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This paper  presents how it would be possible to separate 
linear mixtures of statistically independent signals with 
unimodal supergaussian probability distributions, with a 
simple neural network. This procedure is based on geometric 
properties, and we will show that the distribution maxima of 
the mixed density distribution belong to straight lines, whose 
direction vectors, taken as columns of a matrix comprise a 
demixing matrix. The results obtained with synthetic 
mixtures of real speech signals are shown. 
 

I. INTRODUCTION 
 
We assume that the observations, e(t) = [e1(t),...,ep(t)] ’ , are 
generated as a linear mixture A=(a ij) (a ij∈ℜ) of  p sources, 
s(t)=[s1(t),...,sp(t)] ’ , such that:  
 

)()( tt se A=    (1) 

 
The goal is to estimate a matrix W-1  such that: 
 

DPAWDP == −1;)()( tt sy   (2) 

 
where P is a permutation matrix and D is a diagonal matrix. 
 
We will consider sources with a unimodal and supergaussian 
probabili ty density function. These distributions are of 
considerable interest in engineering and science because 
many random variables are discribed by this model. Among 
these are the bilateral gamma, double exponential (or 
Laplace) and beta (with α=β>1) density functions; for 
example, in [10] it is shown that a good approximation to 
measure the speech amplitude density is a bilateral gamma  
of the form: 
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where σ2 is the variance and µ the mean. A simpler 
approximation of the Laplacian density is frequently used:  
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We consider a discretised time: t=nTs, with n=1,2,...,N, 
and Ts the sampling period. We suppose a memoriless 
model, such that at every time instant, n, the sources 
generate a vector or point in the source space, s(n), and at 
the same time instant a vector or point e(t) is produced in 
the mixing (observation) space and detected by the 
sensors. 
 
We have seen with signals with a supergaussian 
probabili ty density function, the frequency of the points 
located in the mixing space along straight lines 
(distribution axes), in which director vectors taken as 
columns could define a demixing matrix W. Considering 
this idea, in previous papers [6, 7], we proposed an 
adaptive algorithm for p=2 sources based on the 
consideration of taking the centre of the mixing 
distribution as its origin and then dividing the space (e1, 
e2) into sectors (clusters). The algorithm counts the 
incidence frequency of the observation vectors in each 
cluster, and identifies the clusters containing the relative 
frequency maxima as directions of the distribution axes. 
 
This paper addresses the following questions: 
 
• Considering analytic geometry, the procedure principle 

is formalised. In particular, we show that, for signals 
with a unimodal supergaussian probabili ty density 
function, the maxima of the distribution density 
obtained in the mixing space are along axis, from which 
a demixing matrix W can be defined, by using a vector 
from each axis as column of that matrix. 

• A simple neural network is proposed to implement the 
above concept, and can be used for two or more 
sources. The network weights are taken as elements of 
the demixing matrix and are changed adaptively and in 
an unsupervised way following one of the easiest rules 
of competitive  learning, but without using different 
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phases of learning and recall.  This procedure is more 
eff icient than the previous one [6, 7], because it can be 
used for more than 2 signals, it is more precise, and its 
convergence is faster.  

• The simulation results show, with synthetic mixtures of 
real speech signals, that the process achieves an adequate 
demixing matrix. 

• It also noteworthy that compared to previous geometric 
procedures [5, 8, 9], the hypothesis of bounded sources is 
not necessary. 

  
 

II. THEORETICAL CONSIDERATIONS 
 
Geometric source separation methods are based on 
considerations about spacial distribution of points in the 
source and mixing spaces. Thus, we have observed [5, 8, 9] 
that if  the sources have a uniform bounded probabil ity 
density function, the whole of the source space points form a 
rectangle if p=2, a rectangular parallelepiped if p=3, 
otherwise a rectangular hyperparallelepiped. The points 
belonging to this rectangle are mapped into a parallelepiped 
(or an hyperparallelepiped in general) of the mixing space. It 
is easy to prove that a vertex of the hyperparallelepiped of 
the source space is mapped on a vertex of the mixing space, 
edges map on edges, the centre on the centre, etc. 
 
We have also shown in previous papers [5, 9] that the matrix 
W=(wij), obtained from p vectors (considered as columns) 
located at the p edges that are incident upon on any one of 
the vertices of the mixed hyperparallelepiped is a demixing 
matrix.  

 
This latter property can be used efficiently to demix bounded 
signals with a subgaussian probability density function, 
otherwise it is impossible to obtain a point on an edge (that 

is, the probabili ty of obtaining these signals is, in fact, 
very low). In the case of speech signals the point 
distribution in the source and mixing spaces presents the 
pattern shown in Figure 1 (if p=2) and the point density 
at the edges is seen to be very low. 

 
When there is a signal, si, with a distribution function that 
is unimodal (that is, whose probabil ity fnction only has a 
local maximum) and symmetrical, the mean (µi) the 
median and the mode coincide [11] and thus the 
maximum distribution of points is obtained for si=µi, 
which, in the source space corresponds to an axis (for 
p=2), to a plane (for p=3) or to a hyperplane (for any p). 
When p=2, if the two signals (s1, s2) present a 
distribution function of the above type, the distribution 
maxima are found at the straight lines s1=µ1 and s2=µ2, 
which are parallel to the axes s1 and s2, respectively. The 
greatest density of points is obtained at the point 
C=(µ1,µ2), which we term the distribution centre. 
 
The above statement can be shown analytically. 
Consider, for example, two signals, (s1,µ1,σ1) and 
(s2,µ2,σ2), with a bilateral gamma probabili ty function, 
i.e. (3). The following is then verified: 
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If the two signals are statistically independent, the joint 
probabili ty density at any point in the source space is 
given by the product of the marginal prbabil ity densities, 
i.e.: 
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It can be seen from (6) that the maximum probability 
density is produced when the exponent is zero and/or the 
denominator is  minimum; that is, when: 

 

2211 µµ == sands            (7) 
 
Expression (7) implies that the maximum is produced at 
point C=(µ1, µ2), for any value of  s2, when s1=µ1, and for 
any value of s1 when s2=µ2. Thus, the contribution to the 
maxima densities are as follows: 

(a) (b) 

Figure 1. Source space (a) and mixing space (b) of 
two speech signals. 
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The equations in (8) represent hyperplanes (axes parallel to 
the axes s1, s2 when p=2). 
 

Figures 2a and 2b show the joint probabil ity density for 
gamma bilateral and laplacian functions, in the plane (s1,s2). 
It can clearly be seen that, from the distribution centre the 

directions with the highest point frequency are s1=µ1 and 
s2=µ2. 

It should be noted that in the case of gaussian  signals , 
the joint probability density would be: 
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The points of equal density, i.e. f(s1,s2)=f(s1)· f2(s2)=k 
(constant), are as follows: 
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In other words, the points of equal density are distributed 
in ellipses (circumferences when µ1=µ2 and σ1 =σ2) with 

the centre in C and semiaxes in k21σ  and k22σ . 

Therefore, there do not exist any suitable distribution 
axes with which the directions of maximum point 
frequency could be determined from the central point. 
 
Our goal is to obtain the axes of the mixing space where 
the distribution maxima are produced. It is well known 
[4] that if x1 and x2 are statistically independent standard 
gamma random variables, and k1 and k2 are constants, the 
random variable: 

y=k1· x1 + k2· x2   (11) 
 
also has a  gamma distribuction function. This property 
can be applied to each of the mixtures ej, as they are 
described by expression (11). We thus could obtain, in a 
similar way to that used for the source space, the points 
with a maximum joint probabil ity density, as a function 
of the mixing matrix coefficients, aij. These points can be 
obtained more easily by using analytic geometry. Then  
the set of points in the mixing space presenting greatest 
frequency will correspond to the images of the points in 
the source space with the greatest frequency. These 
points correspond to the intersections of the hyperplanes 
defined in (8). Thus, when p=2, the axis s1=µ1 is mapped 
on the following points of the mixing space: 
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which correspond to the following axis: 

Figure 2. Joint probabil ity density for two signals: (a) 
Bilateral gamma, (b) Laplacian, (c) Gaussian. 
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Similarly, when p=2, the other axis of maximum densities 
(s2=µ2) is mapped onto the following axis: 
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When there exist more than 2 signals, the points of 
maximum density are obtained from the axes at the 
intersection of the hyperplanes defined by (8).  For p=3, 
these axes are at the intersection of the planes (s1=µ1, s2=µ2), 
(s1=µ1, s3=µ3) and (s2=µ2, s3=µ3), etc.  In general, taking 
point C=(µ1, µ2,..., µp) as the origin of the coordinates, the 
intersections are mapped onto axes within the mixing space 
as in the following equations: 
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From expression (15) we deduce that any set of the vectors 
of the following form: 
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(where ki is an arbitrary constant) can be taken as a column 
in a demixing matrix W, because this matrix wil l always be 
related to A as in (2). In other words, it is equal to A except 
for one permutation and one scale factor per column. 
 
It is thus shown that the problem of the blind separation of 
sources with supergaussian probabili ty density becomes just 
that of determining an arbitrary set of  vectors contained 
within the distribution axes.  
 

In order to obtain the vectors within the distribution axes 
more easily, any type of preprocessing can be performed, 
providing the directions remain unaltered. Specifically, 
we can translate the axis coordinates to the central 
distribution point C. Note, too, that the sources are not 
necessarily centred at their means.  
 

III NEURAL NETWORK TO OBTAIN THE 
DISTRIBUTION AXES 

 
The previous section showed that, in order to separate 
signals using the proposed procedure, it is necessary to 
design algorithms to identify the directions where the 
local distribution maxima (modes) are to be found.  
When a mixing vector is sampled, the coordinates are 
translated to the distribution centre and normalized. The 
algorithm must locate the directions where there occur 
2⋅p maxima in the production frequency of the 
preprocessed vectors , en(t), taking into account the fact 
that the latter are pairwise symmetrical. 
 
To implement the corresponding algorithm, we use an 
unsupervised neural net with competitive learning. This 
net contains 2⋅p neurones, uj with wj pairwise 
symmetrical weight vectors. Initially, the weight vectors 
are uniformly distributed within the p-dimensional space. 
 
Two variants of this procedure are used for network 
learning. The simplest one is to calculate the proximity 
dj(t) from each input vector en(t) to the various weights wj 
(j=1,..., 2· p) of the network and then to use the following 
rule to adapt the weights of the winning neurone, uw: 
 

))()(()()()1( nnsignnnn wnww weww −⋅+=+ η      (17) 

 
where: 
(1) The proximity, dj(t) ( 11 ≤≤− jd ), from the input 

vector, en(t) to the different neurones, wj, is calculated 
by the scalar product, as both the mixing vectors and 
the weights are normalized. 

(2) Only the weights of the winning neurone, uw, are 
updated, as this is the one that produces the greatest 
scalar product. 

(3) Because we wish to locate the points where the 
distribution density is maximum, the weights are 
modified, not according to the differences between 
the vectors en(t)-ww, but according to their sign. This 
is because the spatial distribution is asymmetric, i.e. 
the mode does not coincide with the mean. The use of 
the difference would create the undesirable effect of 
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the more distant mixing vectors having a greater 
influence on weight adaptation than the closer ones, and 
thus the weight vectors would tend towards the mean 
rather than towards the local mode. 

(4) A frequency, fj, is assigned to count the number of times 
each neurone, uj, has won. The adaptation gain is 
modified according to the following expression: 
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In order to prevent the network from becoming stuck in a 
metastable state, the learning parameter, η(n), is maintained 
at a low value, ηL. 
 
The other variant is more complex, but provides better 
results for p>2. The differences are as follows: 
 
• The winning vector is only updated if its proximity from 

the input vector, dw, is greater than a given value dc, 
expressed by: 
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where, to ensure that the adaptation does not stop, this 
proximity is limited to the value dL. The use of this 
criterion is of great value for locating the local maxima, as 
the neurones are only influenced by the inputs that lie 
within a hypersphere the centre of which is in the neurone 
and which has an exponentiall y decreasing radius, 1- dc . 

 
• The weight update is carried out in the usual way [2], that 

is, using the difference en(t)-ww, and not the sign function: 
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Some preliminary results are given in the following section.  
 
 
 
 
 

IV. EXPERIMENTAL RESULTS WITH SPEECH 
SIGNALS 

 
We have tested the algorithms described in Section III 
with different mixtures of real speech and bilateral 
gamma signals. Table 1 il lustrates some preliminary 
experiments, including the number of signals mixed, the 
type of sources, the mixing matrices used, and the criteria 
used to adapt the parameters of the neural networks. 
Some of these matrices were randomly chosen by 
Cichocki [CIC99] and by Hyvärinen [HYV98]. To 
measure the quali ty of the separation, the mean of the 
absolute error, ea, between the elements of the original 
mixing matrix (normalized) and the demixing matrix 
(sorted and normalized), that is: 
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Table 1 

EXPE 
RIMENT 

# 
p SOURCES MIXING MATRIX ADAPTATION 

PARAMETERS 

1 2 Speech 





−−

−
14.0

1.03.0  τ1=1000 
γL=0.0001 

2 2 Speech 




 −
9.077.0

88.08.0  τ1=1000 
γL=0.0001 

3 3 Speech 















−−
−−

64.052.021.0

96.078.054.0

09.003.090.0
 τ1=1000 

γL=0.00001 

4 4 
Bilateral 
Gamma  



















−−
−−
−−−−
−−−

74.011.063.033.0

37.048.026.003.0

85.062.042.071.2

39.006.082.028.0
 

τ1=1000 
τ2=5000 
γL=0.001 
dL=0.998 

 
Figures 3-6 show the straight lines obtained after 
adjusting the absolute errors by the squared minima 
crieteria, and also the intervals for which a confidence 
rate of 50%. These figures clearly show that in every case 
the network weights converge towards a mixing matrix 
that is valid to perform the separation.  
 
Of course, the greater the number of sources, the slower 
this convergence wil l be. 
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V. CONCLUSIONS 
 
This paper shows that, from concepts of analytic geometry, 
for sources with a unimodal supergaussian probabil ity 
density function, the maxima of the vector distribution 
densities obtained in the mixing space are distributed along 
straight lines (distribution axes) which can be used to define 
a demixing matrix W. 
A simple unsupervised neural network is also proposed: this 
network adaptively locates the distribution axes such that the 
weights of each neurone, taken as the columns of a matrix, 
define a demixing matrix. The network adapts its weights by 
adopting a competitive model. 
 
Finally we provide preliminary results that demonstrate how 
the procedure produces a convergence towards optimal 
solutions.  
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Figure 5. Mean absolute error variation in Experiment 3. 

Figure 3. Mean absolute error variation in Experiment 1. 

Figure 4. Mean absolute error variation in Experiment 2. 

Figure 6. Mean absolute error variation in Experiment 4. 
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