split into

26 different sets of (overlapping) variables. Each set excluded a subset of

features relevant in the identification of 2, 3 or 4 classes, i.e. we used the

grouping of variables shown in Table 2 to partition the set of variables.

For each subset of features, we used cross-validation on the training set,

to learn a regression tree for each subset of features. Of the initial set

of 26, three regression trees were removed due to achieve a classification

accuracy under 0.48. The remaining 23 were used to create an ensemble

of regression trees with the majority vote strategy. Its application, using

5-fold cross-validation on the training set gave an accuracy of 0.6066. The

application of each individual tree to the test set produced a set of 23

solutions. We called this set of solutions TreeSet.

Affinity propagation was applied to the combined set of training and

test cases. However, by penalizing the preference values of the test cases

we enforce that only train cases are allowed to be an exemplar. A test

case is classified in the same class its corresponding exemplar belongs

to. To evaluate the quality of the classification, we computed the num-

ber of non-exemplar training cases that were correctly classified. We have

previously observed [4] that this may be an indirect measure of the clas-

sification quality for the test cases. 9 different similarity measures were

applied to the 26 sets of variables in which the initial set of features was

partitioned. As a result, we obtained a set of 234 clusterings. From these

clusterings, we selected those for which the number of correctly classified

non-exemplar training cases was above 0.60. There were 11 such cluster-

ings. Each cluster determines a assignment to the test cases. We called

this set of solutions APSet.

To obtain the final solution, we compute, for each of the three sets pro-

duced by the classifiers, the class probability for each test case. The

class probability is simply the frequency of each class in the correspond-

ing set for the given test case. The final probability of a case is found

as a weighted sum of the probabilities for each of the three sets, i.e.
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pF = 0.4pMLRSet + 0.3pTreeSet + 0.3pAPSet. The weights were determined

according to the accuracies obtained by the two supervised classification

algorithms in the training set and we assumed that affinity propagation

achieved a classification rate similar to regression trees. The final assign-

ment of a given test case will correspond to the class with the highest class

probability in pF .
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