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Abstract. Decomposition of temporally overlapping sub-
epochs from 3-s electroencephalographic (EEG) epochs
time locked to the presentation of visual target stimuli in
a selective attention task produced many more
components with common scalp maps before stimulus
delivery than after it. In particular, this was the case for
components accounting for posterior alpha and central
mu rhythms. Moving-window ICA decomposition thus
appears to be a useful technique for evaluating changes in
the independence of activity in different brain regions,
i.e. event-related changes in brain dynamic modularity.
However, common component clusters found by moving-
window ICA decomposition strongly resembled those
found by decomposition of the whole EEG epochs,
suggesting that such whole epoch decomposition reveals
stable independent components of EEG signals.

Introduction

The application of ICA or blind source separation to
human brain electromagnetic data shows much promise
(Makeig et al., 1996).  Applied to a collection of average
responses, ICA can separate the observed spatially labile
activity into spatially fixed components that
parsimoniously account for the responses in all the
conditions (Makeig et al., 1997). Detailed examination of
the activity of these components may show distinct,
systematic relationships to condition differences and,
moreover, to subject behavior, thereby revealing
neuropsychological aspects of performance in the studied
conditions (Makeig et al., 1999a, 1999b). However, the
artificial temporal overlap in the underlying EEG sources
induced by response averaging means that ICA may be
optimally applied to averaged evoked response data only
under certain conditions, including high signal to noise
ratio and the availability of many contrasting response
conditions.

A more general and promising procedure is to blindly
decompose collections of single-trial EEG recordings
from event-related response experiments into spatially
fixed, temporally independent components (Makeig et al.,
1996; Vigario et al., 1997; Jung et al., 1998, 1999).  This
procedure allows ICA to use trial-to-trial variations in

relative amplitudes, latencies and phases of coherent
activity in different brain networks to separate them.

One major category of independent EEG components
comprise the so-called EEG artifacts generated by eye
blinks, eye movements, and scalp muscle activity can be
used for removing evidence of these artifact sources from
event-related EEG time windows or epochs prior to
averaging (Jung et al., 1999, in press). ICA can also be
applied to event-related EEG epochs. The dynamics of
brain networks that participate in event-related
information processing can be measured over time both
after and before experimental events of interest.
Response averaging, which has dominated the field of
event-related human brain dynamics for the last 30 years,
has obscured an important question: Are spontaneous
EEG dynamics related to event-related responses, and if
so, how?

The limits of the usefulness of ICA, and in particular,
infomax ICA, for EEG analysis will ultimately depend on
the fit between the assumptions of the analysis method
and the composition of EEG data. Here, we attempted to
examine two assumptions of infomax: (1) that EEG
sources are spatially fixed, and (2) that the effective
number of independent sources is fewer than the
available number of recording channels (here, 31). We
introduce first a method of decomposing data by applying
infomax ICA successively to sets of brief data windows
defined by their relative temporal relationship to some
class of experimental events, here visual stimuli to which
subjects were instructed to respond with a button press.

Fig. 1. View of the task display. Stimulus disks were
flashed in five boxes in random order. Subjects responded
to stimuli presented in the attended box by a button press.
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Methods

EEG recordings were obtained from twenty-three
volunteer subjects ranging in age from 16 to 80 years
during performance of a visual selective attention task.
Participating subjects, fourteen males and nine females,
were right-handed with normal or corrected to normal
vision. During 76-second trial blocks, subjects were
instructed to attend to one of five squares continuously
displayed on a back background 0.8 cm above a centrally
located fixation point (Fig. 1). The squares, measuring
1.6 cm by 1.6 cm, were positioned horizontally at angles
of 0°, ±2.7° and ±5.5° in the visual field from the point of

fixation. Four squares were outlined in blue while one,

marking the attended location, was outlined in green (Fig.

1). The location of the attended location was

counterbalanced across trial blocks.

Filled white disks were presented for 117 ms within one

of the five squares at equally probable inter-stimulus

intervals of 250 ms, 500 ms, 750 ms and 1000 ms.

During task performance, subjects were required to

maintain fixation on the central cross while responding as

quickly as possible with a right thumb button press

whenever a disk appeared in the attended square. Each

subject participated in thirty continuous trial blocks

involving presentation of a total of 120 target and 480

non-target stimuli at each of the five locations (Makeig et
al., 1999a).

EEG Data. From electrodes mounted in a standard

electrode cap, EEG data were recorded at 29 scalp

locations in an arrangement adapted from International

10-20 System. Activity produced primarily by eye

movements and blinks (plus EEG activity) was obtained

from sensors positioned at the left outer canthus and

below the right eye. All channels were referenced to the

right mastoid. All data was sampled (or in some cases

digitally down sampled) at 256 Hz within an analog pass

band of 0.1-100 Hz to minimize computational demands
during analysis. The experiments were conducted in an

electromagnetically unshielded room in which corruptive

60-Hz activity was induced by a nearby commercial

(pizza) oven. To eliminate this unwanted activity,

appropriate analog (60-Hz notch) and digital (50-Hz low

pass) filters were applied during data collection and

preprocessing.

Moving-window ICA. Unlike principal component

analysis (PCA), ICA attempts to split components with

different scalp distributions if their activations (activity
time courses) differ. For example, electromyographic

(EMG) activity waveforms from different facial and

temporal muscles tend to be independent of one another,

hence, their spatially distinct and time-course

independent EEG activities are decomposed by infomax

into separate components (Jung et al., 1999). An

unknown but relatively large number of EEG and

artifactual processes may contribute to the human EEG.

Infomax ICA, on the other hand, is able to separate at

most a number of components equal to the number of
recording channels. As input data size is increased,

infomax decomposition of ERP recordings may become

increasingly more sensitive to over-completeness (i.e.,

the presence of more active sources than recording

channels). Since the activities of most contributing EEG

generators may be sparsely distributed across different

parts of each trial, separate decompositions of shorter

trial sub-epochs may reveal activities that would not be

separated by whole-epoch decomposition.

Infomax ICA (Bell & Sejnowski, 1996) may be applied

to data samples from concatenated single event-locked
time sub-epochs from a collection of single-trial response

epochs. One advantage of this approach is the ability to

look for the stability of independent components across

the event-related epoch. Another purpose was to look for

spatially labile components. Since if the time span of a

sub-epoch were sufficiently short, the displacement of

possible moving sources might be assumed to be

negligible within its duration.

Target Response Decomposition. Moving-window

decompositions of 500-600 3-sec EEG epochs (from
1000 ms before to 2000 ms after target stimulus onsets)

from each of the 23 subjects were performed on data

from each epoch within overlapping 500-ms (128-point)

windows successively offset by 5 samples (~20 ms),

yielding 129 overlapping sub-epochs. Default runica()
training parameters were used (Makeig et al., 1998).

Surrogate Data Decomposition. To determine the

performance that might be expected from moving-

window infomax applied to real EEG recordings, a

surrogate EEG data set was constructed to share several

properties of the actual EEG data. Two 31-component
decompositions of 500-600 ERP target response trials

from two subjects constituted the foundation of the

surrogate data set. A total of 43 topographically

distinguishable components were selected from this 62-

component collection. The power spectral density (PSD)

of each component's activity was computed using

Welch's averaged-periodogram method. From the

estimated spectrum, an FIR filter was constructed which,

in least-squares terms, matched the component PSD.

Amplitude probability distributions functions (PDFs)

were also assessed from their respective activity
histograms.

Forty-three statistically independent white noise

processes with Gaussian distributions and unit variance

were generated. Filtering a process with any of the
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previously designed EEG component filters caused the
PSD of resulting process to match the PSD of the EEG
component corresponding to the applied filter. Matching
the generally sparse EEG PDFs required transformation
of the surrogate process PDFs. These were constructed
from the EEG-component and surrogate-process
histograms using the MATLAB histfit() function. The
nonlinear re-mapping of sample values altered the fitted
process PSD by reducing attenuation of small activity
above 60 Hz. However, as nearly all recorded neural
activity of interest occurred in low-frequency bands, the
effect of histogram fitting was not noticeable (Fig. 2).

Linear mixtures for each EEG channel were produced by
back projection to the scalp and EOG channels via the
corresponding EEG-component scalp maps. Component
amplitudes were exponentially scaled so as to match the
best-fitting exponential fall-off of root-mean square
(RMS) amplitude from the largest (1st) to smallest (31st)
actual independence component projections from the two
subjects. Amplitudes of the 32nd through 43rd surrogate
sources were determined by extrapolation of the same
exponential. In this manner, 434 surrogate 768-sample
data epochs were produced to simulate the original 3-s
data epochs on which the surrogate data set was based.
Fig. 2 shows selected actual and surrogate data epochs.
The surrogate data epochs were then decomposed by ICA
using methods identical to those used for target-response
decomposition.

Matching Successive Components. Weight matrices
resulting from moving-window decomposition were
transformed into scalp activity maps by matrix inversion
and were then normalized to unity norm. To analyze the
evolution of the moving-window components across sub-
epochs, matching components in adjacent overlapping

sub-epochs had to be identified. Component scalp maps
from adjacent sub-epochs were examined to determine
which components they shared in common. Map
resemblance was defined by a variation of the cross-
correlation coefficient in which scalp sensors were
considered observations and maps were regarded as
variables. A symmetric version of the Mahalanobis
distance measure was used for this purpose (Enghoff,
1999).

The maps in a cluster were characterized by the mean
cluster map and time course. Matching produced virtual
paths through decompositions in successive time sub-
epochs, allowing analysis of component map trajectories.
Components appearing only in a single decomposition
were considered outliers. An intuitive method for
visualizing evolving changes in the decompositions was
to generate MPEG movies of the sequences of maximally
matching maps. The total correlation between the
optimally paired maps from successive overlapping sub-
epochs was used as a measure of map stability.

Results

By correlating the original source maps with the merged
component maps, on average 19 of the original 43 spatial
sources were recovered from the 43-source overcomplete
surrogate data set with absolute map correlations above

0.85. In many though not all cases, the strongest
embedded sources were most accurately recovered.
Movies of merged and matched components of the
overcomplete surrogate data and of the actual target
response data from the subject whose component maps
were used as templates for the largest surrogate data

Fig. 2. Surrogate EEG data set (left)
based on the ICA decomposition of the
actual EEG data from the subject
whose data are shown on the right.
Surrogate data were composed by
mixing white noise sources whose
amplitudes, topographic projections to
the scalp, power spectra and
probability distributions were filtered
to resemble those of the actual subject
ICA components. Additional
components from another subject were
added to the surrogate data to simulate
overcompleteness (see text).
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components can be downloaded in full from
http://www.cnl.salk.edu/~scott/mapmovies.html. Since
the surrogate data movie contains many fewer moving-
window-component disappearances and sudden shifts
than movies of the actual subject data decompositions,
we undertook a closer analysis of component stability in
the target-response decompositions.

Map Stability Across Sub-epochs. Fig. 3A (left panel)
shows histograms of the correlations between the best-
paired maps for each pair of adjacent sub-epochs for all
23 subjects. The adjacent-pair correlation histogram for
the overcomplete surrogate data set is shown in the right
panel. Two facts are evident from Fig. 3A. First, the
moving-window ICA decompositions of the actual target
response data became clearly less stable after stimulus
presentation. For example, the 10th percentile of
correlation in the final sub-epoch (left panel, lower trace,
right side) was 0.674, while the 10th percentile of the
surrogate data correlations never dipped below 0.974.

Second, even in the pre-stimulus period the
decompositions of the actual data were somewhat less
stable than the surrogate decompositions.

Between-Subjects Component Similarity. For each
subject, all 31x129 (stimulus-locked) maps from the
moving-window decompositions were clustered without
regard to time of occurrence, yielding 80 component
clusters (or "moving-window components") per subject.
Mean scalp maps for these 1840 (80x23) moving-window
components were then clustered, again without regard for
their times of occurrence. Of the resulting 40 "between-
subjects" clusters, several accounted for eye blinks,
lateral eye movements or temporal muscle activity, as
judged by their scalp maps, mean spectra and activity

patterns in single trials (Jung et al., in press). Consistent
with the sub-epoch correlation results, the mean number
of components per sub-epoch decomposition contributing
to the 40 moving-window component clusters declined
from 14 before stimulus onset to 7 at the end of the epoch
(Fig. 3B). Although the sub-epoch decompositions
contained several components (typically, among the
smallest) with noiselike or ’blotchy’ maps, none of the 40
cluster maps contained more than one (monopolar) or
two (bipolar) spatial maxima.

Fig. 3C (below) shows a case in which three moving-
window component clusters from one subject were
included in a single between-subjects cluster. Two of
these were separated out concurrently from sub-epochs in
the pre-stimulus period. However, in sub-epochs centered
175 ms or more following stimulus onset, the two
components were replaced with a single similar
component.

Component Mobility. Examination of the MPEG movies
of the merged moving-window components revealed
little or no evidence of independent components moving
fluidly across the scalp. Instead, the observed spatial
instability in the moving-window components was
comprised mainly of (1) abrupt jumps (when a moving-
window component was no longer detected and a
distinctly different component was assigned its place in
the map array), and (2) fluctuations in the peripheral
extent but not the focus of the active scalp region.

Equivalent-dipole source modeling was performed on
three such moving-window components from the central
posterior alpha cluster using a three-shell spherical model
(Scherg & Ebersole, 1994). These component series

B

C

A

Fig. 3. (A) Histograms of the correlations between best-matched component pairs in adjacent overlapping sub-epochs
for the surrogate data set (right) and the actual EEG data (mean of 23 Ss). White lines show the 10th, 50th and 90th

percentiles of the distributions. (B) The number of sub-epoch components clustered, indexed by the center time of the
sub-epoch window (23 Ss). (C) Sub-epochs in which 3 moving-window component clusters were detected (1 S) .
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could be well fit by two opposing equivalent current
dipoles located approximately in the left and right banks
of the central fissure in the occipital lobe near the
calcarine sulci. In two of the subjects, this posterior alpha
moving-window component composed of maps from all
sub-epochs. In the third, a similar component was
detected in sub-epochs centered before 245 ms after
stimulus onset. In all three subjects, the variability in the
scalp map throughout the detection period could be well
modeled by changes in the relative strengths (but not the
locations) of the two dipoles. The residual variance of the
two-dipole models to the entire observed sequences of
component maps were low (< 5%).

Oscillatory Component Clusters. At least four other
clusters accounted for posterior alpha moving-window
components (each drawing from 6-12 subjects). These
clusters included a preponderance of pre-stimulus sub-
epochs. Altogether, 18 of the 23 subjects contributed one
or more components to these four clusters. Another
subject contributed a component to the central occipital
alpha cluster. The alpha peak in all four component
spectra was at 10 Hz. All four between-subjects mean
cluster maps could be fit by single equivalent dipoles
located in left or right occipital cortex with very low
residual variance (1.25% ± 0.8%).

Three or more between-subjects component clusters
accounted for centrolateral mu activity, circa 10-Hz

rhythms of the motor cortex with a second spectral peak
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shape. Moving-window component maps belonging to

these clusters came from 20 of the 23 subjects, but not

from sub-epochs following the button press, in which mu

activity was blocked (Makeig et al., in press). Sequences

of maps forming moving-window mu components could

also be accounted for by single equivalent dipole models

with low (<5%) residual variance. Moreover, these

models placed the equivalent dipole close to the known

location of the hand motor areas in the middle of the left
and right central sulci.

Moving-window versus Whole-epoch Decomposition.
To determine the stability and completeness of the

moving-window decompositions relative to

decomposition of the whole epochs, each subject's 3-s

target-response trials were decomposed in a single

("whole-epoch") decomposition, yielding 31 independent

components. Following decomposition, the 713 (31x23)

whole-epoch components from all subjects were

clustered in the same manner as the moving-window
components. The mean maps for the resulting 80 whole-

epoch component clusters were then correlated with the

mean maps of the 80 between-subjects moving-window

component clusters.

Altogether, 23 between-subjects component pairs were

correlated above 0.90. Some of these clearly accounted

for artifacts (eye movements, temporal muscles). Both

decomposition methods also separated similar (map

r>0.90) alpha and mu component clusters. However, the
number of subjects included in the moving-window

component clusters was about 65% larger than the

number contributing to the corresponding whole-epoch

clusters.

Discussion

Concatenated, the ~500 3-s data epochs from each

subject comprised about 25 minutes of EEG data.

Performing a single (whole-epoch) decomposition of this

much data is not necessarily the best strategy for

separating the underlying neural (and artifactual) data
sources. Over many minutes, many more brain areas

(and/or EEG artifacts) might become coherently active,

producing more spatial EEG patterns on the scalp than

the number of recording channels. Two possible

strategies for overcoming this potential overcompleteness

problem: Either make more restrictive assumptions about

the components or their activity distributions, allowing

the use of overcomplete ICA algorithms (Lewicki &

Sejnowski, in press), or else divide the data into shorter

training sets. Here we applied the second strategy.

Moreover, instead of separating the data into epoch
groups from the beginning, middle and end of the test

session, we separated the data matrix into overlapping

sub-epochs defined by their time relationship to target

stimulus presentations. This approach tacitly assumes

stationarity of the EEG spatial structure across the

session, but allowed us to assess rapid event-related

variations in its spatial structure time.

We found several such variations. First, the number of

component maps that were clustered with a symmetric

Mahalanobis metric was twice as large before target

stimulus presentation as at epoch end two seconds later.
Several categories of components participated in this

trend, notably posterior alpha and central mu

components, whose moving-window component maps

were sufficiently similar in large numbers of subjects to

be grouped into between-subject clusters by the same

algorithm. Components accounting for eye and muscle

activity, however, tended to be active throughout the

epoch.

There may be multiple reasons why fewer alpha and mu

components were separated by moving-window
decomposition of sub-epochs following stimulus onset.

Characteristic mu component activity near 10 Hz and 20

Hz was blocked following the button press (Makeig et al.,

in press). The amplitude of posterior alpha activity,

meanwhile, was hardly if at all affected by stimulus
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presentation. Typically, however, we have found that
following visual stimulus presentation the phase of alpha
components may be reset to a common value. Resetting
the phase of two or more alpha components concurrently
might thereby collapse their independence, reducing the
number of such components separated in later sub-epoch
decompositions. Whether or not these explanations
together account for the preponderance of alpha-band and
other (e.g., frontal) components in the pre-stimulus epoch
clusters is a subject for further research.

Another important fact emerging from the two-stage
clustering procedure was that complex, blotchy or noisy-
appearing maps, although found in every decomposition,
were never clustered between subjects and rarely between
sub-epochs, thereby suggesting they represented
unresolved mixtures of low-level sources and/or noise.
Exceptions to this rule were the cluster of stable and
simple-appearing central occipital alpha components
found in six of the subjects. Source modeling of these
components required two coherently active current
dipoles located in the left and right occipital pole.
However, other common alpha component maps could be
very well accounted for by single dipoles.

This suggests that the basic and important principle of
brain spatial modularity, which posits that brain
processing is carried out in multiple circa-cm2 brain
regions, should be augmented to include a principle of
dynamic modularity, wherein coherently synchronous
activities occurring within different modular brain areas
are substantially independent of one another. The relative
independence of spike trains in individual even nearby
neurons has long been viewed as a basic fact of
neuroscience. The relative independence of coherent
activity in different modular brain areas is suggest by
their decomposition by ICA into separate components
that can be modeled using a single equivalent source
dipole. ICA decomposition (either moving-window or
whole-epoch) then allows examination of event-related
modulations of the dynamic independence of different
brain areas.

While our results suggest the number of brain areas
making major contributions to scalp EEG may be
relatively few (certainly less than the number of active
brain areas), non-invasive examination of dynamics in
and between active brain networks appears to afford a
real scientific opportunity for system-level modeling of
the neural substrates of cognition. The fact of spatial
brain modularity, meanwhile, creates the opportunity for
spatial ICA to separate important sources of blood
oxygen level difference (BOLD) signals recorded in brain
functional magnetic resonance imaging (fMRI)
experiments (McKeown et al., 1998).

One near term goal of our research is to compare the
results presented here with those obtained from ICA
decomposition of higher-density EEG (or MEG)
recordings. Further research into methods for assessing
the dynamics of brain activity within and between
independent components may give the field of cognitive
neuroscience important new tools for exploring and
characterizing systems-level brain dynamics
accompanying or underlying human cognition.
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