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General motivation

e Computational biology/bioinformatics is almost always somehow con-
nected to biological sequences.

e Three main types of biological sequences: DNA, RNA and protein.
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Basic concepts: a simplified view

Basic building blocks:
— genome/DNA
— genes, proteins

— cis-regulatory elements

Basic mechanisms:

— transcription

— splicing

— translation (steps 1-3 = gene expression)

— post-translational modifications/protein folding. . .

Transcriptional regulatory mechanisms and other regulatory mecha-
nisms (alternative splicing, microRNAs, protein modifications,. . .)

See additional notes from (Ji and Wong, 2006).
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Computational analysis of biological sequences

Here we emphasize the computational methods (and their underlying
principles) that are used to analyze biological sequences.

Little emphasis on practical sequence analysis or specific programs
etc.

Wet-lab experimentation is the most reliable way of determining a
property or a feature of a biological molecule.

Computational predictions (e.g. from sequence alone) are much easier
and less expensive to perform and are thus of great importance.

Sometimes direct experimentation might also be impossible and indi-
rect computational analysis (statistical inference) is the only way to
make biological conclusions.
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Before being able to start computational sequence analysis, one needs
at least the sequence(s) to analyze.

— Sequencing.

Before been able to use the sequenced genome, one needs to know, at
least approximately, the basic components: genes (protein-encoding
regions), cis-regulatory regions, etc.

Gene finding:

— Extrinsic, utilizing sequence alignment.

— Ab initio methods, utilizing statistical models of sequences.

Several immediate questions are related to biological sequence simi-
larity, homology and alignment.

Most problems in computational biology are statistical in nature.
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Some probabilistic models/concepts, recap

An example of a biological sequence model: in the most simple set-
ting, biological sequences are strings from an alphabet of size K (4

nucleotides or 20 amino acids).

Consider a multinomial distribution 8 = (64, . ..

— K outcomes, Zfil 0; = 1.

76K)

Assume that residues in sequences occur independently.

The probability of a sample sequence x = (x4, ...

P(z|0) =

HP x;|0) =

N
[]¢-.
i=1

,CEN) IS
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Maximume-likelihood (ML) estimate: given a model with parameters
0 and a set of data D, the maximum-likelihood estimate of 8 is the
value that maximizes P(D|#), i.e.,

0 = arg max P(D|0).

Consider again the above simple model and a sequence x.

Observations can expressed as counts n = (ni,...,ng), and N =

ML parameter estimates are HAZ =n; /N
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e Likelihood of the data can be written as
N
P(z|0) = HP zil0) = || b, Hem — P(nlf).
i=1

e ML parameters  must satisfy P(z|0) > P(z|0) or log P(10) ) for

A P(z]0)
any 6 £ 6
P(x|0) P(n|0) [T, o K 6.\
log = log =log ==Lt —Jog -
e poia) ~ i or LG,
K A K A
= anlog%:NZézlog&
i=1 z i=1 ¢
— N-H(9]|6) >0

where H(-||-) is the relative entropy (Kullback-Leibler distance).
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The conditional probability of an event X given Y is (assuming
P(Y) #0)
P(X,)Y)

PIXY) = 5

The marginal probability of X

P(X)=) P(X,Y)=> PX|Y)P(Y).

The Bayes’' theorem: the posterior probability of X given Y

P(Y|X)P(X)

PXIY) = =555

Bayesian model comparison among a set of models M = {M;, M>},
given data D and priors P(M;)

P(D|My)P(My) P(D|M,y)P(My)

P(Mi|D) = P(D) o P(D|My)P(My) + P(D|M2)P(M2).

—0—
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Bayesian parameter estimation, given data D and prior P(6)

P6ID) = e,

where P(D) = [,, P(D|6")P(0")do".

The prior P(@) can be either informative or uninformative.

P(0|D) defines the full posterior distribution that can be used for/to
compute:

— full Bayesian analysis

— maximum a posteriori (MAP) estimate

— posterior mean.

Both frequentist and Bayesian approaches will be used in the follow-

ing, although Bayesian methods are preferred (e.g. in small sample
settings and in model selection).
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Motivation for sequence alignment

Evolution and natural selection adapts new sequences from the exist-
ing ones.

Sequences evolve by accumulating substitutions, insertions and dele-
tions.

A basic sequence analysis task is to ask if sequences are related /conserved.

To answer that, first align the sequences and then determine if that
alignment is statistically significant.

Some potential issues:

— What kind of alignments are considered as good?

— How to score and rank different alignments?

— How to find (computationally) good alignments?

— How to evaluate significance?

~11—
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e Known sequences in databases can be used to find close matches in

arbitrary DNA or protein sequences.

e Match similar sequences in order to find, e.g.
— homologs (sequences with shared ancestry and, thereby, possibly
a shared function)

— binding sites of similar molecules (can result from convergent evo-

lution, typically transcription factors)

e Finding homologous genes is the most common way of generating new
annotations for genes (although homologous genes need not have the

same or similar function).

e Aligning multiple sequences can also be used to study the phylogenetic

tree.

~12—
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Protein vs. DNA alignment

e Typically, it is recommended that proteins are aligned instead of DNA
if possible.
— With DNA, we need to consider the different reading frames.
— It is simpler to incorporate probabilities of mutation for different

amino acids into the alignment scores.

— In particular with more distant sequences the comparison of nu-

cleotides discards usable information.

—13-
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Pairwise alignment

e From now on, the presentation mainly follows (Durbin et al, 1998;
Section 2).

e In pairwise alignment we have two sequences that we want to com-

pare.

e The alignment can be global or local.

— In global alignment the two sequences are aligned from beginning
to the end.

— In local alignment subsequences with high similarity are found.
This is often more interesting and convenient in practice since
shorter similar subsequences often correspond with functionally

similar domains.

—14—
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e Pairwise alignment is also used by selecting a query sequence that
is then pairwise compared with all the sequences in a database (e.g.

BLASTing).
e An alignment example, Figure 2.1 in (Durbin et al. 1998)

15—
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An alignment scoring model

In order to define how closely two sequences match, i.e. how well they
can be aligned, we need to have a metric to determine their distance.

To measure distances between two sequences with a common ancestor
we need to know e.g. the probabilities of different point mutations
occurring in one or both of the homologous sequences.

We try to find evidence that sequences have developed (evolutionarily)
from a common ancestor by a process of mutation and selection

— Substitutions

— Deletions/Insertions
Evolutionary selection might have favored some type of mutations.

The overall score is a combination of individual/point scores: identi-
ties, substitutions and gaps (deletions and insertions).

~16—
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A pair of sequences, x = (x1,.. .,

m = n first

zn) and y = (y1,. ..

, Ym ), assume

x; and y; take values from an alphabet A as above: A ={A,C, G, T}
or the twenty amino acids.

A random model R: symbols in = and y occur independently with

probabilities ¢,, g., ¢4 and g

A match model M: aligned pairs occur with a joint probability p,.,

Pac, €TC.

P(x,y|M) = przyz
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® .., Can be interpreted as the probability that both residues x; and
y; have been independently derived from a common ancestor residue.

e Relative alignment score from the likelihood ratio (odds ratio)

'CC y‘M pxzyz
x y|R i—=1 qxzqyz

e Logarithm of the likelihood ratio gives an additive score

S = is(mi,yz Zlog ( Paiy, ) :
i=1

Az Qy;

e Elements s(a,b) form a substitution matrix.

18—
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Substitution matrices

Substitution matrix contains estimates of the rates of DNA mutation
for different amino acids or nucleotides.

In a common 20-by-20 matrix the (i, j)th entry contains the proba-
bility that the ¢th amino acid mutates into the jth amino acid over a
selected unit of time.

Substitution matrices for nucleotides contain only little information.

Common substitution matrices for protein sequences

— BLOSUM
- PAM

Let us assume for now that a substitution matrix s is given (these can
be estimated from data, as we'll see later).

—~19-
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BLOSUM®G2 substitution matrix

Y

X

LM NPQ RS TV W
-1 -1 -2 -1

-4

F G H I K

-2 0
-3
-2
-3
-3

A B C D E

4

-1 -2 -1
-1 -3 2
-1 -2

-1 -3 2
-1 -2 5
-1

0 0 -3
-1 -3 -4

1

-1 -1
-1
-3
-1
-1
-4
-2
1 -2 0
1 -3

-1

-1 -1

-2

-1

-2 0 -2

A
B
C
D

-2 0
-3

-3 1 0
-3

-1

-1 -1 -3

-3 6 2
-3

-3 9

-2 6
0

-4

-1 -1 -1 -2

-1 -1 -3
-4
-3

-1 -3

-3

-4

-3

-4
-3

-1 -3
-1 -2

-2
-2
-1 -2

-2 0

0
2
-3
-2

1

-1 -3

-1 -1 -3

-2 0
-3

-3 6 2
-4 2 5
-2

-2 6
-1
-2
0
-2

0 O
-3

-2 0

1
-3
-2

-3

2
-3

-3
-2
2 0

3

1
-2
-2
-3
-3

-1
-3
-3

-2

-3 6 -1 0 0 0 -3
-3 6 -2 -4 -4 -3 0
-1 -2 8 -3 -2

-3

F

-1 -3

-1

-2 0

-1 -2
-1 0

-1 -3
-1 -3

0
-3 -2

-3 -1
-4 -3 4 -3

-2

H
I
K
L
M
N
P

-1 -1 -3
-1 -2

-1 -1 -3
-1 -1 -2
-1 -2 0
-1 -3 -1

-1 -1

3

-1

-3 -3
-1

2
-2

0
-3

-3
1

-1 -3 -1 -3

0] 1 2 0-1-2
-2 -1

-3
-2

-3 -2 6

-1 -3 5

-1
-4 -1 -4 -3

-1 -1 -3

-1

1 -2
1
-3

-3 -2 -2

4 2

-2
-1

-4 -3 2

0
0
-3 0
-4
-3
-3

-1
-4
-4
-2
-3
-3
-2
-3

-1 -1 -1

-2 0
-2 0

2 5

-1 -3 -1 -3 -2 -3 -2 1
0 1-3 0
-2

-2

0

1
-1 -1 -2

0
-2

1

1 -3

-1 -1 -2 -3 -1 -3-2-2 7-1
0-3 0 2

-1 -1 -3

-1

2

-1 -2
-1 -1 -3
-1 4
-1

-3
-3

0

1
5

5
1

-3 1 -2 0 0 -1
-3 2 -2 -2
-2 -1 0

-2 0
-2 0

-1 -2 0
-1 -2 0
-1 -2

0
1
0
1 -3

-1
-1
-1

-2 0

-3
-1

-1 -2

1
0
0
-3

R

1 -2
5 0

-2 0-1-2 0
-2 -2

0 O

0

-1

1
-2 0 4

-3

-1 -1
-2
-4

-1 -1 -1 -1

-2

-1 -1 -1 -1

-3
-4

T
v
W
X
Y
YA

-1 -1 -2

-1

-2
-2

1
-2

-1-3-2 -1-3-3 3-2
-3 -2 -3 -3

-2

-3

2

-3 11

-2

-4

-3

1 -2
-1 -1-1-1-1

-4

-1-1-1-1-1 -1-1-1-1-1 -1-1-1
-2 -1

-1 -1 -2

-3

-1 -1 -1 -1 -1

-2
-1

-2

7

-2 -1 2
-3

-2

-1

-3
-1

-1 -2
-3

-2 -3 -2 3 -3 2
-3

-3
2

-1 -2 5

-2 0 1 -2 0 2 0 0-1-2

-4 2 5
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Gap penalties

The above scoring model does not yet take into account gaps (inser-
tions/deletions).

Gaps need to be penalized.

Common gap penalty scores for a gap of length ¢ are the linear score

or an affine score
Y(g) = —d —e(g — 1),

where d is the gap open and e is the gap extension penalty.

Typically d > e.

21—
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The probability of a gap at a given location is the product of f(g)
(a function/density of the gap width) and the probability of inserted
residues

P(gap) = f(9) || @

residues in gap

Residues in the gap do not correlate with the length of the gap.
Probabilities q,, above come from the random model.

Log-likelihood ratio of the gap model to the probability of the random
model gives y(g) = log(f(9)).
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