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Abstract

A one-shot batch algorithm for blind separation of a mix-
ture of delayed source signals is presented. The algorithm
has two stages, the sampling stage in which the signals
are measured and the required auto and cross-correlation
functions are gemerated, and the optimization stage in
which the optimal values of the decorrelator parameters
are computed. The decorrelator is based on the second-
order FIR filters. The experiments have shown that the
batch approach is very robust and time-wise effective in
the case of real EMG signals. The paper illustrates the
algorithms on the artificially generated signals.

1. Introduction

This work was motivated by an effort to use elec-
tro myographic (EMG) signals to interface a human
arm and an artificial multifingered robot hand. Four
surface EMG electrodes were placed on the human
forearm and the measured signals were used to clas-
sify intended hand preshaping configuration in an
object grasping operation [9], [10]. The possible
grasp modes were grouped into four classes: cylin-
drical, spherical, lateral and precision grasp. The
electrode placement was generally determined ac-
cording to the location of different muscle groups
that control thumb, index, middle and little finger.
Numerous experiments have shown that the classifi-
cation hit rate very much depends on the electrode
placement and on the cross-talk between some of the
electrodes. It is believed that the particular mus-
cles, although they work in an unknown synergetic
context, still are statistically independent. There-
fore, the blind separation techniques pioneered by
[7] and further developed in [4], [1], [2], and many
other subsequent publications, which have proposed
various approaches for separation of static (instan-
taneous) mixtures.

In the case of EMGs these techniques have of-
fered some limited success in signal decorrelation.
The reason why these techniques weren’t fully suc-
cessful lies in the fact that the signal sources (the
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muscles) are embedded in a tissue that is in effect
a volume conductor which allows that one surface
electrode picks signals from different sources. In ad-
dition, the signals propagate through the tissue with
a finite speed, thus resulting in a mixture that con-
tains delayed signals. One of the first treatments of
the separation of delayed signals was given in [8].
Based on the assumption of delayed mixtures a dy-
namic decorrelator was proposed in [11], which is
conceptually depicted in Figure 1.
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Figure 1: Conceptual representation of signal mix-
ing and signal separation with FIR filters (A(z) and
B(z) are mixing filters, while P(z) and Q(z) are decor-
relator filters.)

The decorrelation was based on two stationary
FIR filters which are discussed in the next sec-
tion. The dynamic decorrelators have offered sur-
prisingly good results, which are illustrated in Fig-
ure 2. The figure compares cross-correlation func-
tions of the measured (dynamically mixed) signals
with the cross-correlation functions of the separated
signals obtained by using static and dynamic decor-
relators. The delayed and convolved mixtures have
rapidly gained the attention in last five years and
many previously proposed algorithms developed for
static mixtures were extended to delayed and con-
volved mixtures. A good survey of this was given in



[5] and [3].

The separation algorithm in [11] was based on a
batch processing approach in which the measured
signals are recorded for some period of time in or-
der to acquire their auto and cross-correlation func-
tions, and to compute the associated features for
pattern recognition. After that period of time, the
optimal parameters of decorrelator filters were com-
puted and used to modify the computed features, to
make them uncorrelated. This operation is repeated
for each particular prehensile motion (object grasp).
Many experiments have shown that the batch ap-
proach in this context is more robust and stable
than the continuous approach used by most of the
researchers. A more detailed presentation of this ap-
proach, including some essential improvements are
done in [6]. This work summarizes results from [11]
and [6]. The effectiveness of the algorithm is shown
on two artificially created and mixed signals. The
real EMG signals are considered in details in [6].
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Figure 2: Cross-correlation functions of EMG signals
before separation (solid line) and after separation using
different filters: dashed line - P(z) = pg (no delays);
broken line - P(z) = pg + plzfl; line with circles
- P(2) = po+ p1z7t + pez72.(Q(z) has identical
structure as P(z)).

2. Decorrelation

For the further discussion we suppose two uncorre-
lated source signals my (t) and mg(t). Their delayed
mixture can be written as:

my + Z akmg(t — kA),

e =
k=0

es = Mmoo+ Z bkml(t — kA) (1)
k=0

where ap and b, are the unknown mixture coeffi-
cients and ej(t) and ez (t) are measured signals. Af-
ter applying z-transform equations (1) become:

B =
By, =

My + A(2) My, (2)
M2 + B(Z)Ml

with A(z) = > p_garz™% and B(z) = > _obez™F
being the mixture polynomials. The cancellation
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of the mixing effect, i.e. the decorrelation, can be
achieved by adding two similar polynomials P(z) =
S opkz " and Q(z) = Yit,qkz~", in an ar-
rangement as shown in Figure 1. The arrange-
ment generates new signals s1(¢) and sa(t), whose
z-transforms are:

Sl == E1 — P(Z)EQ, (3)
S2 = Ey—Q(2)Er.

After substituting (2) into equations (3) the latter
become:

S1 = (1= B(2)P(2))My + (A(z) — P(2)) My,
Sz = (B(z) = Q(2))M1+ (1 - A(2)Q(2)) M2. (4)

Clearly, signals s;(t) and s2(t) become uncorre-
lated if P(z) = A(z) and Q(z) = B(z). Note,
the second (permuted) solution, P(z) = B(z)~land
Q(z) = A(z)~tis not feasible if P(z) and Q(z) have
a finite order. The uncorrelatedness of signals s;(t)
implies that the cross-correlation function:

s12(7) = s1(t)s2(t + 1) = % stl(t)SQ(t + 7)dt,
(5)

is zero for all 7. In reality the mixing polynomials
A(z) and B(z) are not known. Therefore we have to
decide about the order m of the decorellator polyno-
mials P(z) and Q(z) and about the size of the delay
interval A, then to determine the optimal values of
coefficients py and g, which minimize some measure
of s12(7). Numerous experiments with real EMG sig-
nals [9], [11] have shown that a reasonable order of
the decorrelator is m = 2. In addition, it was found
that the optimal value for delay is A = 2ms. This
can be seen from typical cross-correlation functions
shown on figure 2. As seen the cross-correlation
function of the measured signals e12(7) has maxi-
mums that are at —1 and +3ms. The figure also
shows the cross-correlation functions sy1o(7) for dif-
ferent m. The case m = 0 (no delays) offers very
little improvement. Case m = 1 shows a significant
improvement, while the case m = 2 yields almost
zero cross-correlation. The experiments have sug-
gested that the further increase of m does not offer
any significant improvement over the case m = 2,
and therefore would not justify the expense of com-
plexity and time overhead for the separation algo-
rithms.

For the minimization criteria we will use the sim-
ple mean-square operator:

w

J(p,q) = s12(7)? = 7{” s19(7T)2dr, (6)




where the time interval [-W, W], W < T, is cho-
sen so that it contains the significant parts of the
cross-correlation function. Normally the integration
interval W is much smaller than the sampling inter-
val T. For example, in case of EMG signals used
in [9] the values were typically T = 300 ms and
W =20 ms.

For the further discussion, we express J explicitly
in terms of p and ¢q. Equation (3) can be rewritten
for time domain:

s1(t) = e
Sz(t) = €2
where ¢;(t) = [ex(t),e1(t — A),ex(t —2A)]" and
Bo(t) = lea(t), e2(t — A), ea(t — 2A)]" are measured

signals and their delays. By applying (5) to (7) fol-
lows [6]:

s12 (7) = e1a(7) — PT¢22(T) - QT¢11(7) + PTq)Ql(T)‘L

(8)

P11(7) le11(7), 11 (T—=A), en (T—24)]", (9)
(/)22 (T) = [622(7’), €929 (T+A) €99 (T+2A)]T s
€921 (T) 621(7'7A) 621(T*2A)
(I)Ql (T) == €921 (T+A) €91 (T) €91 (T—A) y
ea1(TH+A)  eq1(7+A) ea1(7)

(10)

where e;;(7) are the cross-correlation functions of
the measured signals, i.e. e;;(7) = e;(t)e;(t + 7).

3. Minimization of J

Objective function J(p,q) defined by (6) can be ex-
panded into Taylor series in the vicinity of some

point 7 = [ﬁT,qT]T(the smoothness and differen-
tiability of J(p, ¢) can be easily verified):

J(p.a) = J(B,q) +g(r =7) + (r=F)TH(r —7) + -
(11)

where g and H are the gradient and the Hessian
defined as:

07 0J 1| & £%
=12 3, =3 &2
o Ip 30 oF

(12)

In light of equations (6), (7), and (12), the compo-
nents of g and H can be expressed in terms of p and

q [6]:
9(p.q) = w m}

(13)
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uul uvl + & 519
H(p,q) = ,
vul + Poq 519 voT
(14)
with:
U= —Pog +P21q, v=—by; + ‘I)lep (15)

The time variable 7 of functions u(7), v(7), s12(7),
D11(T), baa(T), and Poq(7) is omitted in equations
above for the sake of simplicity.

In order to minimize J(p, ¢) we can employ simple
gradient method. However, the practical experience
has shown that the gradient method is generally very
slow and unstable due to the elliptic behavior of
J(p,q). In order to improve the convergency, we can
also use the second-order successive approximation
technique which uses the Hessian:

riy1 =r;— KH; gl (16)
with a constant gain matrix K = diag(ks,
ka,..., k). The minimization process can be sum-
marized as follows:

1. Acquire signals ey (t) and es (t)
(during sampling period T')

2. Compute the cross-correlation functions
€e11 (T) , €21 (T) y and €929 (T)

3. Set the initial values for p and g
(e‘g: p= [Oa 05 0]5 q= [Oa 05 OD

4. Compute $12 (7), v (7) and v (7),
using equations: (8) and (15)

5. Compute g and H, equations (13) and (14)

6. Compute the new values for p and q,
equation (16)

7. If variations of p and g are not
sufficiently small go back to step 4.

8. Compute $1 (t) and s (¢),
using equations (7)

It is important to note that the only time-critical
operation here is sampling of the measurement data
(step 1), which takes time 7. The length of T
is determined by the sampling rate of the mea-
surement sensor, and by the required number of
samples. The computation of the auto and cross-
correlation functions (step 2) can be performed dur-
ing the data acquisition time by using recurrent for-
mulas. Steps 3 through 7 are performed in a negligi-
ble short time, depending on the employed computer
resources. Generation of the separated signals sq (t)
and sa (t) (step 8) is performed ”post mortem” af-
ter the final values of the separation parameters p
and g are determined. This induces a time delay



of T + Tg, (Ts - is the computation time needed
for steps 3 through 8). This delay can be avoided
if the first sampling period is used for ”training”,
after which the determined separation parameters
can be used for the subsequent signal separation.
In that case, the time Tg would be reduced to the
amount needed to evaluate the equations (7) only.
Of course, the training process can still continue si-
multaneously with the signal separation, in order to
periodically refresh the separation parameters.

The working of the algorithm above is demon-
strated on artificially generated signals, a sin wave
m1(t) and a square wave ma(t) with different fre-
quencies (see Figure 3). The mixed signals eq(?)
and eg(t) are shown in the same figure.
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Figure 3: Original signals (mq(t) and mg(t)) and
their convolute mixtures (e1(¢) and ea(t)). The mixing
was performed with second-order FIR filters A(z) and
B(z).

The separated signals s;(t) and so(t) are shown
on Figure 4. As seen, although the cross-correlation
function s12(t) was near zero, the square wave signal
was not fully recovered. This will be successfully
done latter in this paper (see Figure 6).
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Figure 4: Decorrelated signals obtained after sepa-
ration
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4. The Pseudo Hessian

The convergence of various approaches in mini-
mization of J(p,q) applied to the artificial signals
above, is shown in Figure 5. The initial values
of decorrelator parameters were chosen: p = q =
[0,0,0]T. The second-order successive approxima-
tion approach was superior in the first iteration over
the gradient method. This proved to be a typi-
cal case. Unfortunately, the second-order approach
didn’t perform always as expected. In many occa-
sions it was unstable. The reason is that the Hes-
sian wasn’t always positive definite. A short look at

the equation (14) reveals the additive terms &7 s5

and P9y s12 in the off-diagonal sub matrices of the
Hessian. These terms can contribute to the depar-
ture from the positive definiteness. Therefore, these
terms were removed heuristically, thus creating a
”pseudo Hessian”. The pseudo Hessian approach
gave surprisingly good results. The diagram in Fig-
ure 5 shows that the pseudo Hessian approach has
completed the optimization after first iteration. The
behavior of this approach was extremely good in the
vicinity of the minimum of J, which was not the case
with the other approaches. This behavior was con-
sistent in many experiments performed on artificial
signals and on real-life EMG signals as well.

o+
o+
o+
o+

log(J)

— Pseudo Hessian
+ True Hessian
O Gradient

4 6 8 10
iteration

Figure 5: Minimization of J using different algorithms:
gradient approach (circles); successive quadratic approx-
imations with exact Hessian (pluses), and with pseudo-
Hessian (solid line). The latter approach was able to
sufficiently minimize J in a single iteration. The initial
value of J was 3.224.

5. One-Shot Minimization

The usage of the pseudo Hessian makes the single
iteration in the minimization of J sufficient. This
simplifies significantly the separation algorithm. In
addition, usage of zero initial values for the decor-
relator parameters p and ¢, the algorithm simplifies



even more: the entire process now reduces to the
following three equations:

Jo = | —€12 Py, 1261,
boz Paz  Paz D1

H,= (17)
P11 P2y 11 D1

p 1,7
—_= —
[q] o Jo

All components in the equations above depend
now only on the measured signals e; (¢t). The
auto-correlation functions e (7) and egq (1), and
the cross-correlation function egy (7), which are ele-
ments of ¢,y and ¢4, can be computed recurrently,
and they are all available at the end of the sampling
period T'.

6. Compensation

If we assume P(z) = A(z) and Q(z) = B(z), the
equations (4) become:

Si=(1- P)QGE))M;, i=1,2  (18)

The signals sy (t) and sa (¢) are uncorrelated, how-
ever they are not equal to the unmixed signals m; (t)
and mg (t). That explains the poor shape of the sep-
arated signals in Figure 4. In order to obtain signals
that are close to the unmixed signals, we need to
solve the equations (18) in the time domain.

By multiplying the polynomials P(z) and Q(z)
and by some rearrangements of the equations [6] we
get:

Ci = Si/do + (dyzt +doz 2 +

+d3z73 +dyz™) Oy, (19)
where:
dgy = 1 poqo,
di = (poq1+p19o)/do,
dy = (pogz +p1q1+Pp290)/do, (20)
d3 = (p1g2+p2q1)/do,
de = (p2g2)/do.

Note that the symbol M; is replaced by C; in or-
der to conceptually distinguish between the truly
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unknown original signals m; (t) and their approxi-
mate compensated versions ¢; (t).
The time domain version of (19) is:

ci () =s;(t) /do+dyic; (t —A)+dac; (t—2A) +
+ d3 ¢; (t—gA) + dy c; (t—4A). (21)
The compensated version ¢;(¢) of signals s;(t) is

shown on Figure 6. The signal is almost fully recov-
ered.

¢l \/\/\/\//\/\/\/\
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Figure 6: Signals after compensation.

7. Feature Separation

In most cases signals are used for some kind of pat-
tern recognition. For example multi-channel surface
EMG signals are recorded from the human forearm
in order to control an artificial multifingered hand
[9]. For that purpose various EMG patterns that
correspond to various grasp modes (cylindric, spher-
ical, lateral or precision grasp) are classified, so that
the hand can be properly preshaped by the hand
controller for a grasping action. Similarly, the EMG
signals can be used to diagnose certain patient’s
conditions. The signal separation in these situa-
tions is necessary in order to minimize the cross-
talk between multiple EMG electrodes and to com-
pensate for variations in electrode placements. In
addition, the separation can eliminate unwanted ar-
tifacts. Before the raw signals are used for classi-
fication, they should go through a stage called fea-
ture extraction. The simplest and perhaps the most
useful feature extraction is done by simple integral-
of-square method. This applied to the measured
signals e; (t) would give the following definition of
features:

foi = [ er () dt. (22)

Similarly, the features extracted from the sepa-
rated signals s;(t) would be:

fsi = f 81 (t)Q dt (23)



The integration interval T isn’t necessarily equal
to the sampling period, but is normally close, which
means that the computation of features involves
squaring and summing up of hundreds or thousands
of samples. Consequently, the total time to extract
the features would be T 4+ Ts + T, where Tg is
the computation time needed to determine decor-
relator parameters p and g, while Tr is the time
to compute the features. The sampling time T is
unavoidably long and can not be decreased by us-
ing faster computers, which is the case with other
two time intervals. As mentioned in section 3., sig-
nal separation can be overlapped with the sampling
process by using recurrent formulas for auto and
cross-correlation functions. This would greatly re-
duce Tg. Similarly, the feature extraction time can
also be saved by overlapping the feature extraction
with the sampling process, therefore eliminating 1T
almost entirely. This is possible in case of the simple
feature extraction method (22) and (23).

Substitution of equations (7) and (22) into (23)
gives:

f51 - fel +PTW12 JFPTQQP’ (24)

f52 f€2 + qu21 + qTQ:L q)

where:

T
wij = —2 { ei (t) ¢y (1) dt, Q= [ ¢;(t) ¢; (1) dt.

Provided that the values of wi2 and €2; are com-
puted during the sampling period T, all what is left
to do after the decorrelator parameters are deter-
mined, is to perform a couple of multiplications and
additions in (24).

8. Conclusion

A one-shot batch algorithm for blind separation of
delayed mixture of two signals is presented. The al-
gorithm has proven to be very robust and effective
for real EMG signals. The concepts and the effec-
tiveness of the algorithm is illustrated on two arti-
ficially generated and mixed signals. Future work
will be focussed on the separation of several simul-
taneous signals including noise.
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