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General motivation

• Computational biology/bioinformatics is almost always somehow con-

nected to biological sequences.

• Three main types of biological sequences: DNA, RNA and protein.
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Basic concepts: a simplified view

• Basic building blocks:

– genome/DNA

– genes, proteins

– cis-regulatory elements

• Basic mechanisms:

– transcription

– splicing

– translation (steps 1–3 = gene expression)

– post-translational modifications/protein folding. . .

• Transcriptional regulatory mechanisms and other regulatory mecha-

nisms (alternative splicing, microRNAs, protein modifications,. . .)

• See additional notes from (Ji and Wong, 2006).
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Figure from (Ji and Wong, 2006)
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Computational analysis of biological sequences

• Here we emphasize the computational methods (and their underlying

principles) that are used to analyze biological sequences.

• Little emphasis on practical sequence analysis or specific programs

etc.

• Wet-lab experimentation is the most reliable way of determining a

property or a feature of a biological molecule.

• Computational predictions (e.g. from sequence alone) are much easier

and less expensive to perform and are thus of great importance.

• Sometimes direct experimentation might also be impossible and indi-

rect computational analysis (statistical inference) is the only way to

make biological conclusions.
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• Before being able to start computational sequence analysis, one needs

at least the sequence(s) to analyze.

– Sequencing.

• Before been able to use the sequenced genome, one needs to know, at

least approximately, the basic components: genes (protein-encoding

regions), cis-regulatory regions, etc.

• Gene finding:

– Extrinsic, utilizing sequence alignment.

– Ab initio methods, utilizing statistical models of sequences.

• Several immediate questions are related to biological sequence simi-

larity, homology and alignment.

• Most problems in computational biology are statistical in nature.
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Some probabilistic models/concepts, recap

• An example of a biological sequence model: in the most simple set-

ting, biological sequences are strings from an alphabet of size K (4

nucleotides or 20 amino acids).

• Consider a multinomial distribution θ = (θ1, . . . , θK)

– K outcomes,
∑K

i=1 θi = 1.

• Assume that residues in sequences occur independently.

• The probability of a sample sequence x = (x1, . . . , xN ) is

P (x|θ) =

N
∏

i=1

P (xi|θ) =

N
∏

i=1

θxi
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• Maximum-likelihood (ML) estimate: given a model with parameters

θ and a set of data D, the maximum-likelihood estimate of θ is the

value that maximizes P (D|θ), i.e.,

θ̂ = arg max
θ

P (D|θ).

• Consider again the above simple model and a sequence x.

• Observations can expressed as counts n = (n1, . . . , nK), and N =
∑

i ni.

• ML parameter estimates are θ̂i = ni/N
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• Likelihood of the data can be written as

P (x|θ) =
N
∏

i=1

P (xi|θ) =
N
∏

i=1

θxi
=

K
∏

i=1

θni

i = P (n|θ).

• ML parameters θ̂ must satisfy P (x|θ̂) > P (x|θ) or log P (x|θ̂)
P (x|θ) > 0 for

any θ 6= θ̂

log
P (x|θ̂)

P (x|θ)
= log

P (n|θ̂)

P (n|θ)
= log

∏K

i=1 θ̂ni

i
∏K

i=1 θni

i

= log
K
∏

i=1

(

θ̂i

θi

)ni

=
K
∑

i=1

ni log
θ̂i

θi

= N
K
∑

i=1

θ̂i log
θ̂i

θi

= N · H(θ̂||θ) > 0,

where H(·||·) is the relative entropy (Kullback-Leibler distance).
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• The conditional probability of an event X given Y is (assuming

P (Y ) 6= 0)

P (X |Y ) =
P (X, Y )

P (Y )
.

• The marginal probability of X

P (X) =
∑

Y

P (X, Y ) =
∑

Y

P (X |Y )P (Y ).

• The Bayes’ theorem: the posterior probability of X given Y

P (X |Y ) =
P (Y |X)P (X)

P (Y )
.

• Bayesian model comparison among a set of models M = {M1, M2},

given data D and priors P (Mi)

P (M1|D) =
P (D|M1)P (M1)

P (D)
=

P (D|M1)P (M1)

P (D|M1)P (M1) + P (D|M2)P (M2)
.
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• Bayesian parameter estimation, given data D and prior P (θ)

P (θ|D) =
P (D|θ)P (θ)

P (D)
,

where P (D) =
∫

θ′
P (D|θ′)P (θ′)dθ′.

• The prior P (θ) can be either informative or uninformative.

• P (θ|D) defines the full posterior distribution that can be used for/to

compute:

– full Bayesian analysis

– maximum a posteriori (MAP) estimate

– posterior mean.

• Both frequentist and Bayesian approaches will be used in the follow-

ing, although Bayesian methods are preferred (e.g. in small sample

settings and in model selection).
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Motivation for sequence alignment

• Evolution and natural selection adapts new sequences from the exist-

ing ones.

• Sequences evolve by accumulating substitutions, insertions and dele-

tions.

• A basic sequence analysis task is to ask if sequences are related/conserved.

• To answer that, first align the sequences and then determine if that

alignment is statistically significant.

• Some potential issues:

– What kind of alignments are considered as good?

– How to score and rank different alignments?

– How to find (computationally) good alignments?

– How to evaluate significance?
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• Known sequences in databases can be used to find close matches in

arbitrary DNA or protein sequences.

• Match similar sequences in order to find, e.g.

– homologs (sequences with shared ancestry and, thereby, possibly

a shared function)

– binding sites of similar molecules (can result from convergent evo-

lution, typically transcription factors)

– . . .

• Finding homologous genes is the most common way of generating new

annotations for genes (although homologous genes need not have the

same or similar function).

• Aligning multiple sequences can also be used to study the phylogenetic

tree.
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Protein vs. DNA alignment

• Typically, it is recommended that proteins are aligned instead of DNA

if possible.

– With DNA, we need to consider the different reading frames.

– It is simpler to incorporate probabilities of mutation for different

amino acids into the alignment scores.

– In particular with more distant sequences the comparison of nu-

cleotides discards usable information.
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Pairwise alignment

• From now on, the presentation mainly follows (Durbin et al, 1998;

Section 2).

• In pairwise alignment we have two sequences that we want to com-

pare.

• The alignment can be global or local.

– In global alignment the two sequences are aligned from beginning

to the end.

– In local alignment subsequences with high similarity are found.

This is often more interesting and convenient in practice since

shorter similar subsequences often correspond with functionally

similar domains.
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• Pairwise alignment is also used by selecting a query sequence that

is then pairwise compared with all the sequences in a database (e.g.

BLASTing).

• An alignment example, Figure 2.1 in (Durbin et al. 1998)
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An alignment scoring model

• In order to define how closely two sequences match, i.e. how well they

can be aligned, we need to have a metric to determine their distance.

• To measure distances between two sequences with a common ancestor

we need to know e.g. the probabilities of different point mutations

occurring in one or both of the homologous sequences.

• We try to find evidence that sequences have developed (evolutionarily)

from a common ancestor by a process of mutation and selection

– Substitutions

– Deletions/Insertions

• Evolutionary selection might have favored some type of mutations.

• The overall score is a combination of individual/point scores: identi-

ties, substitutions and gaps (deletions and insertions).
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• A pair of sequences, x = (x1, . . . , xn) and y = (y1, . . . , ym), assume

m = n first

• xi and yj take values from an alphabet A as above: A = {A, C, G, T}

or the twenty amino acids.

• A random model R: symbols in x and y occur independently with

probabilities qa, qc, qg and qt

P (x, y|R) =
n
∏

i=1

qxi

n
∏

j=1

qyj
.

• A match model M : aligned pairs occur with a joint probability paa,

pac, etc.

P (x, y|M) =
n
∏

i=1

pxiyi
.
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• pxiyi
can be interpreted as the probability that both residues xi and

yi have been independently derived from a common ancestor residue.

• Relative alignment score from the likelihood ratio (odds ratio)

P (x, y|M)

P (x, y|R)
=

n
∏

i=1

pxiyi

qxi
qyi

.

• Logarithm of the likelihood ratio gives an additive score

S =
n
∑

i=1

s(xi, yi) =
n
∑

i=1

log

(

pxiyi

qxi
qyi

)

.

• Elements s(a, b) form a substitution matrix.
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Substitution matrices

• Substitution matrix contains estimates of the rates of DNA mutation

for different amino acids or nucleotides.

• In a common 20-by-20 matrix the (i, j)th entry contains the proba-

bility that the ith amino acid mutates into the jth amino acid over a

selected unit of time.

• Substitution matrices for nucleotides contain only little information.

• Common substitution matrices for protein sequences

– BLOSUM

– PAM

• Let us assume for now that a substitution matrix s is given (these can

be estimated from data, as we’ll see later).
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BLOSUM62 substitution matrix
A B C D E F G H I K L M N P Q R S T V W X Y Z

A 4 -2 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 1 0 0 -3 -1 -2 -1

B -2 6 -3 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -1 -3 2

C 0 -3 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -1 -2 -4

D -2 6 -3 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -1 -3 2

E -1 2 -4 2 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -1 -2 5

F -2 -3 -2 -3 -3 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 -1 3 -3

G 0 -1 -3 -1 -2 -3 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -1 -3 -2

H -2 -1 -3 -1 0 -1 -2 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 -1 2 0

I -1 -3 -1 -3 -3 0 -4 -3 4 -3 2 1 -3 -3 -3 -3 -2 -1 3 -3 -1 -1 -3

K -1 -1 -3 -1 1 -3 -2 -1 -3 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -1 -2 1

L -1 -4 -1 -4 -3 0 -4 -3 2 -2 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1 -1 -3

M -1 -3 -1 -3 -2 0 -3 -2 1 -1 2 5 -2 -2 0 -1 -1 -1 1 -1 -1 -1 -2

N -2 1 -3 1 0 -3 0 1 -3 0 -3 -2 6 -2 0 0 1 0 -3 -4 -1 -2 0

P -1 -1 -3 -1 -1 -4 -2 -2 -3 -1 -3 -2 -2 7 -1 -2 -1 -1 -2 -4 -1 -3 -1

Q -1 0 -3 0 2 -3 -2 0 -3 1 -2 0 0 -1 5 1 0 -1 -2 -2 -1 -1 2

R -1 -2 -3 -2 0 -3 -2 0 -3 2 -2 -1 0 -2 1 5 -1 -1 -3 -3 -1 -2 0

S 1 0 -1 0 0 -2 0 -1 -2 0 -2 -1 1 -1 0 -1 4 1 -2 -3 -1 -2 0

T 0 -1 -1 -1 -1 -2 -2 -2 -1 -1 -1 -1 0 -1 -1 -1 1 5 0 -2 -1 -2 -1

V 0 -3 -1 -3 -2 -1 -3 -3 3 -2 1 1 -3 -2 -2 -3 -2 0 4 -3 -1 -1 -2

W -3 -4 -2 -4 -3 1 -2 -2 -3 -3 -2 -1 -4 -4 -2 -3 -3 -2 -3 11 -1 2 -3

X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Y -2 -3 -2 -3 -2 3 -3 2 -1 -2 -1 -1 -2 -3 -1 -2 -2 -2 -1 2 -1 7 -2

Z -1 2 -4 2 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -1 -2 5
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Gap penalties

• The above scoring model does not yet take into account gaps (inser-

tions/deletions).

• Gaps need to be penalized.

• Common gap penalty scores for a gap of length g are the linear score

γ(g) = −dg

or an affine score

γ(g) = −d − e(g − 1),

where d is the gap open and e is the gap extension penalty.

• Typically d > e.
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• The probability of a gap at a given location is the product of f(g)

(a function/density of the gap width) and the probability of inserted

residues

P (gap) = f(g)
∏

residues in gap

qxi

• Residues in the gap do not correlate with the length of the gap.

• Probabilities qxi
above come from the random model.

• Log-likelihood ratio of the gap model to the probability of the random

model gives γ(g) = log(f(g)).
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