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Abstract

This report summarizes the modeling challenge held in conjunction with

the International Conference on Artificial Neural Networks (ICANN) 2011

and sponsored by the PASCAL2 Challenge Programme. The challenge

aimed at promoting awareness of the task “mind reading” or “brain de-

coding” based on magnetoencephalography (MEG) data. For neuroscien-

tists, the task provides a practical tool for understanding brain process

underlying perception, since any mechanism that can be used for inferring

the stimulus on the basis of brain activity must be related to processing

of the stimulus. For machine learners and other modelers, the challenge

provides an interesting real-world application playground for solving ac-

tive machine learning problems such as multi-view learning and covariate

shift.

The task was to infer from one-second time windows the type of visual

stimulus shown to the subject. The best brain decoders, out of the 10 sub-

missions, reached almost 70% accuracy in the task with mere 23% chance-

level, proving that even a short MEG measurement can be sufficient for

brain decoding tasks with a reasonable number of stimulus categories.
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1 Introduction

A grand challenge in neuroscience is to understand the neural basis of

sensory and cognitive processing, even to the extent to predict brain cor-

relates of novel stimuli. This challenge can be formulated as a decod-

ing problem: given the brain signals, read out some information about

the stimuli that generated (or modulated) them [1]. The information

read out can be category specific, identity specific, or the entire stimu-

lus itself—corresponding to the machine learning tasks of classification,

identification, or regression/reconstruction. Such decoding tasks are often

called brain/mind decoding, or multivariate/multivoxel pattern analysis

(MVPA).

The majority of the reported brain decoding results derive from func-

tional magnetic resonance imaging (fMRI), from attempts to decode rela-

tively simple properties or to choose the correct alternative amongst a few

choices. For example, Kamitani et al. [2] inferred the orientation of edges

out of 8 possible alternatives and Formisano et al. [3] identified what

(out of three vowels) and whom (out of three alternative speakers) the

subject was listening to. Recent studies have shown significant progress

in decoding more and more complex perceptual phenomena, resulting in

successful identification of natural images [4] and the meaning of nouns

[5] in setups where the set of possible alternatives is larger, in the order

of tens. All of these works fall into the category of classification or iden-

tification. Miyawaki et al. [6] have studied the task of reconstruction of

small binary images from local image patches decoded from brain signals,

and Naselaris et al. [7] extended reconstruction tasks to natural images.

While fMRI has very high spatial resolution throughout the brain, it

has poor temporal resolution and the blood oxygenation level dependent

(BOLD) signal is an indirect measure of neuronal activity. Riger et al. [8]

have shown that it is possible to apply decoding similarly to magnetoen-

cephalography (MEG); they predicted on the basis of single-trial MEG

signals whether the subject recognized and memorized a natural image.

With MEG it will be possible to focus on shorter timescales. Of particular

interest is the feasibility of brain decoding for continuous processes using

e.g. speech or video stimuli. Besides attempting to decode external stim-

uli, MEG has also been used for decoding the direction of hand-movement

[9] or reconstructing hand-movement trajectories [10]. Nevertheless, the

task of brain decoding from MEG is still in its infancy.
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From another point of view, the brain decoding task can be seen purely

as a challenging machine learning problem. The recorded brain signals

are very high-dimensional and noisy, and consequently advanced classifi-

cation or regression methods are needed for solving the prediction task.

This is also demonstrated in practical work, with focus on advanced Bayesian

solutions [10, 11] and completely novel types of machine learning strate-

gies, such as the zero-shot learning concept [12]. Furthermore, many of

the current trends in machine learning are highly relevant for solving the

brain decoding challenges: (1) the models need to handle covariate shifts

(changes in the input distribution between training and test data) [13]

with approaches like domain adaptation [14], (2) sparse solutions such as

lasso regression [15] are likely to be effective for the high-dimensional

data sources, (3) the prediction tasks should ideally combine informa-

tion from multiple sources through multi-view learning, and (4) especially

analysis of multiple subjects would benefit from multi-task learning meth-

ods [16].

We organized the challenge for brain decoding based on MEG signals

for four primary reasons. (1) To increase the awareness of the problem

amongst both machine learning researchers and neuroscientists, (2) to

study the feasibility of decoding continuous visual stimulus from short

periods of MEG recordings, (3) to bring up some of the relevant method-

ological challenges for MEG brain decoding, and (4) to provide a simple

benchmark data set. The challenge was organized in co-operation with

the ICANN conference since it attracts machine learning researchers with

interest in modeling neural processes. The motivations are largely shared

by other recent attempts of promoting visibility of brain decoding in gen-

eral, such as the 1st ICPR workshop on brain decoding, organized in con-

junction with the 20th International Conference on Pattern Recognition.

2 Data

2.1 Stimuli

The brain decoding task in the challenge was to recognize the type of video

stimulus shown to the subject. All videos were presented without audio,

and five different types of stimuli were used:

1. Artificial: Screen savers showing animated shapes or text
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Figure 1. Illustration of the stimulus design. The subject viewed the same set of 5 blocks
during two consecutive days. The first four blocks, labeled A-D, contained al-
ternating short clips of artificial objects (animated shapes or text), football or
nature documentaries, whereas the last block contained longer clips taken from
a television series and a feature film. Within blocks A-D the different clips were
separated by 5-s rest period showing a crosshair, and the clips lasted for 6-26 s.
The two longer clips in block E, extracted from video content with a storyline,
lasted for roughly 10 minutes.

2. Nature: Clips from nature documentaries, showing natural sceneries

like mountains or oceans

3. Football: Clips taken from (European) football matches of Spanish La

Liga

4. Mr. Bean: Clip from the episode “Mind the baby, Mr. Bean” of the Mr.

Bean television series

5. Chaplin: Clip from the “Modern times” feature film

The stimuli were shown in five blocks (Figure 1). The first four blocks

(A–D) contained alternating short clips of the first three stimulus types,

so that each block contained a roughly equal number of clips for each

stimulus type in random order. The clips lasted 6-26 s, and the different

clips were separated by 5-s rest periods showing a crosshair in the center

of the visual field. The first two blocks were identical, whereas blocks C

and D contained different video clips.

After the four blocks described above, the subject viewed two continuous

video clips containing a clear plot and storyline (clips from an episode of

a television series and a feature film), each lasting roughly 10 min. These

two clips were shown during the same experiment block.
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2.2 Recording and preprocessing

We recorded MEG signals from one healthy 25-yrs old male who gave his

written permission for releasing the data for the challenge.

MEG was acquired with a 306-channel Elekta Neuromag MEG system

(Elekta Oy, Helsinki, Finland) with a basspand from DC to 330Hz and

digitized at 1000 Hz. During the MEG recording, four small coils, whose

locations had been digitized with respect to anatomical landmarks, were

briefly energized to determine the subject’s head position with respect to

the MEG sensors. The continuous raw MEG data were further low-pass

filtered at 50 Hz, and downsampled to 200 Hz. External interference was

removed and head movements compensated for by using the signal-space-

separation (SSS) method [17]. Finally, we applied piecewise mean and

trend removal for each channel to compensate for very slowly varying

signals that are likely to be artefacts.

Since identifying the videos would be relatively easy based on long se-

quences of MEG recordings, we chose to hand out only short 1-s signal

epochs in random order. However, handing out only the raw measure-

ment data would have resulted in a challenge that requires considerable

expertise on MEG. In addition, it would have prevented reliable estima-

tion of low-frequency waveforms because sharp filters could not be applied

for signals as short as 1 s (200 samples). Consequently, we chose to pre-

compute a number of features at different frequency bands. We applied a

bank of 5 band-pass filters peaked at 2, 5, 10, 20, and 35Hz, and computed

the envelopes of the signals at these frequencies by taking the absolute

value of the Hilbert-transformed signal. The details of the filter bank are

provided in Table 1.

For each sample (1-s epoch of the recording) the participants received

six different data matrices, each containing 200 time points for 204 gra-

diometer channels of the MEG device. Those data matrices corresponded

to the raw signals after the SSS preprocessing, and the envelopes at the

five frequencies mentioned above.

3 Modeling problem

The modeling problem was to infer the stimulus from brain signals. Given

the limited set of possible stimuli, this was a classification task: For each
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Table 1. Details of the filter bank. The first column indicates the name of the filter, iden-
tified with a frequency within the band-pass area determined by the next two
columns. The filters were Kaiser window FIR filters with stop bands increasing
from 0.5Hz to 2Hz with increasing frequency. The order of the filters is shown
in the last column.

Peak freq. (Hz) Min freq. (Hz) Max freq. (Hz) Order

2 1 4 2009

5 4 7 2009

10 7 13 503

20 17 23 503

35 27 43 503

input signal the task was to infer the type of the stimulus. Consequently,

the challenge was formulated as a classification problem. Given a set of

labeled training examples, the task was to infer the labels for left-out test

data.

For brain decoding, the generalization to new stimuli is critical. While

the set of possible stimulus types needs to be limited to make inference

possible, the actual stimulus content should be different for training and

test samples. After all, the goal is not to recognize when the subject is

watching a particular clip of a football match, but to identify the process of

watching football in general. Besides generalizing to new stimuli, a brain

decoding system will need to generalize over different recording sessions.

3.1 Data split

For studying the above properties, the data were split into training and

test sets so that the following properties were satisfied:

• Some of the training and test instances were recorded using the same

stimuli, whereas some test instances were taken from recordings of dif-

ferent stimuli of the same type. In total, 33% of the test samples con-

sisted of recordings during stimuli not seen in the training phase.

• The training and test data were taken from different recording sessions.

In particular, the training and test data were recorded during different

days.

• A small portion of the test samples were labeled, to simulate brief train-
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ing period during the test session and to enable studying possible differ-

ences between the data distributions.

• The samples were not continuous in time, to prevent attempts of order-

ing the samples given in random order.

The detailed split into training and test samples is described in Figure 2.

In brief, both the training and test samples were of 1-s length and were

separated from each other by 1 s. Out of the four blocks of short clips

the blocks A, B and D recorded during day 1 were used for training and

blocks A, B and C recorded during day 2 for testing. This resulted in

66% of the test samples having stimuli that exists also in the training

data. The clips in block E were split to training and test data so that time

(roughly) between 1:40 and 6:10 was used for training and time between

3:10 and 7:40 for testing, resulting in 68% of overlap between training and

test data. Finally, a random class-balanced subset of 50 test samples were

released with labels.

The training and test samples had, however, 1-s offset in timings. Hence,

even the set of samples using the same stimuli are not exactly from the

same time but instead are consecutive time points. If the time window

between seconds 3 and 4 was used for training, then the window between

seconds 4 and 5 was used for testing.

Overall, the setup resulted in 677 training samples with roughly class-

balanced distribution (the number of samples for the five classes were:

140, 171, 96, 135, and 135), 50 labeled test samples, and 653 unlabeled

test samples that the competitors needed to classify. The data are avail-

able at http://www.cis.hut.fi/icann2011/mindreading.php, and can be

used for research purposes and scientific publications.

3.2 Machine learning concepts

Even though the main problem is that of regular classification, the partic-

ular setup of learning to decode MEG measurements leads to a number of

more detailed machine learning challenges. Here we briefly overview the

kind of aspects initially thought to be relevant for the task. The research

on machine learning solutions for MEG mind decoding tasks would likely

benefit from tackling these modeling issues, besides just working towards

improved MEG signal analysis in general.
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Figure 2. Illustration of the data split. The dark grey boxes correspond to the selection
of data points for training data, the light gray boxes correspond to the choice
of test samples, whereas the unshaded areas were not used in the challenge at
all. The dark areas on the second day indicate the random choice of labeled test
samples. Note that blocks A and B contained the same stimuli. The closeup
shows how the 1-s samples were chosen with 1-s gaps between each other, and
how the training and test samples taken from the same block were misaligned
by 1 s.

Covariate shift/domain adaptation For real-use cases brain decoding sys-

tems need to work for new recording sessions, besides being able to predict

merely new time points of existing recordings. Since (1) MEG instrumen-

tation is subject to stochastic noise, and (2) since the state of the subject

varies strongly from day to day, the data recorded during a different ses-

sion generally do not follow the same distribution as the training data.

Hence, computational models taking into account a change in the data

distribution are needed. This problem is generally tackled under the term

of domain adaptation [14], which is an active line of research in the ma-

chine learning community.

Multi-view learning MEG recording produces measurements for 204 gra-

diometer channels and 102 magnetometer channels, and for each signal

we can extract multiple frequency bands or other types of features. Infor-

mation encoded in different channels, frequency bands, and across differ-

ent time scales is largely complementary. This suggests that multi-view

learning methods could be useful for MEG decoding tasks. While it is pos-

sible to attempt decoding the stimuli from individual channels or based on

simple predictors operating on all channels, there is reason to believe that

clever integration of the different channels and frequency bands through

Klami et al.: MEG Mind-Reading — Overview and Results
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multi-view learning models could result in improved accuracy, as well as

improved understanding of the underlying brain processes.

Multi-view learning methods have also been used for solving decoding

tasks outside classification. For identification, multi-view learning meth-

ods based on canonical correlation analysis (CCA), such as the Bayesian

CCA [18], can be used for extracting correlating projections of the brain

activity and stimulus description, enabling direct comparison of brain

measurements of test samples to the set of possible stimuli. Multi-view

learning methods have also been used for extracting image bases for vi-

sual image reconstruction [19], as well as for inferring properties of natu-

ral music based on fMRI [20].

Generalization and overfitting Another consequence of the high-dimen-

sional nature of the MEG recording is that it is very easy to overfit to

the available training data. Therefore a successful decoding solution will

have to be very carefully regularized to control the degree of generaliza-

tion to new data. Many of the decoding works apply Bayesian modeling

techniques [10, 11], which provide a way of tackling the overlearning is-

sue in a justified way, or apply sparse solutions such as lasso regression

[15].

Multi-task learning The variability across subjects is large for all brain

imaging techniques. Typical analysis methods will either assume that all

subjects are identical, which is a simplifying but incorrect assumption, or

will resort to subject-specific modeling resulting in no information being

transferred from one subject to another. Multi-task learning [16] stud-

ies computational models that combine the strengths of both approaches,

by learning separate predictive models for the subjects simultaneously, so

that the similarities between the subjects are utilized for improved accu-

racy while still allowing subject-specific variation. In this challenge, we

provided data only from a single subject, and hence such models could not

be applied, but in general multi-task learning of decoding models is likely

to be crucial. Recently, Alamgir et al. [21] demonstrated how multi-task

learning improved accuracy for EEG-based brain computer interfaces.

Klami et al.: MEG Mind-Reading — Overview and Results
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Table 2. The list of participating teams in alphabetical order of the first author. The team
Tu & Sun provided two different solutions.

Name Authors / Institute

Van Gerven & Farquhar M.A.J. Van Gerven, J. Farqugar

Donders Institute for Brain, Cognition and Behaviour,

Radboud University Nijmegen, the Netherlands

Grozea C. Grozea

Fraunhofer Institute FIRST, Germany

Huttunen et al. H. Huttunen, J-P. Kauppi, J. Tohka

Department of Signal Processing,

Tampere University of Technology, Finland

Jylänki et al. P. Jylänki, J. Riihimäki, A. Vehtari

Dept. of Biomedical Engineering and Computational Science,

Aalto University, Finland

Lievonen & Hyötyniemi P. Lievonen, H. Hyötyniemi

Helsinki Institute for Information Technology HIIT, Finland

Nicolaou N. Nicolaou

Dept. Of Electrical and Computer Engineering,

University of Cyprus, Cyprus

Olivetti & Melchiori E. Olivetti, F. Melchiori

NeuroInformatics Laboratory (NILab),

Bruno Kessler Foundation and University of Trento, Italy

Santana et al. R. Santana, C. Bielza, P. Larrañaga

Departamento de Inteligencia Artificial,

Universidad Politécnica de Madrid, Spain

Tu & Sun W. Tu, S. Sun

Department of Computer Science and Technology,

East China Normal University, China

4 Results

Overall, the challenge received 10 submissions from 9 different teams

listed in Table 2. Multiple submissions per team were allowed if the solu-

tions utilized significantly different modeling approaches.

4.1 Challenge results

The main criterion for evaluating the submissions was the classification

accuracy on the test data. The baseline accuracy of predicting every sam-

ple to belong to the largest class in the training set would be 23%. The

results of the participants are summarized in Table 3, showing that all
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Table 3. The prediction accuracies (percent, bigger is better) of the competitors, sorted in
the order of the overall accuracy that was the criterion for evaluating the sub-
missions. The last three columns show the accuracy in separating the content
with plot from the short clips (PvsC), the accuracy in predicting the short clip
classes correctly (C), and the accuracy in identifying the longer clips with plot
correctly (P). For all tasks the best accuracy has been boldfaced. A notable ob-
servation is that the best solution outperforms all others in making the correct
predictions within both stimulus categories, but is only 7th best in making the
split between the two categories. The last line shows the accuracy of majority
voting based on the top nine submissions.

Team Accuracy PvsC C P

Huttunen et al. 68.0 89.7 67.5 89.2

Santana et al. 63.2 93.0 64.1 74.0

Jylänki et al. 62.8 93.0 56.8 85.8

Tu & Sun 62.2 97.1 50.1 87.0

Lievonen & Hyötyniemi 56.5 91.0 55.7 72.4

Tu & Sun (2) 54.2 96.6 44.3 75.8

Olivetti & Melchiori 53.9 94.6 41.4 85.4

Van Gerven & Farquhar 47.2 82.4 53.3 66.3

Grozea 44.3 88.5 39.1 67.7

Nicolaou 24.2 61.7 34.8 49.6

Pooled (top 9) 69.2 96.8 63.1 85.8

but one of the participants clearly surpass the baseline level, demonstrat-

ing successful brain decoding. The outlier submission falls at the chance

level, suggesting either very heavy overlearning or mistakes in implemen-

tation. The range of accuracies, excluding the outlier, falls between 44%

and 68%, demonstrating that there is a notable difference between the al-

ternative decoding solutions. The solution of Huttunen et al. outperforms

others by a margin of almost five percent, ending up as the clear winner,

followed by three other solutions above 60% accuracy.

For many classification tasks combining several classifiers results in im-

proved performance. While various advanced solutions, such as boosting,

can be used for obtaining maximal benefit from multiple classifiers, al-

ready a simple majority voting of the results provides often a reasonably

good model. Here, the combination of all 10 solutions results in accuracy

of 68.9% and the combination of the 9 solutions exceeding the chance level

gives 69.8%. Both figures are better than the best solution, but the margin

is smaller than the difference between the individual solutions.

As the stimuli to be decoded consisted of two distinct categories, directed
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Huttunen et al. Santana et al.

1 2 3 4 5

1 94 29 16 10 1

2 22 100 10 18 1

3 25 16 51 10 0

4 3 4 12 85 21

5 2 2 4 3 114

1 2 3 4 5

1 67 54 14 15 0

2 25 110 5 11 0

3 19 14 57 12 0

4 1 1 5 59 59

5 1 0 0 4 120

Jylänki et al. Tu & Sun

1 2 3 4 5

1 67 32 43 8 0

2 36 89 18 8 0

3 30 6 61 4 1

4 6 6 11 78 24

5 1 0 1 8 115

1 2 3 4 5

1 56 55 36 3 0

2 30 96 21 4 0

3 33 22 46 1 0

4 4 3 3 95 20

5 1 0 0 11 113

Figure 3. Confusion matrices of the top four submissions. The rows correspond to the
true classes, whereas the columns are the predicted classes. The labels are
1:artificial, 2:football, 3:nature documentary, 4:Mr.Bean, 5:Chaplin.

films with clear storyline and short video clips, we can also look at the

success rate in separating these two categories as well as the accuracy

in classifying the samples within either category (Table 3). The accuracy

in separating the two categories is computed as the binary classification

accuracy, whereas the accuracy within each category is measured with

the ratio of correct assignment amongst all samples for which both the

true and predicted class are within that category. Interestingly, the best

submission is not amongst the top ones in the easier task of separating

the clips with plot from the rest, but has the best accuracy within both

stimulus categories. One possible reason is that the other solutions have

overfitted to solving the easier task of binary separation between the two

categories. This is illustrated by the confusion matrices of the best four

solutions in Figure 3.

The best solutions are described in more detail in the separate articles

following this overview. Overall, the solutions focused quite strongly in

feature selection, either by careful validation of possible alternative fea-

tures or by building classifiers with automatic feature selection, such as

L1-regularized lasso models. One team, Santana et al., tried an ensemble

of more than one classifier. Three of the competitors, Olivetti & Melchiori

Klami et al.: MEG Mind-Reading — Overview and Results
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and both submissions by Tu & Sun, focused on solving the domain adap-

tation problem with advanced machine learning techniques, each having

reasonable performance but not reaching the top positions, while many

of the other teams addressed the shift in input distributions by placing

more weight on the labeled test examples when validating the learned

classifier.

4.2 Alternative prediction tasks

Even though the challenge was defined as decoding the stimulus based

on 1-s MEG epochs, we can estimate how well the solutions would have

fared with longer observations by pooling the predictions given for consec-

utive samples. For this purpose, we looked at the predictions obtained by

majority vote for each short clip (classes 1-3), averaging as 8 observation

per clip, and for each collection of 8 consecutive samples for the longer

clips (classes 4-5). The best submission then gives 80% accuracy in pre-

dicting the class correctly for each clip or 8s period (Table 4), supporting

the intuitive belief that solving the decoding task is easier based on longer

observations. These accuracies provide a lower bound for the accuracy the

competitors could have obtained if they had access to such 8s observations

and had explicitly developed predictors for solving this alternative task.

As described in Section 3.1, the data set was split so that some of the

test samples were picked from the same clips as the training samples

(though with 1-s offset) while some were not. Even though the competi-

tors were not aware which samples matched the training samples, we can

inspect whether the accuracy of decoding differs from the two sets. Table 4

shows how almost all participants were more accurate in predicting the

samples taken from the same clips that were available in training, pro-

viding a quantification of the increase in difficulty in brain decoding due

to completely new stimulus content. On average, the accuracy was 6.3

percentage points higher for the samples included in the training data.

5 Discussion

The primary task in the challenge was to decode the type of the video stim-

ulus from MEG data. Nine out of ten submissions succeeded in this task

significantly above the chance level, showing that it is possible to decode
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Table 4. Results of alternative decoding tasks (not part of the competition), sorted in or-
der of the performance in the challenge results. For each task the best accuracy
is boldfaced. The first column shows the accuracy for predicting correctly the
whole clips by majority voting based on the samples within each clip (on average
8 samples per clip). For all but one participant the accuracy is better than when
decoding the label for 1s samples, as expected. The second column gives the ac-
curacy in the challenge decoding task for test samples taken from the clips used
also in the training set, whereas the last column gives the accuracy for the test
samples from clips not seen in the training set. For all contestants except one,
the accuracy is better for the first group, showing clearly how generalizing to the
new stimulus content makes the decoding task harder. Still, the accuracies for
the new content are well above chance level.

Team Full clips Within train Not in train

Huttunen et al. 79.7 69.9 64.2

Santana et al. 68.5 65.1 59.6

Jylänki et al. 76.0 66.2 56.0

Tu & Sun 70.7 64.4 57.8

Lievonen & Hyötyniemi 62.2 59.8 50.0

Tu & Sun (2) 57.0 59.5 43.6

Olivetti & Melchiori 61.8 55.6 50.5

Van Gerven & Farquhar 55.9 49.0 43.6

Grozea 41.3 44.4 44.0

Nicolaou 25.0 23.7 25.2
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the various kinds of stimuli already from short 1-s windows of MEG data.

The difference in accuracies between the approaches was considerable,

with the best solution reaching near 70% accuracy while the majority of

the solutions had around 50% success, showing that carefully developed

machine learning solutions will achieve improved accuracy in brain decod-

ing. Still a clear gap exists between the best solution and perfect accuracy,

demonstrating that the task is far from trivial and especially that perfect

decoding results are unlikely to be obtained with such brief signals, prob-

ably because of the low signal-to-noise ratio of the single-trial MEG. By

pooling the competitors results for longer (8 s) periods of observations, the

accuracy of the best solutions increases close to 80%. In future research it

could be advisable to directly study the accuracy on multiple timescales,

to better estimate the amount of data needed for inferring different types

of stimuli.

The majority of the competitors focused on good feature selection and

cross-validation of the learned models, demonstrating once again the im-

portance of carefully controlling overlearning. In this challenge this as-

pect was particularly important due to the relatively big change in input

data distribution between training and test data. For example, the top

team explicitly mentioned in their submission that some of the more ad-

vanced features were neglected for that reason. Many of the teams also

addressed the domain adaptation problem seriously. Some of the com-

petitors handled the adaptation by giving more weight for the labeled test

samples in cross-validation, whereas some teams applied more advanced

techniques for correcting for the shift in the distribution, using methods

of EasyAdapt, transfer-priority cross validation and transferable discrim-

inant analysis.

In future, it would be interesting to see challenges with brain signals

from more subjects. This would enable studying more advanced modeling

concepts such as multi-task learning, while also providing information on

to which extent the perceptual processes that are best for decoding the

stimuli are shared by individuals. However, prior to releasing such data

sets it could be beneficial to create a more finely processed feature set,

since otherwise the amount of data becomes infeasible. Now the data of

just one subject took a total of roughly 6 gigabytes in compressed format,

and started to become a technical difficulty for some competitors.

For this challenge we used decoding accuracy as the primary criterion

and evaluated the submissions additionally based on methodological nov-
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elty of the approach. The challenge was also primarily advertised for

modelers. Consequently, the submissions focused on these aspects and no

neuroscientific interpretations were made. In future challenges it could

be a good idea to value also neuroscientific findings when determining

the winners, to encourage tighter interaction between modelers and neu-

roscientists as well as to provide insights into the perceptual processes

revealed by succesful decoding.
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