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The approach is based on calculating power features from the filtered

MEG signals and doing a supervised linear dimensionality reduction for

the gradiometer channel space. The dimensionality reduction is done

with binary classifiers separately for each class and frequency band. The

resulting lower dimensional features are classified using a multi-class

Gaussian process classifier [2].

The Power features were extracted by calculating the mean squared am-

plitude from all the 204 planar gradiometer channels for each of the five

prefiltered frequency bands. Logarithms of these power features were

normalized to zero mean and unit variance separately for the both mea-

surement days to give a 204-dimensional feature vector xi,k for all the

labeled observations i = 1, ..., n and frequency bands k = 1, ..,K, where

K = 5.

Dimensionality reduction

Linear one-versus-rest logistic classifiers were used to reduce the 204-

dimensional feature space into a one dimensional latent space for each of

the five classes and five frequency bands separately. For a frequency band

k and an input vector xi,k, the probability of class c is modeled as

p(yi,c = 1|wk,c, vk,c, xi,k) = (1 + exp(−zi,k,c))
−1, (1)
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where wk,c are the coefficients of the linear predictor and vk,c a bias term,

zi,k,c = xT
i,k wk,c+vk,c the latent value we are trying to estimate, and yi,c ∈

{−1, 1} a class label which is 1 for all the observations in the class c and

−1 otherwise (see, e.g., [1]). To model the possible linear shifts in the

power features between the different measurement days, a dummy vari-

able xi,0 ∈ {−1, 1} indicating the recording day, was included in xi,k as an

additional predictor. A Gaussian prior p(wk,c) = N (0, σ2
wI) with a variance

parameter σ2
w was assumed for the linear coefficients, and also a Gaussian

prior vk,c ∼ N (0, σ2
v) was set for the bias term.

Combining the likelihood of all the labeled observations yc = {y1,c, ..., yn,c}
from the both measurement days with the priors results in a conditional

posterior distribution

p(wk,c, vk,c| Dk,c, σ
2
w, σ

2
v) ∝

(
n∏

i=1

(1 + exp(−yizi,k))
−1

)
p(wk,c)p(vk,c), (2)

where Dk,c = {yc,Xk}, Xk = [x1,k, ...,xn,k]
T. Since the posterior distribu-

tion (2) is analytically intractable an approximative inference method is

required. The Laplace approximation was chosen because it is computa-

tionally convenient for the logistic model (see, e.g, [1, 2]). In the Laplace

approximation a multivariate Gaussian approximation

q(wk,c, vk,c) = N (μk,c,Σk,c)

is formed by doing a second order Taylor expansion for

log p(wk,c, vk,c| Dk,c, σ
2
w, σ

2
v)

around the posterior mode. Point estimates for the parameters σ2
w and σ2

v

were determined by optimizing the approximative log marginal posterior

distribution log q(σ2
w, σ

2
v | Dk,c) obtained by approximating the log marginal

likelihood, log p(yc |Xk, σ
2
w, σ

2
v), with the Laplace’s method as described

in [2]. Relatively flat half-Student-t priors with scale 10 and degrees of

freedom ν = 10 were assigned for the variance parameters to prevent

them from becoming very large.

From the posterior approximation q(wk,c, vk,c), a Gaussian approxima-

tion is obtained for the latent values related to both the labeled and unla-

beled input vectors for class c:

q(zi,k,c) = N (mi,k,c, Vi,k,c), (3)

where mi,k,c = xT
i,k μk,c, Vi,k = xT

i,k Σk,c xi,k, and one is appended to the fea-

ture vector xi,k to account for the bias vk,c. The expected values mi,k,c
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from all the C classes and K frequency bands as well as the dummy

variable xi,0 indicating the recording day were combined to form new 26-

dimensional input vectors mi = [mi,1,1,mi,2,1, ...,mi,K,C , xi,0] for a multi-

class classifier.

Multi-class classification

Using the latent vectors mi as new inputs, the type of the video stimulus

was predicted using a nonlinear Gaussian process (GP) multi-class clas-

sifier with a squared exponential covariance function [2]. The softmax

function was used to model the class probabilities according to

p(yi | f i) = exp(fi,c)

⎛
⎝ C∑

j=1

exp(yT
i f i)

⎞
⎠

−1

, (4)

where f i = [fi,1, ..., fi,C ]
T is a vector of the latent function values related

to data point i and yi = [yi,1, ..., yi,C ]
T is the corresponding target vector

which has entry one for the correct class for the observation i and zero

entries otherwise. Following [2], independent zero-mean GP priors were

placed for each class, that is, p(f c |lse, σ2
se) = N (0,K), where f c collect all

the latent function values related to class c. The covariance matrix K is

defined by the squared exponential covariance function

[K]i,j = kse(mi,mj |θ) = σ2
se exp

(
− 1

l2se

d∑
l=1

(mi,l −mj,l)
2

)
, (5)

where d = 26, σ2
se is a magnitude parameter which scales the overall vari-

ation of the unknown function, and lse is a length-scale parameter which

governs how fast the correlation decreases as the distance increases in

the input space.

Combining the likelihood of the observations y = {y1, ...,yn} with the

priors p(f c |lse) results in an analytically intractable posterior distribution

for the latent function values f = {f1, ..., fn}, and again the Laplace ap-

proximation is used for approximate inference as described in [2]. The

Laplace approximation results in a Gaussian posterior approximation for

f , and to approximate the predictive distribution it can be analytically

combined with the conditional GP prior p(f∗ | f ,m,m∗), where m collects

the training inputs and f∗ is a C × 1 vector of latent values related to

an unlabeled test input m∗. Using the Laplace approximation also a

marginal likelihood approximation q(y |m, lse, σ
2
se) can be obtained to de-

termine point estimates of the parameters lse and σ2
se. However, optimiz-
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ing the marginal likelihood resulted in a very small length scale and in-

stead more conservative estimates lse = 2 and σ2
se = 1 were selected based

on cross-validated predictive tests with the data from the second day. In

practise, both the dimensionality reduction as well as the multi-class clas-

sification were implemented with the freely available GPstuff software

package (http://www.lce.hut.fi/research/mm/gpstuff/).
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