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ABSTRACT

The task of separating signals from experimentally mea-
sured linear mixtures is often complicated by the presence
of noise sensor noise and statistical dependencies between
the original sources, which often makes standard indepen-
dent component analysis (ICA) algorithms fail [1, 2]. One
way to overcome these problems is to introduce additional
knowledge we have about the mixing process and the sig-
nals themselves.

Here we suggest to add a regularization term to the cost
function of multishift extended spatial decorrelation (multi-
shift ESD, [2]) which contains prior information about the
time-course of one or more original sources. Using an arti-
ficial toy dataset and a dataset that contains prototype sig-
nals obtained from optical recording of brain activity we
show that the regularization term improves the separation
results at different noise levels.

1. INTRODUCTION

The basic assumptions underlying standard independent
component analysis (ICA) are, that the original sources are
statistically independent and that the mixing process itself
is linear. A lot of different separation algorithms have been
developed and were proven to be successful as long as the
signals fulfill the above assumptions.

Real data, however, satisfy the “independence” and the
“linearity” assumptions only approximately. One common
problem is “sensor” noise. In contrast to the so called
“source” noise, which is treated as an additional source sig-
nal in the demixing process, “sensor” noise is added to the
measured signals after the mixing process. “Sensor” noise
may originate from the read-out noise of a CCD chip in a
video camera, from photon shot noise, from noise within
individual microphones, etc.

Another problem are small statistical dependencies be-
tween sources. If sources are – for example – evoked by
the same event, dependencies or convolutive effects may be
introduced into the measurements. Our main interest in the
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application of ICA algorithms is the separation of intrinsic
signals that arise from neural activity in optical imaging ex-
periments. In optical imaging, a cortical area of interest is
illuminated with monochromatic light of wavelengths usu-
ally between 500 - 800 nm. This area is then recorded with
a sensitive CCD- or video camera. Changes in reflectance
of this light from the cortex are mainly due to variations in
the light scattering properties of the tissue and to variations
in the local concentrations of deoxygenated and oxygenated
hemoglobin. Typically these changes are very small and do
not exceed 0.1% of the reflected light[3]. Because of these
small intensities the signal to noise ratio in optical imag-
ing experiments is around 1 (0 dB). Statistical dependencies
are a problem in this data, because different signals can be
evoked by the same stimulus.

In [1, 4] we introduced a method called extended spa-
tial decorrelation (ESD), that was derived from an algo-
rithm suggested by Molgedey and Schuster [5], and which
is implicitly based on the assumption that sources are spa-
tially smooth. In this work we show how the performance
of ESD on data with properties similar to those of optical
imaging recordings can be enhanced by using prior knowl-
edge about the time course of the sources in a regularization
framework. For the comparison of the separation quality at
different noise levels we used one artificial dataset of three
spatially smooth sources (figure 1 top row) and one dataset
of three prototype patterns from optical imaging recordings
(figure 1 bottom row).

2. ALGORITHM

Let � be the number of mixtures (here observed image
frames), � the sample index, i.e. a vector specifying a
pixel in the image data set, and

�
the total number of

pixels. In equation (1) the observation vectors� � � � �
� � 	 � � � 
 � � � 
 � � � � � � 
 are assumed to be linear mixtures of
� unknown sources� � � � � � � 	 � � � 
 � � � 
 � � � � � � 


� � � � � � � � � � � � (1)

with � being the� � � mixing matrix and� describing the
sensor noise.
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Figure 1: The two datasets used for the following bench-
marks. The sources in the top row are referred to as
“smooth” sources; The sources in the bottom row are re-
ferred to as “natural” sources. For description see section
3

The goal of ICA is to obtain optimal source estimates�� � � � under the assumption that the original sources are in-
dependent. The ESD approach, on the other hand, uses only
second order statistics, by minimizing cross-correlationbe-
tween (spatially shifted) sources; the underlying assump-
tions are that sources are uncorrelated and spatially smooth.

In the noiseless case
� � � � 	 would be the opti-

mal demixing matrix. In presence of sensor noise (which is
added after the mixing), however,

�
also has to compen-

sate for the added noise:
�� � � � � � � � � � � � � � � � � �� � . So even with perfect prior knowledge the optimal�

can deviate from� � 	 , to compensate for noise. BSS
algorithms are generally only able to recover the original
sources up to a permutation and scaling.

2.1. Extended Spatial Decorrelation

Extended Spatial Decorrelation (ESD) exploits the second
order statistics of the observations to find the source es-
timates. If sources are statistically independent then all
source cross-correlations� � � �� � � 	 � � � 
 � � � � � � � � � � 	 � � � � (2)

�


� �� � � � � � � � � � � 	 � � , where� �� �

must vanish for all shifts	 � , while the autocorrelations
(� � � ) of the sources remain. This approach for BSS
is best suited for sources which are known to be spatially
smooth, but whose probability distributions may be un-
known. Source separation, i.e. the estimation of the demix-
ing matrix

�
, is performed by minimizing the cost func-

tion � �
� � � � �� � �� �� � � � � � � 	 � � � 
 � � �� � � (3)

� �� � �� �� � 
 �� � � � � �� � � � � 	 � � � ��
where

� � � � 	 � � � 
 � � � � � � � � � � 	 � � � � (4)

are the correlations of the observed mixtures and
�� � are the

estimated sources.
For the case of only two shifts the cost function

� �
� � �

can be minimized very efficiently by solving an Eigenvalue
problem (see [5, 1, 4]). Though computationally very ef-
ficient, solutions are very sensitive to the choice of shifts
used.

An alternative is to use several shifts	 � , which leads
to a reduction of noise and makes solutions robust. Equa-
tion (3) has then to be minimized using an iterative proce-
dure, for which a modified conjugate gradient method, us-
ing an adaptive step-size instead of a line search, promised
to be a useful method (method in [6] and implementation in
[2]). The parameters

�
were initialized randomly from a

Gaussian distribution with mean� and variance


.

It also turned out to be advantageous to sphere the data

(� � � � � �  � � � � ,  � ! � � � � � 
 � � � " � 	 # �� ) minimizing
equation (3). Because sensor noise is assumed to have no
autocorrelation for shifts�� � � 
 � � , it is even more advan-
tageous to use the sphering method proposed in [7], which

uses � ! � � � � � 
 � � � 	 � � " � 	 # �� , with 	 � being small.	 � should be chosen such that as much as possible infor-
mation about the correlation structure is preserved, while
cancelling out the (not correlated) noise (see also [2]).

In the benchmarks presented later in this paper we
compare the ESD algorithm using two shifts	 � $% � � 
 � � 
 � & 
 & � ' , and the multishift algorithm (using im-
proved sphering) with the method described in the follow-
ing subsection.

2.2. Regularization

We now add a regularization term to the cost function,
which (1) incorporates prior knowledge about the time
course of some or all of the sources and (2) breaks the per-
mutation symmetry in the ordering of the estimated sources.
Because

� � 	 should be close to� after the decorrelation
process, we introduce a regularization term, which punishes
deviation of

� � 	 from � . As column� of � represents
the time course of the source� , we weight this deviation by
a regularization parameter( � whose value reflects the con-
fidence we have in our prior knowledge about source� , and
we obtain� )

� � � � �� ( � * �� �
� � � 	 � � � + , � � � � (5)
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Altogether we get a cost function�
� � � �

� �
� � � �

� )
� � � 
 (6)

which is minimized using the gradient descent procedure
mentioned in section 2.1. In the following we compare the
two ESD variants described in section 2.1 to this algorithm;
first prior knowledge about all sources is used, and later the
case with only one regularized source is shown.

3. BENCHMARKS FOR ARTIFICIAL DATA

For testing the performance of the regularized ESD we used
two different types of toy datasets. The first dataset (fig-
ure 1, top row) consists of three spatially smooth artificial
images, that are weakly correlated, similar to the datasets
obtained in optical recording experiments. The sources
have a variance of



, and the largest cross-correlation is

about � � 
 . This dataset is referred to as the “smooth”
dataset.

In the second toy dataset (figure 1, bottom row) we
used three plausible prototype patterns, obtained by per-
forming multishift ESD analysis on datasets from a real op-
tical imaging experiment. The first image shows an ocular
dominance pattern from the striate cortex of a macaque and
is a prototype pattern for a stimulus specific response, i.e.
the signal we want to separate from the others. The second
image shows the response of the capillary bed to the stim-
ulation (the so-called global response pattern). The third
image displays the blood vessel pattern extracted from the
original data. This dataset is referred to as the “natural”
one.

In the case of our spatial analysis each column of the
mixing matrixA contains the time course of the individual
source. We designed two different mixing matrices. The
first matrix A1 contains three time points for each of the
three sources and therefor is square. The second mixing
matrix A2 contains ten time points for each of the three
sources and is a


 � � � matrix. After the mixing process
with A1 we had three and ten mixtures forA1 andA2, re-
spectively. To each of the mixtures random white noise
with varying variance was added to obtain signal to noise
ratios between about 15 and 0 dB. In order to score the per-
formance of the separation procedures we calculated the av-
erage reconstruction error (RE, [8])

RE � � � � od
� �� �� � � � � 
 � � � � 
 (7)

od� � � �



� �� 

� + 
 � �� � � � �� �

� � � � � � � � � � + 
 � (8)

between the estimated and the original sources.
The correlation between the real and the estimated

sources (the argument to “od”), should be close to a per-

mutation matrix, if the separation is successful. If the max-
ima of two rows are in the same column, the separation
is labeled unsuccessful. Otherwise, the normalized abso-
lute sum of non-permutation (cross-correlation) elementsis
computed and returned as the reconstruction error.
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Figure 2: Mean reconstruction error as a function of the sig-
nal to noise ratio in dB (15 trials per noise level) for the
mixing matrixA1. The left column shows the results of the
separation for the smooth and the right column for the natu-
ral sources. The first row shows the results for ESD with the
two shifts	 � $ % � � 
 � � 
 � & 
 & � ' . The second row shows the
results of multishift ESD. The third row displays results ob-
tained with multishift ESD and with regularization (on all
sources). Circles: individual trials. Solid line: percentage
of successful trials. Dashed line: percentage of permutation
matrices among randomly generated� � � matrices.

4. RESULTS

The regularization parameters( � were set to

 � � � for regu-

larized sources, and to� for not regularized sources, for the
benchmarks described in the following. Evaluation of dif-
ferent values for the( � indicated this to be a good choice.
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4.1. Results using the � � � mixing matrix A1

For ESD with two shifts	 � $ % � � 
 � � 
 � & 
 & � ' we obtained
a high success rate for separation, even at high noise lev-
els (figures 2a and 2d), but the mean reconstruction error
for both datasets is relatively bad (0.55) for signal to noise
ratios (SNR) below 5 dB, even though the variance is low
over the whole SNR range.

Using ESD with multiple shifts,1, the number of suc-
cessful separations decreased (see figures 2b and 2d), be-
cause gradient descent sometimes converges to local min-
ima of the cost function. Nevertheless, at high noise levels
the separation is on average much better than when using
only two shifts.

Now we introduce our prior knowledge about the time
course of all three of the original mixtures. The gradient
descent, starting with a random

�
, on the cost function

(equation� � � ) is much more stable using this method. Each
of the 15 trials at each noise level was successful. Also the
reconstruction error at high noise levels is below 0.2 with a
small variance and is therefor much better than the results
with two shifts.

Figure 3 shows the results of the blind source separa-
tion, when only one of the sources was regularized (only( 	 �� � , i.e. regularization on first column of

� � 	 ). Com-
paring figures 3a and 3c with figure 2 we can see that the
number of successful separations is reduced and the mean
error and the variance are worse than in the case with prior
knowledge on all sources. On the other hand these plots still
show an enhancement when compared to multishift ESD
without prior knowledge.

Part of this decrease in the separation performance is
due to the fact that the source for which we use prior knowl-
edge in the regularization term is well separated, whereas
the other sources are still mixed in some trials. In this case
the calculation of the mean reconstruction error as intro-
duced in equations� � � and � � � is not appropriate anymore.
Instead, only the sources of interest should be included in
calculating the error. Figure 4 shows a typical result for a
SNR of 0 dB. We found that we can stabilize the separation
performance by initializingW with the inverse of a matrix,
which contains the assumed time course (which is part of
our prior knowledge) in the first column and random noise
in the others (see figures 3b and 3d).

4.2. Results using the � � 
 � mixing matrix A2

Usually BSS algorithms estimate as many sources as there
are mixtures. In applying these algorithms to real world
data, this leads to two problems, which influence the num-
ber of mixtures one wants to observe: (1) Often the number
of sources underlying the observed mixtures is not known.

1which are arranged in a star-like pattern with shifts from the set� � � � � � 	 � � � � � � 	 � � � � � � � 	 

, with

� � � � � � � � � � � � � 
 � � � � 
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Figure 3: Mean reconstruction error as a function of the sig-
nal to noise ratio in dB (15 trials per noise level) for the
mixing matrixA2. The left column shows the results of the
separation for the smooth and the right column for the nat-
ural sources. In the first row the results with multishift ESD
and the regularization term on the time course of only the
first sources is displayed. A better and more stable conver-
gence of the gradient descent can be achieve by initializing
the estimate ofW with the inverse of a matrix, that has the
assumed time course in the first column and random noise
in the others (bottom row). Circles: individual trials. Solid
line: percentage of successful trials. Dashed line: percent-
age of permutation matrices among randomly generated of
� � � matrices.

Figure 4: The three separated natural sources after applica-
tion of multishift ESD and the regularization term on only
the first time course of the first source at the high signal to
noise ratio of 0 dB. The source of interest is well separated,
whereas the other two sources are still mixed.
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Figure 5: Mean reconstruction error as a function of the sig-
nal to noise ratio in dB (15 trials per noise level). For both
plots the original sources where mixed with the� � 
 � ma-
trix A2. For the demixing process the multishift ESD algo-
rithm with the regularization term for the first three of the
ten mixtures was used. a) shows the result for the smooth
sources and b) the result for the natural sources. Circles:
individual trials. Solid line: percentage of successful tri-
als. Dashed line: percentage of permutation matrices by
random generation of� � � matrices.

(2) One does not want to throw away information contained
in the observed mixtures, even though the number of avail-
able mixtures may be higher than the estimated number of
sources. To evaluate the effect of using more mixtures than
there are sources, in a noisy environment, we created 10
mixtures for each of the two sets of three sources. This also
gives a hint on the scaling properties of the regularized ESD
algorithm, as we now have to estimate a


 � � 
 � demixing
matrix, instead of a� � � -dimensional one. Applying the
regularization term to the first three of the ten columns of� � 	 we can force the underlying original sources into the
first three estimated sources. The calculation of the mean
reconstruction error as given in equations� � � and � � � is
then applied to those first three estimated sources.

Figure 5 shows the separation result for the smooth
sources (a) and the natural sources (b) down to signal to
noise rations below 0 dB. It shows that the minimization
of the cost function in equation� � � converges well even for
the larger numbers of mixtures. The percentage of success-
ful separations is almost 100% over the whole SNR range.
Also the variance around the mean reconstruction error is
low at all noise levels.

5. SUMMARY AND CONCLUSIONS

We have introduced a regularization term into the cost func-
tion of ESD with multiple shifts, which incorporates prior
information about the time courses of the original sources.
In this term the distance between the time course of the es-
timated sources and an given time course is scored.

For the ESD algorithm with only two shifts we can

rewrite the cost function of equation� � � as an eigenvalue
problem [5, 1]. If we use multiple shifts then much bet-
ter separation results can be achieved, but the number of
successful separations can decrease. This happens because
the gradient descent algorithms can run into local minima.
When we use the additional information about estimated
time courses of the sources the gradient descent method im-
proves in stability (see figures 2c and 2f). For the case that
we use prior knowledge about the time course of only one
of the sources the algorithm can be stabilized if we initialize
W with the inverse of a matrix, which contains the assumed
time course of that source in the first column and random
noise in the others. In previous work [4] we used spatial
lowpass filtering to improve the reconstruction error. When
compared to the methods used here, we can see that a sim-
ilar or smaller error can be achieved by using prior knowl-
edge about the time course of signals. This approach avoids
the issue of possibly introducing artifacts into the sources
by filtering the mixtures [9].

With the regularized multishift ESD we get much better
separation of the original sources, but several trials may be
necessary to get a successful separation. Application of the
suggested regularization method can help to improve noise
robustness, and it can separate signals of interest into given
sources, avoiding the permutation problem of standard BSS
approaches.
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