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ABSTRACT

We analyze second-order methods for signal separa-
tion and show how specific filtering operators can be
used to improve the separation performance. It is the
goal to exploit all spectral information in an optimal
way. A perturbation theoretical approach is used to de-
rive an explicit solution for the 2 x 2 mixing case and
an approximate solution for the M x M case is given.
The usefulness of our optimal filtering method (OFT)
is demonstrated by simulations.

1. INTRODUCTION

Blind source separation (BSS) methods have been suc-
cessfully applied for a variety of problems (see e.g. [2,
10, 3, 6, 12, 13, 18, 19, 20]). Two BSS approaches are
distinguished: those relying on higher-order statistics,
and second order algorithms that exploit spectral in-
formation. Recently also hybrids have been proposed
[14]. Since most naturally occurring signals carry spec-
tral information we will concentrate on second-order
algorithms in this paper.
We propose to view second order source separation in
terms of filtering theory inspired by Wiener filtering
and prove an optimal filter solution with a perturba-
tion theoretical approach. It turns out that for special
conditions (no noise, no spatial pre-whitening) our OFI
algorithm is equivalent to the maximum likelihood so-
lution obtained by Pham et al. [16]. We pursue two
goals in our paper: (1) we would like to increase the
general understanding of why second order BSS algo-
rithms work well and (2) we give a second order al-
gorithm based on the idea of optimal filtering. The
filtering approach allows us to make optimal use of dif-
ferences in spectral information between the source sig-
nals.

First we briefly state the source separation prob-
lem. Consider M unknown sources that generate M
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statistically independent time series s;(t) ¢ = 1,..., M,
t = 1,...,T that are spatially uncorrelated but have a
non-delta temporal autocorrelation function. A sensor
array consisting of M sensors z;(t) measures a station-
ary linear superposition z;(t) = >, Wjisi(t) (Z(t)
W3(t)). The goal is to identify W in this model and
hence to blindly reconstruct 5(¢) given only #(t). It
is well-known that in the case of temporally correlated
sources the linear BSS problem can be solved by a si-
multaneous (approximate) diagonalization of two (or
more) generalized covariance matrices [4, 13, 19]. One
makes use of temporal information in the signals by
constructing (e.g. [13, 17, 4, 19])

cr = % S wt)(@t—1) ot +1) Q)
t

for 7 = 0 and 7 = 19 # 0, and by finding a matrix U
which simultaneously diagonalizes C™ for both values
of 7. Then U is an estimate for W (up to scaling and
permutation). A solution always exists as long as the
covariance matrices are symmetric (general eigenvalue
problem). Though intuitively simple, it is so far not un-
derstood which values 79 should be chosen and there-
fore the performance of the algorithm can be rather
poor for a wrong choice. All algorithms so far — even
the ones making use of several covariance matrices (cf.
[19, 4]) — rely on heuristics for choosing the appropri-
ate delay structure of the covariance matrices and are
therefore susceptible to the discussed problem.

In the following section we will first derive the theo-
retical framework. Then we describe a new practical
algorithm and present some simulation results and fi-
nally give a conclusion.

2. OPTIMAL SEPARATING FILTERS

We will now address the question of the optimal use of
spectral information. For the moment we assume that
we have all information about the original source spec-
tra. For the time being we will consider two signals,
however the generalization to M signals is in principle



straight forward though not all equations can still be
solved as nicely as below. As a first step we generalize
the operation of time-shifts in Eq. (1) to allow for ar-
bitrary linear transformations in time. Then the most
general symmetric covariance matrices read

Oy = L mO@ a0 i @)

where x denotes convolution and ¢° and ¢® are two
arbitrary filter functions that filter . Note that a fil-
tering of both signals z;(t) and z;(t) can always be
written in the form (2). In fact, existing blind source
separation methods (like [13, 19, 11]) utilized ’implicit’
filtering where so far the filters were set heuristically.
It is interesting to note that this choice for the matrices
C*? also belongs to the class of admissible estimating
functions introduced by Amari [1]. The standard oper-
ation of symmetrized time-shifts corresponds in Fourier
space to the filter ®7(k) ~ cos(2w7k/T) which di-
rectly follows from writing (1) in the form (2) and then
Fourier transforming ¢(t). Taking this point of view
it becomes apparent that second-order signal separa-
tion methods like the TDSEP algorithm [19] implicitly
use a set (or basis) of cosine functions with frequencies
that are determined by the delay values chosen for the
respective covariance matrices. Those algorithms work
well since within this basis sophisticated filters can be
constructed efficiently.

From now we will entirely work in Fourier space and
denote the Fourier transformed filters and signals by
capital letters, and — in order to construct symmetric
covariance matrices — we will set all filters to be real
valued throughout the paper.

Optimal Filtering With Prewhitening  Before
coming to the general construction of the two filters
®° and ®° we discuss a simpler case by considering
spatially whitened signals, i.e. we set ®*(k) = 1, and
scale the signals such that Y, |S;(k)[* = 1.

We take a perturbation theoretical approach. For
this we expand the eigenvectors #; of the estimated
mixing matrix U to first order in the basis of the true
eigenvectors w; (e.g. 41 = W1 + aws)

@; = Wi + Ai; ~ 0 + ; /\f(j”)\iwj’ (3)

where \; = 2", ®(k)S?(k) are the eigenvalues of the
true (unknown) covariance matrix of the original sources
C. To find an optimal filter function ® we minimize the
expected value' of 2. In two dimensions this means

IThe expectation is denoted by overlining.
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minimizing the functional

L(®) :=a? = 7(/(\??;2; : 4)

For the calculation of the expected value we assume
independent and stationary signals

Si(k)*S; (k") = P} (k)dkk 0ij

with P?(k) := |S;(k)|?> (the spectrum of the i.th in-
dependent signal). Inserting this into (4) leads to the
result that for white signals the misestimation of the
source separation reads for T' >> 1

> (k) H(K)

L(®) = I )
(X @(k)(PE(R) — P5(F)))

with the ’weighting function’
H(k) = P} (k)P; (k). (6)

The derivative of L(®) with respect to ® (k') yields the
optimal filter

Bop(h) = T g

after getting rid of an arbitrary factor. Let us discuss
this solution:
(a) The (local) sign of the filters matters. Without ex-
plicit derivation we merely state that if we would have
used a quadratic form (® — ®2), corresponding to an
ansatz of filtering both z; and z; in Eq.(2), the respec-
tive optimal filters (basically (7) with negative values
set to zero) would have been worse by about a factor
2.
(b) The filter diverges if e.g. for some frequency k, the
power spectrum PZ(k) = 0 and P§(k) # 0. This cor-
responds to the trivial separation when for some & the
first signal is absent. Filtering out this component gives
an exact solution.
(c) For large and white channel noise, H (k) can be set
to a constant and in this limit the optimal filter is es-
sentially the Fourier transform of the difference of the
autocorrelation functions. Expressing the optimal filter
as a superposition of the time-shift-filters is equivalent
to inverse Fourier transforming the optimal filter, and
hence the 79 which leads to the best approximation of
the optimal filter is the one at which the difference of
the autocorrelation functions of the respective sources
is mazimal.

To illustrate the optimal filter method let us con-
sider two sources with their respective power spectra
|P1|? and |P|? (cf. Fig. 1). Eq.(7) gives the formula



magnitude

0.4 0.6
normalized frequency

0.2

Figure 1: Source spectra and filters. ®,—¢ 1,2 are the
filters implicitly used by [13]; ®opr denotes the optimal
filter according to Eq.(7).

for computing the optimal filter denoted by ®,,: in
the plot. The filter characteristics of the Molgedey-
Schuster (MS) algorithm [13] using the covariance ma-
trices C, (for 7 = 0,1,2 respectively) are shown for
comparison. C,—2 gives the best performance for sin-
gle delays. We can clearly see in Fig. 1 that the optimal
filter captures the differences of the spectra much bet-
ter than the filters implied by the Molgedey-Schuster
algorithm.

Optimal Filtering Without Prewhitening Let
us now come to the general case with two different
filters. Similar to the previous case simultaneous di-
agonalization of the covariance matrices leads to an
estimate U = (i1, W) which can be expressed in the
basis of the true mixing matrix W = (w, ws) as @ =
W + a1 We and Uy = Wae + a2y with g and oo
being stochastic variables. The optimal filters are de-
fined to be the ones which minimize a3; + a2,. The
proof is along the lines above, however rather tedious
[15] (therefore omitted), and we arrive at the following
optimal filter

v P2 (k) + vy P3(k)
H(k) ’

(I>ab

opt

(k) = (8)

’b:(ab ab)

where ¢ , U are arbitrary vectors since
any linear combination of diagonal matrices is diagonal.

If we set the vectors 7% as (1,0)” and (0,1)%, re-
spectively then our theory converges to the case ana-
lyzed by Pham et al. [16], since the filters reduce to

®°(k) = P *(k) and ®°(k) = Py (k).
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Optimal Filtering for more than two sources
The theory for optimal filtering was based on exact
diagonalization of two covariance matrices. One can
in principle also derive the two optimal filters C®?
for the N-dimensional case, resulting in more compli-
cated implicit equations for the filters. We follow, how-
ever, a simpler heuristic approach based on the idea of
pair-wise separation of sources, i.e. for each pair of
source spectra P;(k) and P;(k) with ¢ # j, we con-
struct two filters (in general) according to (8) resulting
in a total of M(M — 1) filters. We now diagonalize
these M (M —1) covariance matrices simultaneously by
Jacobi-rotations, following the spirit of [7, 19]. As can
be seen from (8) both in the limit of low? and high noise
level only M of them are linear independent. In the in-
termediate case we perform a PCA analysis and take
only the M filters corresponding to the M largest eigen-
values. The rest proceeds as before; i.e. the now M
covariance matrices are approximately simultanously
diagonalized.

Optimal Filtering With Noise So far we did not
consider additive noise which is present for example in
biomedical applications ¥ = A§ + efi. Channel noise
severely corrupts the ICA decomposition since its con-
tributions to the covariance matrices in general does
not vanish even in the limit of long averages (T —
00) [9, 14]. Under the assumption that we have some
knowledge about the spectral form of 7, the ampli-
tudes and all correlations of the noise, we can either
subtract the noise covariance contributions or we can
construct a filter under the constraint of orthogonality
to the noise spectrum. For example in the case of white
noise it is instructive to notice that this is equivalent to
using time delayed covariance matrices only [14], since
the respective frequency responses of the filters are or-
thogonal to the constant (flat) spectrum of white noise
(cf. Fig. 1). Given that the noise contribution is prop-
erly subtracted, it is straight forward to show that the
weight H (k) from Eq.(8) changes as

H(k) P (k)P3 (k) + PE (k)| N2 (k)] +

PERINGRP + 3 (G (k) ~ GBY) , (9)

where N (k) is the noise in the i.th independent signal

If noise is domlnant and white, the optimal filters
read ®° = of b p? + vy P2, and we arrive at ®* = P?
and ®® = P2, i.e. the filters proposed in [11], however
without a prior whitening step.

2For vanishing channel noise orthogonalization is not
necessary



3. SIMULATIONS

We will now evaluate the theory described in the last
section and we compare the performance of the optimal
filter (OFI) algorithm to common BSS algorithms by
numerical simulations.

Let us recall that the theoretical approach was based
on the assumption that we were given all information
about the source spectra. To make use of this method
in practical source separation problems we propose the
following (EM-like) iteration scheme. In a first initial-
ization step we apply an arbitrary BSS algorithm (here
TDSEP) to get a coarse separation, then in a subse-
quent step with the help of the estimated source spec-
tra an estimate of the optimal filter is computed. The
optimal filter is then applied to the mixtures to obtain
improved estimates of the sources and their spectra.
This procedure is iterated. Unless varied, the number
of iterations is fixed here to three.

To estimate a power spectrum from a signal it is in-
sufficient just to calculate the squared modulus of the
Fourier transform of the data. This estimate does not
converge even in the limit 7' — oo, and hence some
kind of spectral smoothing has to be done. Here we
simply apply a moving average of fixed length (31) on
the estimated spectra, which we found to significantly
improve the results for all considered cases. A more de-
tailed study of the importance of smoothing techniques
will be given elsewhere [15].

In order to study the behavior of the optimal filters
in detail we generated a number of test data. Dataset
(I) consists of snapshots (2000 samples) of Gaussian
AR processes with random coefficients and variable or-
der (between 2 and 20). Dataset (II) contains 15 real
audio signals (speech, music and colored noise) sam-
pled at 8kHz (10000 samples). All signals are artifi-
cially mixed by a randomly fixed, square matrix W.
This matrix was used to compare the performance of
the algorithms in the following way: Let P be a per-
mutation matrix and D be a scaling matrix such that
the unmixed vectors @ = DPU~'Z match the sources
as good as possible. If the unmixing is successful than
E := DPU'W very closely resembles the identity ma-
trix. The separation results can be measured as the
deviation of E from identity by the quantity

(10)

where E;; are the matrix elements of E.

In Fig. 2 we show the results for the optimal filter
source separation algorithms (OFI Eq. (7) and OFI
Eq. (8)) compared to MS [13], TDSEP [19], ARSEP
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Figure 2: Mean and standard error of the mean for 300
separation trials on the AR dataset.

[11] for dataset (I) and in Fig. 3 the corresponding re-
sults for dataset (II) are presented. Here we have also
included the result of the JADE algorithm [6] as a com-
parison to methods based on higher-order statistics.
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[ Horieam
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——] ARSEP
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Figure 3: Mean and standard error of the mean for
60 separation trials on the audio dataset, where two
signals were randomly chosen at each case.

Clearly the OFT algorithms are superior to the rest,
as spectral information is used beneficially. Although
the TDSEP algorithm was used to initialize the OFI
algorithm the final performances are essentially inde-
pendent of each other as can be seen from Fig. 4 where
the performance of OFT is plotted versus the one of
TDSEP. The majority of points are below the diago-
nal, which means superiority for OFI.

Another interesting experiment is shown in Fig. 5:
the averaged performace of the iterated OFI algorithm
is plotted as a function of iterations. From the curve
we see first a sharp drop and then a saturation plateau.
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Figure 4: Scatter plot of the performance measure p for
OFI and TDSEP applied to simulated AR processes.
Every point corresponds to one demixing experiment.

The last simulation (cf. Fig. 6) considers the sep-
aration of more than 2 sources and we see that our
approximation scheme that relies on the diagonaliza-
tion of several covariance matrices, constructed from
pairwise optimally filtered signals, works significantly
better than the TDSEP method.

For simulations of the noise case described above
we refer to [15].
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Figure 5: Average performance of OFI as a function
of iterations. The average performance of the TDSEP
method is 0.14.
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Figure 6: Average performance of TDSEP and OFI on
the AR data set for increasing number of sources.

4. CONCLUSION

In this work we explained theoretically how to con-
struct covariance matrices of optimally filtered signals
for the best possible use of spectral information within
the framework of second-order source separation algo-
rithms. Previous second-order algorithms that make
use of time-shift operations by computing delayed co-
variance matrices emerge as special cases of our ap-
proach and can be intuitively interpreted and imple-
mented as particular filters. Examples are the algo-
rithms by Tong & Liu [17], Pham & Garat [16], Be-
louchrani et al. [4], Molgedey & Schuster[13], Kohler
& Orglmeister [11] and Ziehe & Miiller [19].

We would also like to see our optimal filtering approach
as a tool for benchmarking since it gives the limit that
algorithms can reach by using spectral information.
Furthermore our method can be seen as a way of in-
corporating prior knowledge about the spectra of the
sources or the noise into source separation.

Numerical simulations confirmed the usefulness of
our theory. The proposed iterative method for a com-
bined estimation of filters and source signals provided
remarkably good results in simulations, although the
questions of stability and equivariance properties [5]
deserve further study. Another aspect form the imple-
mentation point of view is that the spectra were so far



estimated empirically by taking the squared modulus
of Fourier-transformed signals. However, empirically
we find that with appropriate smoothing or regulariza-
tion techniques one obtains better estimates and one
can improve the performance even further.

Future research will therefore be dedicated to incor-
porate results from spectral estimation theory [8] into
our OFI framework. We also plan to apply the treat-
ment of noise as in Eq.(9) to MEG data, where parts
of the system noise can be estimated in advance.
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