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Abstract

In our submission to the mind reading competition of ICANN 2011 con-

ference, we concentrate on feature selection and result validation. In our

solution, the feature selection is embedded into the regression by adding

a �1 penalty to the classifier cost function. This can be efficiently done for

regression problems using the LASSO, which generalizes also to classifica-

tion problems in the logistic regression classification framework. A special

attention is paid to the evaluation of the performance of the classification

by cross-validation in a parallel computing environment.

1 Introduction

Together with the ICANN 2011 conference, a competition for classifica-

tion of brain MEG data was organized. The challenge was to train a

classifier for predicting the movie being shown to the test subject. There

were five classes and the data consisted of 204 channels. Each measure-

ment was one second in length and the sampling rate was 200 Hz. From

each one-second measurement, we had to derive discriminative features

for classification. Since there were only a few hundred measurements, the

number of features will easily exceed the number of measurements, and
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thus the key problem is to select the most suitable features efficiently. We

tested various iterative feature selection methods including the Floating

Stepwise Selection [4] and Simulated Annealing Feature Selection [1], but

obtained the best results using Logistic Regression with �1 penalty also

known as the LASSO [5].

2 Logistic Regression with the LASSO

Our classifier is based on the logistic regression model for class prob-

ability densities. The logistic regression models the PDF for the class

k = 1, 2, . . . ,K as

pk(x) =
exp(βT

k x)

1 +
∑K

j=1 exp(β
T
j x)

, for k �= K, and (1)

pK(x) =
1

1 +
∑K

j=1 exp(β
T
j x)

, (2)

where x = (1, x1, x2, . . . , xp)
T denotes the data and βk = (βk0, βk1, βk2, . . . , βkp)

T

are the coefficients of the model.

The training consists of estimating the unknown parameters βk of the

regression model, which can then be used to predict the class probabili-

ties of independent test data. The simplest approach for estimation is to

use an iterative procedure such as iteratively reweighted least squares

(IRLS).

In the mind reading competition the number of variables is large com-

pared to the number of measurements. If additional features are derived

from the measurement data, the number of parameters p to be estimated

easily exceeds the number of measurements N . Therefore, we have to se-

lect a subset of features that is the most useful for the model. Our first

attempt was to find the optimal subset iteratively using simulated an-

nealing, but soon we decided to use a method, with feature selection em-

bedded into the cost function used in the classifier design. LASSO (Least

Absolute Shrinkage and Selection Operator) regression method enforces

sparsity via �1 -penalty, and in a least squares model the constrained LS

criterion is given by [5, 3]:

min
β

‖y −Xβ‖2 + λ ‖β‖1 , (3)

where λ ≥ 0 is a tuning parameter. When λ is small, this is identical to

the OLS solution. With large values of λ, the solution becomes shrunken
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and sparse version of the OLS solution where only a few of the coefficients

βj are non-zero.

The LASSO has been recently extended for logistic regression [2], and a

Matlab implementation is available at http://www-stat.stanford.edu/~tibs

/glmnet-matlab/.

We experimented with numerous features fed to the classifier, and at-

tempted to design discriminative features using various techniques. Our

understanding is that those ended up being too specific for the the first

day data and eventually a simplistic solution turned out to be the best,

resulting in the following features:

• The detrended mean, i.e., the parameter b̂ of the linear model y = ax+ b

fitted to the time series.

• The standard deviation of the residual of the fit, i.e., stddev(ŷ − y).

Both channels were calculated from the raw data; we were unable to gain

any improvement from the filtered channels. Since there were initially

204 measurements, this makes a total of 408 features from which to select.

3 Results and Performance Assessment

An important aspect for the classifier design is the error assessment. This

was challenging in the mind reading competition, because only a small

amount (50 samples) of the test dataset was released with the ground

truth. Additionally, we obviously wanted to exploit it also for training the

model. In order to simulate the true competition, we randomly divided

the 50 test day samples into two parts of 25 samples. The first set of 25

samples was used for training, and the other for performance assessment.

Since the division can be done in
(
50
25

)
> 1014 ways, we have more than

enough test cases for estimating the error distribution.

The remaining problem in estimating the error distribution is the com-

putational load. One run of training the classifier with cross-validation of

the parameters takes typically 10-30 minutes. If, for example we want to

test with 100 test set splits, we would be finished after a day or two. For

method development and for testing different features this is certainly too

slow.

Tampere University of Technology uses a grid computing environment

developed by Techila Oy (http://www.techila.fi/). The system allows
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Figure 1. An example result of the error estimation. Figures (a-c) show the error distri-
bution for the first day training data, for the 25 samples of second day data
used for training and for the rest of the second day data, respectively. Figure
(d) shows the number of features used on the average for the model. In this
experiment we run the training for 200 test cases.

distributing the computation tasks to all computers around campus. Since

our problem is parallel in nature, incorporating the grid into the perfor-

mance assessment was easy: A few hundred splits of the test set were

done, and one processor in the grid was allocated for each case.

Figure 1 illustrate an example test run. The performance can be as-

sessed from the error distribution for the test data shown on Figure on

the bottom left, which in this case is 0.394, or 60.6 % correct classifica-

tion. We believe that the final result will be slightly better, because the

final classifier is trained using all 50 samples of the second day data.

The error for the validation data (top right figure) is very small. This

is because the samples were weighted such that second day data has a

higher weight in the cost function.

After preparing the final submission, we studied the distribution of the

predicted classes for the test data. The test samples should be roughly

class-balanced, so a very uneven distribution could indicate a problem

(such as a bug) in the classification. We also considered the possibility

of fine tuning the regularization parameter based on the balancedness

of the corresponding classification result. As the balancedness index we

used the ratio of the cardinalities of the largest and smallest classes in
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Figure 2. Left: The balancedness index for different values of regularization parameter.
Right: The predicted class histogram for the test data.

the predicted result. The balancedness indicator is plotted as a function

of the regularization parameter λ in Figure 2 (left).

The result clearly emphasizes the old rule: regularization increases the

bias but decreases the variance. This can be seen from the curve in that

less regularization (small λ) improves the class-balance (indicator close

to unity). However, since it seems that the regularization parameter λ =

0.0056 selected using cross validation is at the edge of the well balanced

region, we decided not to adjust the CV selection. The final predicted class

distribution is shown in Figure 2 (right).
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