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ABSTRACT

In independent component analysis, prior information
on the distributions of the independent components is
often used; some weak information is in fact necessary
for succesful estimation. In contrast, prior informa-
tion on the mixing matrix is usually not used. This
is because it is considered that the estimation should
be completely blind as to the form of the mixing ma-
trix. Nevertheless, it could be possible to find forms
of prior information that are sufficiently general to be
useful in a wide range of applications. In this paper,
we argue that prior information on the sparsity of the
mixing matrix could be a constraint general enough to
merit attention. Moreover, we show that the computa-
tional implementation of such sparsifying priors on the
mixing matrix is very simple since in many cases they
can be expressed as conjugate priors. The property of
being conjugate priors means that essentially the same
algorithm can be used as in ordinary ICA.

1. INTRODUCTION

Indendent component analysis (ICA) [13] is a statistical
model where the observed data is expressed as a linear
transformation of latent variables that are nongaussian
and mutually independent. The classic version of the
model can be expressed as

x = As (1)
where x = (21,%2,...,7,)7 is the vector of observed
random variables, s = (s1,52,...,5,)7 is the vector

of the independent latent variables (the “independent
components”), and A is an unknown constant matrix,
called the mixing matrix. The problem is then to esti-
mate both the mixing matrix A and the realizations of
the latent variables s;, using observations of x alone.
Exact conditions for the identifiability of the model
were given in [7]; the most fundamental is that the
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independent components s; must be nongaussian [7].
A considerable amount of research has been recently
conducted on the estimation of this model, see e.g.
1,2, 4,5, 6, 8, 11].

We thus have some prior knowledge on the distri-
bution of the independent components: they are as-
sumed to be nongaussian. Nongaussian variables can
be roughly divided into two groups: supergaussian and
subgaussian variables, although slightly different defi-
nitions exist. In many cases, it is further assumed that
we know if the independent components are sub- or su-
pergaussian. This is the case, for example, in image
feature extraction [15, 3, 9], in which the components
are assumed to be supergaussian, or sparse. This is
not an arbitrary assumption, but a simple consequence
of the fact that the independent components estimated
from image data are supergaussian with very few ex-
ceptions.

On the other hand, no prior knowledge on the mix-
ing matrix is used in the basic ICA model. This has
the advantage of giving the model great generality. In
many application areas, however, information on the
form of the mixing matrix is available. Using prior
information on the mixing matrix is likely to give bet-
ter estimates of the matrix for a given number of data
points. This is of great importance in situations where
the computational costs of ICA estimation are so high
that they severely restrict the amount of data that can
be used, as well as in situations where the amount of
data is restricted due to the nature of the application.

This situation can be compared to that found in
regression, where overlearning is a very general phe-
nomenon. The classical way of avoiding overlearning in
regression, i.e. overfitting, is to use of regularizing pri-
ors, which typically penalize regression functions that
have large curvatures, i.e. lots of “wiggles”. This makes
it possible to use regression methods even when the
number of parameters in the model as very large com-
pared to the number of observed data points. In the



extreme theoretical case, the number of parameters in
infinite, but the model can still be estimated from fi-
nite amounts of data by using prior information. Thus
suitable priors can reduce overlearning [12].

One example of using prior knowledge that predates
modern ICA methods is the literature of beamforming
(see the discussion in [5]), where a very specific form of
the mixing matrix is represented by a small number of
paramters. In investigations on application of ICA to
magnetoencephalogaphy [17], it has been found that
the independent components can be modelled by the
classic dipole model, an information that could be used
to constrain the form of the mixing coefficients [14].
The problem with these methods is, however, that they
may be applicable to a few data sets only, and lose the
generality that is one of the main factors in the current
flood of interest in ICA.

In this paper, we introduce a form of prior informa-
tion on the mixing matrix that is both general enough
to be used in many applications and strong enough to
increase the performance of ICA estimation. First we
investigate the possibility of using two simple classes
of priors for the mixing matrix A: Jeffreys’ prior and
quadratic priors. We come to the conclusion that these
two classes are not very useful in ICA. Then we intro-
duce the concept of sparse priors. These are priors that
enforce a sparse structure on the mixing matrix. In
other words, the prior penalizes mixing matrices with
a larger number of significantly non-zero entries. Thus
this form of prior is similar to the prior knowledge on
the sparseness of the independent components. In fact,
due to this similarity, sparse priors are so-called con-
jugate priors, which implies that estimation using this
kind of priors is particularly easy: Ordinary ICA meth-
ods can be simply adapted to using such priors. Sparse
priors are particularly useful in image feature extrac-
tion, where a link to sparsely connected networks can
be made.

2. BACKGROUND: JEFFREYS’ AND
QUADRATIC PRIORS

In the following, we assume that the estimator W of
the inverse of the mixing matrix A is constrained so
that the estimates of the independent components y =
Wx are white, i.e. decorrelated and of unit variance:
E{yy?} = I. This restriction facilitates greatly the
analysis. For its justification, see e.g. [7, 11]. We
concentrate here on formulating priors for W = A1,
Completely analogue results hold for prior on A.
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2.1. Jeffreys’ prior

The classical prior in Bayesian inference is Jeffreys’
prior. It is considered a maximally uninformative prior,
which already indicates that it is probably not useful
for our purpose.

Indeed, it was shown in [16] that Jeffreys’ prior has
the form:

p(W) o< |det W1 (2)
Now, the constraint of whiteness of the y = Wx means
that W can be expressed as W = UB, where B is a
constant matrix, and U is restricted to be orthogonal.
But we have det W = det U det B = det B, which im-
plies that Jeffreys’s prior is constant in the space of
allowed estimators (i.e. decorrelating W). Thus we see
that Jeffreys’ prior has no effect on the estimator, and
therefore cannot reduce overlearning.

2.2. Quadratic priors

In regression, the use of quadratic regularizing priors
is very common. It would be tempting to try to use
the same idea in the context of ICA. Especially in fea-
ture extraction, we could require the columns of A, i.e.
the features, to be smooth in the same sense as smooth-
ness is required of regression functions. In other words,
we could consider every column of A as a discrete ap-
proximation of a smooth function, and choose a prior
that imposes smoothness for the underlying continu-
ous function. Similar arguments hold for priors defined
on the rows of W, i.e. the filters corresponding to the
features.

The simplest class of regularizing priors is given by
quadratic priors. We will show here, however, that such
quadratic regularizers, at least the simple class that we
define below, do not change the estimator.

Consider priors that are of the form

logp(W) = Z w! Mw; + const.

i=1

(3)

where the w! are the rows of W = A~ and M is a
matrix that define the quadratic prior. For example,
for M = I we have a “weight decay” prior log p(W) =
>, llw;||?. Alternatively, we could include in M some
differential operators so that the prior would measure
the “smoothnesses” of the w;, in the sense explained
above. The prior can be manipulated algebraically to
yield

n n

Z w! Mw; = Z tr(Mw;w)) = tr(MW7T W)

i=1

i=1

(4)



Quadratic priors have little significance in ICA es-
timation, however. To see this, let us constrain the
estimates of the independent components to be white
as above. This means that we have

E{yy"} = E{Wxx"WT} = WCW” =1 (5)
in the space of allowed estimates, which gives after
some algebraic manipulations W W = C~!. Now we
see that

ng’Mwi =tr(MC™ 1) = const.

i=1

(6)

In other words, the quadratic prior is constant. The
same result can be proven for a quadratic prior on A.
Thus, quadratic priors are of little interest in ICA.

3. SPARSE PRIORS

3.1. Motivation

A much more satisfactory class of priors is given by
what we call sparse priors. This means that the prior
information says that most of the elements of each row
of W are zero. The motivation for considering sparse
priors is both empirical and algorithmic.

Empirically, it has been observed in feature extrac-
tion of images that the obtained filter tend to be lo-
calized in space. This implies that the distribution of
the elements w;; of the filter w; tends to be sparse,
i.e. most elements are practically zero. A similar phe-
nomenon can be seen in analysis of magnetoencephalog-
raphy, where each source signal is usually captured by
a limited number of sensors. This is due to the spatial
localization of the sources and the sensors.

The algorithmic appeal of sparsifying priors, on the
other hand, is based on the fact that sparse priors can
be made to be conjugate priors. This is a special class of
priors, and means that estimation of the model using
this prior requires only very simple modifications in
ordinary ICA algorithms.

Another motivation for sparse priors is their neural
interpretation. Biological neural networks are known
to be sparsely connected, i.e. only a small proportion
of all possible connections between neurons are actually
used. This is exactly what sparse priors model. This
interpretation is especially interesting when ICA is used
in modelling of the visual cortex [15, 3, 10].

3.2. Measuring sparsity of mixing matrix

Sparsity of a random variable, say s, can be measured
by expectations of the form E{G(s)}, where G is a
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non-quadratic function, for example the following

G(s) (7)
The use of such measures requires that the variance of
s is normalized to a fixed value, and its mean is zero.

In feature extraction and probably several other ap-
plications as well, the distribution of the elements of
W is zero-mean due to symmetry. Furthermore, let us
assume that the data x is whitened as a preprocessing
step. Denote by z the whitened data vector whose com-
ponents are thus uncorrelated and have unit variance.
Constraining the estimates y = Wz of the independent
components to be white implies that W is orthogonal,
which implies that the sum of the squares of the ele-
ments Y j Wij 18 equal to one for every i. The elements
of each row of W can be then considered a realization
of a random variable of zero mean and unit variance.
This means we could measure the sparsities of the rows
of W using a sparsity measure of the form (7).

Thus, we can define a sparse prior of the form

Is]-

n n

logp(W) = Z Z G(wij;) + const.

i=1 j=1

(8)

where G is the logarithm of some supergaussian density
function, and again w! = (wj1, ..., w;,) are the rows of
A~1. The function G in (7) is such log-density, so we
see that we have here a measure of sparsity of the w;.

The prior in (8) has the nice property of being a
conjugate prior. Let us assume that the independent
components are supergaussian, and for simplicity, let us
further assume that they have identical distributions,
with log-density G. Now we can take that same log-
density as the log-prior density G in (8). Then we can
write the prior in the form

n n

log p(W) = Z Z G(w?

i=1 j=1

9)

e;) + const.

where we denote by e; the canonical basis vectors, i.e.
the i-th element of e; is equal to one, and all the others
are zero. Thus the posterior distribution has the form:

log p(W|x) =
n T n
S D Gwix(t) + Y G(w]e;)] + const. (10)
i=1 t=1 j=1

This form shows that the posterior distribution has
the same form as the prior distribution (and, in fact,
the original likelihood). Priors with this property are
called conjugate priors in Bayesian theory. The use-
fulness of conjugate priors resides in the property that



the prior can be considered to correspond to a “virtu-
al” sample. The posterior distribution in (10) has the
same form as the likelihood of a sample of size T + n
which consists of both the observed z(t) and the canon-
ical basis vectors e;. In other words, the posterior in
(10) is the likelihood of the augmented (whitened) data

sample
z"(t) = {

Thus, using conjugate priors has the additional ben-
efit that we can use exactly the same algorithm for
maximization of the posterior as in ordinary maximum
likelihood estimation of ICA. All we need to do is to
add this virtual sample to the data; the virtual sample
is of same size n as the dimension of the data.

z(t),

€T,

if1<t<T

. (11)
ifT<t<T+n.

3.3. Modifying prior strength

The conjugate priors given above can be generalized by
considering a family of supergaussian priors given by

n n

logp(A) = Z Z aG(wr!

i=1 j=1

e;) + const.
(12)

Using this kind of prior means that the virtual sample
points are weighted by some parameter . This param-
eter expresses the degree of belief that we have in the
prior. A large a means that the belief in the prior is
strong. Also, the parameter « could be different for dif-
ferent 4, but this seems less useful here. The posterior
distribution has then the form:

log p(Wx) =

n T n
S D _GwIx(t) + Y aG(w]e;)] + const. (13)
i=1 t=1 j=1

The above expression can be further simplified in
the case where the assumed density of the independent
components is Laplacian, i.e. G(y) = —|y|. In this case,
the o can multiply the e; themselves:

log p(W|x)

n T
DI

=1 t=1

which is simpler than (13) from the algorithmic view-
point: It amounts to the addition of just n virtual data
vectors of the form ae; to the data. This avoids all
complications due to the differential weighting of sam-
ple points in (13), and ensures that any conventional

VV?X(ﬂI-:f:IVVf(aejN]+-const (14)

i=1
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ICA algorithm can be used by simply adding the vir-
tual sample to the data. In fact, the Laplacian prior is
most often used in ordinary ICA algorithms, sometimes
in the form of the log cosh function that can be consid-
ered as a smoother approximation of the absolute value
function.

3.4. Whitening and priors

Above, we assumed that the data is preprocessed by
whitening. It should be noted that the effect of the
sparse prior is dependent on the whitening matrix. This
is because sparseness is imposed on the separating ma-
trix of the whitened data, and the value of this matrix
depends on the whitening matrix. There is an infinity
of whitening matrices, so imposing sparseness on the
whitening matrix may have different meanings.

In practice, this problem can be solved by using a
whitening matrix that is sparse in itself. Then imposing
sparseness on the whitened separating matrix is mean-
ingful. In the context of image feature extraction, a
sparse whitening matrix is obtained by the zero-phase
whitening matrix (see [3] for discussion), for example.

On the other hand, it is not necessary to whiten
the data. If the data is not whitened, the meaning of
the sparse prior is somewhat different, though. This is
because every row of w; is not constrained to have unit
norm for general data. Thus our measure of sparsity
does not correctly measure the sparsities of each w;.
On the other hand, the developments of the preceding
section show that the sum of squares of the whole ma-
trix ), wi; does stay constant. This means that the
sparsity measure is now measuring the global sparsity
of W, instead of the sparsities of individual rows.

4. EXPERIMENTS

We performed experiments in image feature extraction
to explore the applicability of sparse priors.

The basic idea is as in [3, 15, 9]. The data was
obtained by taking 20 x 20 pixel image patches at ran-
dom locations from monochrome photographs depict-
ing wild-life scenes (animals, meadows, forests, etc.).
The patches were normalized to unit norm. The data
was whitened by the zero-phase whitening filter, which
means multiplying the data by C~'/2, where C is the
covariance of the data. see e.g. [3]. In the results shown
above, the inverse of these preprocessing steps was per-
formed.

The sample size was fixed at 20 000. This is in-
sufficient for such a large window size. The estimated
basis vectors are shown in Fig. 2 (For reasons of space,
only 200 of the 400 basis vectors are shown; these were
randomly selected). Using prior information with the
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Figure 1: Sparsities as function of prior information
strength a. A suitable value for a gives sparser com-

ponents than ordinary ICA.

parameter « fixed at 25, we obtained a much better
basis. This basis is shown in Fig. 3. Visually, one sees
that the features are much better.

To validate the prior quantitatively, we computed
the sparsities of the bases corresponding to different
values of the parameter «, which correspond to differ-
ent strengths given to the prior information. The spar-
sity is here measured as the (negative) expectation of
the absolute value of the estimated independent com-
ponents: This is essentially an approximation of the
likelihood. The sparsity was measured using a test set
that was separate from the training set used in learning
the basis vectors. This is plotted in Fig. 1. The values
of sparsity can be seen to increase with increasing «,
i.e. increasing strength placed on prior information. At
a certain value, the sparsity has a maximum and starts
decreasing. This is natural because too large a value
for @ means that only prior information is used, and
the data is neglected.

5. CONCLUSION

We introduced sparse priors on the mixing matrix. We
argued that such priors may be useful in a wide area
of applications. Computationally they are very conve-
nient because they are conjugate priors, which means
that many existing ICA algorithms can be directly used
by simply introducing a virtual sample. Experiments
show that sparse priors can be succesfully used in image
feature extraction.
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Figure 2: Estimation of the image features with no prior information. The sample size was insufficient to give
useful estimates.

Figure 3: Estimation of the image features with suitable prior information. The estimation was succesful even with
this small sample size.
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