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Preface

The Neural Networks Research Centre (NNRC, neuroverkkojen tutkimusyksikko) of
Helsinki University of Technology (HUT) was established for the years 1994-98, and
its funding comes from the Academy of Finland and HUT. It was selected as one of
the centers of excellence (COE) in 1995, and its mandate was first extended up to
the end of 1999. The COE status has later been approved for the years 2000-2005.
The purpose of the NNRC is to pursue research in new information processing meth-
ods called the neural networks, but the major part of its research has concentrated
on the theory and applications of the class of algorithms called the Self-Organizing
Map (SOM) and its variations. This may have been justified, since the SOM was
originally conceived here, and some time ago we listed 3343 publications on the SOM
research from all over the world. It may be reasonable that the NNRC tries to keep
the leading role in this extensive field of research.

Although the Neural Networks Research Centre is directly subordinated to the Sen-
ate of the University of Technology, it historically emerged from the Laboratory of
Computer and Information Science (LCIS, informaatiotekniikan laboratorio), and
there exist close ties between the two. The personnels of these laboratories cooper-
ate in many ways, share common duties and use the same laboratories and facilities.
Therefore it would be difficult to separate the researches of these two laboratories.
A special research area of the LCIS has to be mentioned: new nonlinear estima-
tion methods, in particular the Independent Component Analysis, where interesting
neural-network implementations have been developed.

This report describes the research results of both laboratories in the years 1994-1998.

Espoo, March 22, 1999

Teuvo Kohonen Erkki Oja

Academy Professor Professor

Director, Director,

Neural Networks Research Centre Laboratory of Computer and
Helsinki University of Technology Information Science

Helsinki University of Technology

Olly Simula

Professor

Laboratory of Computer and
Information Science

Helsinki University of Technology
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1 The Self-Organizing Map (SOM)

Teuvo Kohonen

1.1 Introduction

The SOM is a new, effective software tool for the visualization of high-dimensional
data. It implements an orderly mapping of a high-dimensional distribution onto
a regular low-dimensional grid. Thereby it is able to convert complex, nonlinear
statistical relationships between high-dimensional data items into simple geometric
relationships on a low-dimensional display. As it compresses information while pre-
serving the most important topological and metric relationships of the primary data
items on the display, it may also be thought to produce some kind of abstractions.
These two aspects, visualization and abstraction, can be utilized in a number of
ways in complex tasks such as process analysis, machine perception, control, and
communication.

The SOM usually consists of a two-dimensional regular grid of nodes. A model of
some observation is associated with each node (cf. Fig. 1).

LOGOOHHOELOVU

Figure 1: In this exemplary application, each processing element in the hexagonal
grid holds a model of a short-time spectrum of natural speech (Finnish). Notice
that neighboring models are mutually similar.

The SOM algorithm computes the models so that they optimally describe the domain
of (discrete or continuously distributed) observations.

The models are automatically organized into a meaningful two-dimensional order in
which similar models are closer to each other in the grid than the more dissimilar
ones. In this sense the SOM is a similarity graph, and a clustering diagram, too. Its
computation is a nonparametric, recursive regression process.
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1.2 The incremental-learning SOM algorithm

Regression of an ordered set of model vectors m; € R” into the space of observation
vectors x € R" is often made by the following process:

m(t + 1) = m;(f) + he(x)i(x(t) — mi(t)) (1)

where t is the index of the regression step, and the regression is performed recursively
for each presentation of a sample of x, denoted x(¢). The scalar multiplier h¢(x); is
called the neighborhood function, and it is like a smoothing or blurring kernel over
the grid. Its first subscript ¢ = ¢(x) is defined by the condition

Vi, [[x(t) = m ()] < [[x(t) - mi@)[[ , (2)

that is, m.(¢) is the model (called the “winner”) that matches best with x(¢). The
comparison metric is usually selected as Euclidean; for other metrics, the forms of
(1) and (2) will change accordingly. If the samples x(¢) are stochastic and have a
continuous density function, the probability for having multiple minima in (2) is
zero. With discrete-valued variables, multiple minima may occur; in such cases one
of them should be selected at random for the winner.

The neighborhood function is often taken to be the Gaussian

hc(x),i = a(t) exp <_%> ’ (3)

where 0 < «a(t) < 1 is the learning-rate factor, which decreases monotonically with
the regression steps, r; € R? and r. € R2 are the vectorial locations on the display
grid, and o(t) corresponds to the width of the neighborhood function, which is also
decreasing monotonically with the regression steps.

A simpler definition of Ay is the following: hex); = «(t) if ||r; — r.|| is smaller
than a given radius from node ¢ (whereupon this radius is a monotonically decreasing
function of the regression steps, too), but otherwise f.); = 0. In this case we shall
call the set of nodes that lie within the given radius the neighborhood set N..

Due to the many stages in the development of the SOM method and its variations,
there is often useless historical ballast in the computations.

For instance, an old ineffective principle is random initialization of the model vectors
m;. Random initialization was originally used to show that there exists a strong
self-organizing tendency in the SOM, so that the order can even emerge when start-
ing from a completely unordered state, but this need not be demonstrated every
time. On the contrary, if the initial values for the model vectors are selected as a
regular array of vectorial values that lie on the subspace spanned by the eigenvectors
corresponding to the two largest principal components of input data, computation
of the SOM can be made orders of magnitude faster, since (i) the SOM is then al-
ready approximately organized in the beginning, (ii) one can start with a narrower
neighborhood function and smaller learning-rate factor.

Many computational aspects like this and the selection of proper parameter values
have been discussed in the software package SOM_PAK [1], as well as the book [2].
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1.3 The batch version of the SOM

Another remark concerns faster algorithms. The incremental regression process
defined by (1) and (2) can often be replaced by the following batch computation
version which is significantly faster and does not require specification of any learning-
rate factor a(?).

Assuming that the convergence to some ordered state is true, we require that the
expectation values of m;(¢ + 1) and m;(¢) for ¢ — oo must be equal, even if h.;(t)
were then selected nonzero. In other words, in the stationary state we must have

Vi, Et{hc(x)’i(x - mf)} =0. (4)

In the special case where we have a finite number (batch) of the x(t) with respect to
which (4) has to be solved for the mj, and hc), represents the kernels used during
the last phases of the learning process, we can write (4) as

mt = 2t he(x),iX(t) (5)
’ Et hc(x),i ‘

This, however, is not yet an explicit solution for m;}, because the subscript ¢(x) on
the right-hand side still depends on x(t) and all the m}. The way of writing (5),
however, allows us to apply the contractive mapping method known from the theory
of nonlinear equations: starting with even coarse approximations for the m}, (2) is
first utilized to find the indices ¢(x) for all the x(¢). On the basis of the approximate
he(x), values, the improved approximations for the m; are computed from (5), which
are then applied to (2), whereafter the computed ¢(x) are substituted to (5), and so
on. The optimal solutions m; are usually obtained in a few iteration cycles, after the
discrete-valued indices ¢(x) have settled down and are no longer changed in further
iterations. This procedure is called the Batch Map principle.
An even simpler Batch Map principle is obtained if h¢(x); is defined in terms of the
neighborhood set N.. Further we need the concept of the Voronoi set. It means a
domain V; in the x space, or actually the set of those samples x(t) that lie closest
to m}. Let us recall that we defined N; as the set of nodes that lie up to a certain
radius from node 7 in the array. The union of Voronoi sets V; corresponding to the
nodes in N; shall be denoted by U;. Then (5) can be written

. Ex(t)EUi x(t)

where n(U;) means the number of samples x(¢) that belong to Uj.
Notice again that the U; depend on the m}, and therefore (6) must be solved itera-
tively. The procedure can be described as the following steps:

m

1. Initialize the values of the m} in some proper way. (Even random values for
the m} will usually do.)

2. Input all the x(¢), one at a time, and list each of them under the model m;
that is closest to x(¢) according to (2).

14



3. Let U; denote the union of the above lists at model m; and its neighbors that
constitute the neighborhood N;. Compute the means of the vectors x(¢) in
each U;, and replace the old values of m; by the respective means.

4. Repeat from 2 a few times until the solutions can be regarded as steady.

A further acceleration of computation results if one notes that for the different nodes
1, the same addends occur a great number of times. Therefore it is advisable to first
compute the mean X; of the x(¢) in each Voronoi set V; and then weight it by the
number n; of samples in V; and the neighborhood function. Now we obtain

o = 2 "l

= , 7

where the sum over j is taken for all units of the SOM. For the case in which
neighborhood sets NN; are used,

JEN; Tt

A convergence and ordering proof of the Batch Map has been presented in [3].
There is a Matlab SOM Toolbox program package available in the Internet at the
address http://www.cis.hut.fi/projects/somtoolbox/, which makes use of the Batch
Map method.

1.4 Learning Vector Quantization (LVQ)

If each of the sample vectors x(¢) is known to belong to some predefined class,
and the model vectors m;(t) are labeled by symbols corresponding to the predefined
classes, too, then a supervised-learning algorithm can be used to fine tune the model
vectors [2]. The basic LVQ1 algorithm can be written in a compressed form as

m;(t+1) = my(t) + at)s(t)dalx(t) — mi()],

where s(t) = +1 if x and m,. belong to the same class,

but s(tf) = -1 if x and m, belong to different classes . 9)

Here «(t) is the scalar-valued learning-rate factor, 0 < «(t) < 1, and 6, is the
Kronecker delta (=1 for ¢ =i, = 0 for ¢ # i) ; usually «(t) is initially of the order
of a couple percent and decreases monotonically with time. The index c labels the
winner according to (2). Notice that the neighborhood set around the winner now
consists of the winner itself only.

15



Batch-LVQ1

The LVQ1 algorithm, like the SOM, can be expressed as a batch version. In a
similar way as with the Batch Map (SOM) algorithm, the equilibrium condition for
the LVQ1 is expresssed as

Vi, E{s(t)0u(x —m3)}=0. (10)

The computing steps of the so-called Batch-LVQ1 algorithm (in which at steps 2
and 3 the class labels of the nodes are redefined dynamically) can then be expressed,
in analogy with the Batch Map, as follows:

1. For the initial reference vectors take, for instance, those values obtained in the
preceding unsupervised SOM process, where the classification of x(¢) was not
yet taken into account.

2. Input the x(¢) again, this time listing the x(¢) as well as their class labels
under each of the corresponding winner nodes.

3. Determine the labels of the nodes according to the majorities of the class labels
of the samples in these lists.

4. Multiply in each partial list all the x(¢) by the corresponding factors s(t) that
indicate whether x(¢) and m.(¢) belong to the same class or not.

5. At each node i, take for the new value of the reference vector the entity

L Ss()x(t) )

¢ Zt’ S(tl) ’
where the summation is taken over the indices ¢’ of those samples that were
listed under node :.

6. Repeat from 2 a few times.

Comment 1. For stability reasons it may be necessary to check the sign of 3, s(t').
If it becomes negative, no updating of this node is made.

Comment 2. Unlike in usual LVQ, the labeling of the nodes was allowed to change
in the iterations. This has sometimes yielded slightly better classification accuracies
than if the labels of the nodes were fixed at first steps. Alternatively, the labeling
can be determined permanently immediately after the SOM process.

1.5 Further remarks

Finally it should be taken into account that the purpose of the SOM is usually
visualization of data spaces. For an improved quality (isotropy) of the display it
is then advisable to select the grid of the SOM units as hexagonal; the reason is
similar as when using a hexagonal screen for images, say, in color television.

The above algorithms can be generalized, e.g., by defining various generalized match-
ing criteria.

The following categories of similarity graphs, computed by the SOM, have already
been used in many practical applications:
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1. State diagrams for processes and machines

2. Data mining applications: similarity graphs for

- statistical tables

- full-text document collections

A list of 3043 research papers from very different application areas of the SOM and
its variations is presented in [4].
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2 Analyzing Self-Organization in the SOM

Adrian Flanagan

The SOM algorithm despite the simplicity of its implementation has shown itself to
be particularly resistant to a general analysis of its self-organizing ability. For the
most part theoretical analyses of the self-organizing property have been confined to
the one dimensional case, that is a one dimensional input with a one-dimensional
neuron grid. One of the reasons for this limitation is that it is only in this particular
case that an organized state has been, so far, rigorously defined. Despite the ro-
bustness of the SOM which has been used successfully in many different application
areas, very little is know from theory what conditions are sufficient for it to self-
organize, and under what conditions it cannot organize. This project is concerned
with extending already existing proofs of self-organization in the SOM, in a general
way, such that sufficient conditions for self-organization to occur become apparent.
To explain more specifically it is necessary to introduce some notation for the SOM.
As so far the project has dealt with the one dimensional case, only the one dimen-
sional SOM is described. The input z € R is considered a random variable with
probability distribution P. At each time iteration ¢ a winner neuron c is chosen such
that

c(t) = arg min |z(t) — m;(t)] (12)
where m;(t),i = 1,..., N is the neuron weight value. Each neuron weight is then
updated as follows,

mi(t+1) = mi(t) + a(t)h(]i — c(t)|)(z(t) — mi(t)). (13)

The gain «(t), with 0 < «(t) < 1 during the training phase is normally a decreasing
function with time. The function h(|i —v(t)|) with 0 < h(|i—c(t)|) < 1 is referred to
as the neighborhood and h(j) decreases with increasing j. In what follows A(|i—c(t)])
will be written as h(i, c(t)). Generally h is defined as,

h(i,i) = 1

Wi £ W) = hp >0
h(i,j) = 0, |i—j|>W (14)
h(i,j) < h(ik), |i—j| > |i — k|

2.1 A Method for Analyzing Self-Organization

In the one dimensional case the organized configuration D of the neuron weights is
absorbing,

D={M:x1<$2<...<xN}U{M:x1>x2>...>xN} (15)

and in Cottrell and Fort [2] it has been shown that from any initial condition where
m; # mj,t # j, W = 1, and a uniform P that the weights will almost surely
converge to D. This result was further generalized in Erwin et al [3], Bouton and
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Pages [4], Fort and Pages [5], Flanagan [6], [7] and Sadeghi [8]. All of the latter
consider M(t) = (mq(t), ma(t),...,) as a Markov process defined on the common
probability space (¥, F, ), and to prove self-organization it is shown that 3 7 < oo
and § > 0 for which

mmo({Y €V : 7p <T}) 26 (16)

or that the probability m), of finding sets of samples 7 in the sample space ¥
which take the neuron weights M from any initial condition M(0) to the organized
configuration in a finite time 7 is non zero. In [2], [3], [4], [5] and [8] either a
uniform P or a diffuse P has been assumed. The generalization of these results is
limited by the existence of situations where the inability to define a winner neuron
can lead to the instability of the organized configuration. An example of when this
may occur is m;(t) = m;(t),7 # j and

i,j = arg min |z(t) — my(t)| (17)
1<k<N

In [8] a modified version of the winner selection criterion of equation (12) to overcome
this problem is presented along with a general analysis of the one dimensional SOM.
This approach however is not generalizable to the higher dimensional case. In [6], [7]
a different approach has been taken which avoids this problem of winner definition
and it can be applied to both diffuse and discrete P and requires no change to the
original SOM algorithm. The only restriction is that the neighborhood function h(j)
be assumed strictly monotonic decreasing with increasing j, that is

h(z,j)gh(z,k)—qbfor |Z_.7|>|Z_k|7 ¢>0 (18)

In [6] it was shown that when N < W, for self-organization of the weights, the
requirements on P are that its support contains a skeleton structure of two intervals,
with [dP(z) > 0 for each interval and that each interval be separated from the
other by a certain minimum distance defined in terms of parameters of the map.
The condition on P can be used both for discrete and diffuse P and this proof has
already been easily extended to higher dimensional SOMs [6], which suggests the
general framework of the proof developed in this project is not restricted to the one
dimensional case. Define the order, n of an SOM as

n:{[%“—l’ N mod W # 0 (19)

. Nmod W =0
and in this project the results of [6] (i.e. n = 1), and [7] (i.e. n = 2) are generalized,
for the one dimensional case, for any n > 1. In other words general conditions that
the SOM and support of P must satisfy are described and it is then proven that
these conditions are sufficient for self-organization of the neuron weights for any
n > 1 and any initial state of the neuron weights.

2.2 A Structure for Self-Organization

In the course of the project a structure has been defined, which if it exists in the
support of P then self-organization can be shown. This structure .4, associated
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with an SOM of degree n, is defined in terms of two structures A,_;, separated
by a certain minimum distance which depend on parameters of the SOM. Hence
the structure A, is defined recursively from 2" basic structures Ay, which is quite
basically an interval on the line. Given this structure A,, with an SOM of degree n,
then assuming that

then the fOHOWng theorem can be stated and proved.

Theorem 1 For any initial, finite M(0) and the structure A, such that N < nW
with

/AOdP(a:) > 6 €>0 (21)

for every Ay interval in A, then 3T < oo and § > 0 for which
mmo({Y €V : Tp <T}) >6 (22)
where Tp 18 the first entry time of M into D.

The recursive nature of the structure A,, leads to a proof by induction of the theorem.
Throughout the proof three basic principles which apply at the level of the neuron
weight updates are used, they are referred to as, convergence, order preservation
and one step organization, and as well as being used in the one dimensional case,
similar principles have been applied to higher dimensional SOMs.

2.3 Conclusion

By defining a special structure A, on the support of P a general proof of self-
organization in a one dimensional SOM has been given. The proof itself is theo-
retical, which raises many interesting questions concerning the implications of the
proof in a practical situation. The conditions as determined are sufficient for self-
organization to occur, but are they necessary in a practical situation, if not, how
close are they to being necessary ? This question is very difficult from a theoretical
point of view, given that the system being dealt with is stochastic. An estimation
only of the importance of the conditions can be obtained from simulations.
Another interesting point of the structure A, is the fact that it is self-similar, that
is it looks the same on a large or small scale. In [9] the existence of a 1/f spectrum
for the update of the neuron weights during training was shown by simulation. This
is interesting in that there is a more general class of non linear systems which are
referred to as emergent, they are usually associated with some form of self-similarity
and a 1/f spectrum of some form. The significance if any of this relative to the
SOM remains to be seen.
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3 Point Density of the Model Vectors in the SOM

Teuvo Kohonen

3.1 Introduction

In the classical vector quantization (VQ) the objective is usually to approximate n-
dimensional real signal vectors x € R" using a finite number of quantized vectorial

values m; € R*,s = 1,..., N called the codebook vectors. One may want, e.g., to
minimize the functional called the distortion measure:
Eyq = [ Ix—mip(x)dx, (23)

where r is some real-valued exponent, the integral is taken over the complete metric
X space, m, is the m; closest to x, i.e.,

¢ = argmin{[lx — m,||} (24)

the norm is usually assumed Euclidean, p(x) is the probability density function
of x, and dx is a shorthand notation for the n-dimensional volume differential of
the integration space. All the values of x that have the same m, as their nearest
neighbor are said to constitute the Vorono:i set associated with m.. Under rather
general conditions one can determine the point density ¢(x) of the m; as in the
following expression |2, 8|:

¢(x) = const. [p(x)nLJrr] . (25)

A related problem occurs with the self-organizing map (SOM), which resembles VQ,
but in which the m; are ordered in R" according to their similarity. The SOM carries
out a vector quantization, too, but the placement of the m; in the signal space is
restricted by the neighborhood relations.

A long-standing problem has been whether the SOM model vectors could be deter-
mined by the minimization of some objective function. For instance, Kohonen, 1991
[3] discussed the distortion measure

= [ Y halx—m?pde =3 [ 3 hyllx —my[p(x)ix . (26)

where V; is the Voronoi set around m;. The gradient of E consists of two terms :

oF
ij

= G+H, (27)

where G is obtained if the integration borders are kept fixed and the differentiation
with respect to m; is carried out in the integrand only, whereas in the computation
of H, the integrand is held constant and the integration borders are let to vary when
the m; differential is taken.

In order to avoid the evaluation of the above integrals, one may try to resort to the
classical method called the stochastic approzimation [7]. If the inputs x are obtained
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as a sequence of samples {x(¢)}, one can compute at every time ¢ the best tentative
estimate of m; so far, called m;(¢). The expression

Eq(t) = 3 heillx(t) — mi(#)]|* (28)

is taken as the sample of function F at time ¢. Following Robbins and Monro, at
time t we approximate the gradient of E with respect to m; by the gradient of F(¢)
with respect to m;(¢). Then

mi(t+1) =m0~ (3) gggg (29)

with ¢ a small number. However, it is not yet clear how good an approximation
the Robbins-Monro process is in this case. We have now shown that the point
density derived from the SOM algorithm and the point density derived from the
SOM distortion measure are different already in the one-dimensional case.

3.2 Point Densities in a Simple One-Dimensional SOM

3.2.1 Asymptotic State of the One-Dimensional Finite-Grid SOM Algo-
rithm

Consider a series of samples of the input z(¢t) € R, ¢t = 0,1,2,... and a set of k
model (codebook) values m;(t) € R, t =0,1,2,..., whereupon ¢ is the model index
(¢=1,...,k). For convenience assume 0 < z(t) < 1.

The original one-dimensional self-organizing map (SOM) algorithm with at most
one neighbor on each side of the best-matching m; reads (Kohonen, 1997):

mi(t+1) = m(t) +e(t)[z(t) — m;(t)] for i € N,
mi(t+1) = my(t) for i ¢ N, ,
¢ = argmin{|z(t) —m,(?)[} , and
N. = {max(1l,¢—1),¢,min(k,c+ 1)}, (30)
where N, is the neighborhood set around node ¢, and £(¢) is a small scalar value

called the learning-rate factor. In order to analyze the asymptotic values of the m;,
let us assume that the m; are already ordered. The Voronoi set V; around m; is

forl<i<k, V; =

b

[mi—l +m; m; +mi
2 ’ 2
v, = [0’ my ;—m2] V= mk12+ my,

forl<i<k, U = Vi UViUViy ,Ui=ViUVa, U=V, 1UVi.  (31)

,1] , and denote

One can write the condition for stationary equilibrium of the m; for a constant ¢ as:

Vi, E{z —m;lz € U;} =0. (32)
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For 2 < 7 < k — 1 we have for the limits of the U;:

1 1
A= é(mi72 +mi1) ,Bi= i(mi+1 + mito) - (33)
For + = 1 and 7+ = 2 we must take B; as above, but A; = 0; and for ¢ = £k — 1 and

1 = k we have A; as above and B; = 1.

Numerical example. Let p(z) = 2z for 0 < z <1 and p(x) = 0 otherwise.
The stationary values of the m; are defined by the set of nonlinear equations
2B — A

Vi, m; = E{z|z € U;} = 3

3(B7 - A7) 34

and the solution of (34) is sought by the so-called contractive mapping. Let us de-
note z = [my, my, ... ,my]". Then the equation to be solved is of the form z = f(z).
Starting with the first approximation for z denoted z(®), each improved approxima-
tion for the root is obtained recursively:

201 = f(219) . (35)

In the present case one may select for the first approximation of the m;, e.g., equidis-
tant values.

It may now be expedient to define the point density ¢; around m; as the inverse of
the length of the Voronoi set, or ¢; = [(my1 — mi_1)/2]7 .

The problem expressed in a number of previous works, e.g., Ritter and Schulten
(1986), Ritter (1991), and Dersch and Tavan (1995), is to find out whether ¢; could
be approximated by the functional form const.[p(m;)]*. Previously this was only
shown for the continuum limit, i.e. for an infinite number of grid points. The present
numerical analysis allows us to derive results for finite-length grids, too. Assuming
tentatively that the power law holds for the models m; through m; (leaving aside
models near to the ends of the grid), we shall then have

o = 108(mit1 —mi1) — log(m;1 —m;_1)
log[p(m;)] — log[p(m;)]

(36)

In Table 1, using 7 = 4 and j = k — 3, between which the border effects may be
assumed as negligible, the exponent « has been estimated for 10, 25, 50, and 100
grid points, respectively.

3.2.2 Optimum of the One-Dimensional SOM Distortion Measure with
Finite Grid
In the previous example, (26) becomes
D;
E = 2) Z/ (x —m;)’zdx
i jen;’Ci
4 1
= 2> m?(D?—CiZ)—gmj(Df—C§)+§(D?—Cf) (37)

i JEN;
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where the neighborhood set of indices N; was defined in (30), and the borders C;
and D; of the Voronoi set V; are C1 =0, Dy =1,

Ci:w for 2<i<k,and Dy = "L g i<k 1.
(38)
The optimal values of the m; are determined by the gradient method:
Vi, mi(t+1)=m(t)— \¢t)-0E/Omyl; , (39)

where A(t) is a suitable small scalar factor. With A(¢) > .01 (even with A(¢) = 10)
and starting with very different initial values for the m;, the process has converged
robustly to a unique global minimum. After computation of the optimal values
{m;}, the exponent « of the tentative power law was computed from (36) of the
previous section and presented in Table 1 for different lengths of the grid. Clearly
the cases discussed in Secs. 2.1 and 2.2 are qualitatively different.

Table 1: Exponent « derived from the SOM algorithm and the SOM distortion
measure, respectively
Grid points SOM algorithm SOM distortion measure

10 0.5831 0.3281
25 0.5976 0.3331
50 0.5987 0.3333
100 0.5991 0.3331

3.3 Derivation of the VQ Point Density by the Calculus of
Variations

The technique that will be used to approximate point densities for higher-
dimensional SOMs will first be applied to the simpler VQ problem. If p(x) is smooth
and the placement of the m; in the signal space is reasonably regular, one may try
to approximate the Voronoi sets, which are polytopes in the n-dimensional space,
by n-dimensional hyperspheres centered at the m;. This, of course, is a rough ap-
proximation, but it was in fact used already in the classical VQ papers |2, 8|, and
no better treatments exist for the time being.

Denoting the radius of the hypersphere by R, its hypervolume has the expression
kR™, where k is a numerical factor. If p(x) is approximately constant over the poly-
tope, the elementary integral of the distortion ||x — my||™ = p" over the hypersphere
is

R T n—1 nk n-4r
D:nk/o p(x)-p" - p"rdp = —— - p(x) - R"'"; (40)

notice that if v(p) is the volume of the n-dimensional hypersphere with radius p,
then dv(p)/dp = nkp™ ! is the “hypersurface area” of the hypersphere.
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The point density ¢(x) is defined as 1/kR"™. What we aim at first is the approximate
“distortion density” that we denote by I[x, ¢(x)], where ¢(x) is the point density of
the m; at the value x:

= D )= P g (a1)

n+r ' n+r
In the continuum limit, the total distortion measure is the integral of the “distortion
density” over the complete signal space:

I[x, q(x)]

[ 1 aalax = [P gk (42)

This integral is minimized under the restrictive condition that the sum of all quan-
tization vectors shall always equal /N; in the continuum limit the condition reads

/q(x)dx =N. (43)

In the classical calculus of variations one often has to optimize a functional which
in the one-dimensional case with one independent variable x and one dependent
variable y = y(x) reads

[ 1y (44)

here y, = dy/dzx, and a and b are fixed integration limits. If a restrictive condition

b
/ I (z,y, ys)dx = const. (45)

has to hold, the generally known Euler variational equation reads, using the La-
grange multiplier A and denoting K = I — \[;,

0K d 0K

oy dx Oy,

(46)

In the present case x is vectorial, denoted by x, ¥y = ¢(x), and I and I; do not
depend on 0g/0x. In order to introduce fixed, finite integration limits one may
assume that p(x) = 0 outside some finite support. Now we can write

_r
nk™n

I= p(x) - lg(x)] 77, hi=q(x), K =1~ (47)

8(?1@) B _Z;k—jl p(x) - [g()] 7 = A =0. (48)

At every location x there then holds
g(x) = C - [p(x)]7 , (49)

where the constant C' can be solved by substitution of ¢(x) into (43). Clearly (49)
is identical with (25). We have now obtained the same result that earlier ensued
from very intricate signal and error-theoretic probabilistic considerations.
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3.4 The SOM Point Density Derived from the Distortion
Measure for Equal Vector and Grid Dimensionalities

It is possible to carry out the following analysis with a rather general symmetric h;;,
but for simplicity, without much loss of generality, we may assume, like in the basic
SOM theory, h;; = 1 within a certain radius, relating to the distances measured
along the grid from the node j; outside this radius h;; = 0. This is called the
neighborhood around grid point mj.
In the signal space this then means that if p(x) and the point density of the m; are
changing slowly, in the first approximation we can take h;; = 1 up to a distance aR?
from m;, where R is the radius of the hypersphere that approximates the Voronoi
set V}, and a is a numerical constant; in other words, the neighborhood shall contain
a constant number of grid points everywhere over the SOM (except at the borders
of the SOM).
For the elementary integral of the distortion over the neighborhood up to radius aR,
with the exponent r = 2, we then obtain according to (40):

nk

D=5 pk): (aR)"?, (50)

and relating the “distortion density” to the “volume” of V},

_ D _nan+2
kR n+2

I[x, ¢(x)] p(x) - [kg(x)] "% . (51)

We then directly obtain in analogy with equations (41) through (48) and taking
7 = 2 the result

4(x) = C'p(x)]"+ (52)

with another constant C’ computed from the normalization condition.
Notice that (52), however, does not yet tell anything about the exponent if the SOM
algorithm is used to determine the m,.
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4 The Median SOM

Teuvo Kohonen

The model vectors m; in the basic SOM were determined as conditional averages over
selected subsets of samples x(¢). Thereby, however, sharp structures in the patterns
formed by the components of x(¢) will be smoothed out. Also, if the SOM is used
to represent sets of statistical descriptors of a discrete set of items (cf. Sec. 11), the
models will no longer be exact replica of any descriptor sets.

An alternative way for the construction of the SOM is to use the Batch Map princi-
ple, but instead of updating the old models m;(¢) by the respective means over the
unions of the Voronoi sets, one can take the so-called set medians over the unions
for the updated values of the m;(¢).

The set median M over the set S = {X(¢)} is defined to be that member of S, the
sum of distances of which from all the other elements of S is minimum:

3" d[X(t), M] = min! (53)

The reason for calling M the “median” is that if the X (¢) are scalar numbers, and if
d[X (t), M] = |X(t) — M|, then M is easily seen to be the arithmetic median of S.
However, in the most general case, the X (¢) need not even be vector-valued.

The Batch Map algorithm is thus modified in the following:

1. Initialize the models M; in some proper way.

2. Input all the available samples X (¢), and list each of them under the respective
winner unit ¢ (for which d[X (¢), M;] is minimum). If there are several winners
for X (t), select one of them at random for listing.

3. Take for the updated value of M; the median over the neighborhood N,, i.e.,
over the union of the above lists associated with the winner unit ¢ and its
neighborhood N.. If there are several medians, select one of them at random
for the effective median.

4. Repeat from 2 a few times, until the values of the M; can be regarded as
steady.

In order to speed up the computations, if the usual SOM or Batch Map algorithm
is applicable to the X (¢), it may be advisable to first construct the SOM in the
traditional way and after that continue using the median algorithm.

As the set median is a replica of some of the members, the internal structures of
this member will be preserved in the mapping, and thus every model resulting in
the SOM will always represent some real input sample.

29



5 Self-Organizing Maps of Symbol Strings

Teuvo Kohonen and Panu Somervuo

The SOMs are usually defined in metric vector spaces. A different idea altogether
is organization of symbol strings or other nonvectorial representations on a SOM
array, whereupon the relative locations of the images of the strings on the SOM are
expected to reflect some distance measure, e.g., the Levenshtein distance or feature
distance (FD), between the strings (for textbook accounts, cf. [1,2]). If one tries to
apply the SOM algorithm to such entities, the difficulty immediately encountered
is that incremental learning laws cannot be expressed for symbol strings, which are
discrete entities. Neither can a string be regarded as a vector.

It has recently transpired [3] that the SOM philosophy is amenable to the construc-
tion of ordered similarity diagrams for string variables, too. This method applies
the following idea, earlier partly reported in Sec. 4: The Batch Map principle [2]
(cf. also Sec. 1) is used to define learning as recursively computed set medians,
generalized medians, set means, or generalized means [4] over sets of strings.

An additional advantage, not possessed by the vector-space methods, is obtained
if the feature distance measure for strings is applied. The best match between the
input string against an arbitrary number of reference strings can then be found
directly by the so-called Redundant Hash Addressing (RHA) method [2,5]. In it,
the number of comparison operations, in the first approximation at least, is almost
independent of the number of model strings. Construction of very large SOM arrays
for strings becomes then possible.

Let us recall that the set median M over S = {X(t)} was defined by

> d[X(t), M] = min! (54)

where d[X (i), X (j)] is the general distance between elements X (i), X (j) € S, and
M € §. Similarly, the set mean m over § shall satisfy the condition

; d*[X (t), m] = min! (55)

The generalized median and the generalized mean are then defined to result from
the conditions (54) and (55) when M and m are not restricted to belong to S. If
X(t) € R"™, and if m need not belong to S, m is simply the arithmetic mean of the
X(t).

The basic types of error that may occur in strings of discrete symbols are: (1) re-
placement, (2) insertion, (3) deletion of a symbol. (Interchange of two consecutive
symbols can be reduced to two of these operations.) An insertion or deletion er-
ror changes the relative position of all symbols to the right of it, whereupon, e.g.,
the most trivial distance between strings of symbols, the Hamming distance is not
applicable. There are at least two categories of distance measures that take into
account the “warping” of strings: (1) Levenshtein distance, which usually computes
the minimum number of editing operations (replacements, insertions, and deletions
of symbols) needed to change one string into another; these operations can also be
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weighted in many ways; (2) comparison of strings by their local features, e.g., sub-
strings of N consecutive symbols (N-grams), whereupon the respective local features
are said to match only if their relative position in the two strings differs in no more
than a prespecified number of positions. The string lengths can also be taken into
account |1, 2|.

The set median and the set mean for strings are found easily, by computing all the
mutual distances between the given strings, and searching for the string that has
the minimum sum of the distances, or the minimum sum of squares of the distances,
respectively, from the other strings. The generalized median and the generalized
mean are then found by systematically varying each of the symbol positions of the
set median or the set mean, making ‘errors’ of all the three types over the whole
alphabet, and checking whether the sum of the distances or the sum of squares of
the distances from the other elements is decreased. The computing time is usually
quite modest; even with the 50 per cent error rate discussed here, the generalized
median and the generalized mean can be found in the immediate vicinity of the set
median and the set mean, respectively, in one or a couple of cycles of variation.

A number of additional problems has to be solved, too. One of them is initialization
of the SOM with proper strings.

It is possible to initialize a usual vector-space SOM by random vectorial values. We
have also been able to obtain organized SOMs for string variables, starting with
random reference strings. However, it is of a great advantage if the initial values are
already ordered, even roughly, along with the SOM array.

Ordered, although not yet optimal initial values of the strings can be picked up from
the Sammon projection [2,6] of a sufficient number of representative input samples.
Another partial problem is interpolation between strings, especially if the dimensions
of the SOM are changed during learning, as made in this work.

The most advantageous learning strategy for this method is to start with a very small
SOM, and after its preliminary convergence, to halve the grid spacings intermittently
by introducing new nodes in the middle of the old ones. If we input all the available
samples to the smaller SOM and construct the partial lists at the matching nodes,
then for the intermediate value to be used for the initialization of each middle node,
we can take the average (median or mean) over the union of the lists collected for
the neighboring nodes. After the first “expansion” and initialization of the middle
nodes, the larger SOM is again taught by the available samples and “expanded,” the
new middle nodes are initialized in the same way, and so on, until the wanted size
of the SOM is achieved.

SOMs of strings have been made for phonemic transcriptions produced by the speech
recognition system similar to that reported in [7]. As feature vectors we used con-
catenations of three 10-dimensional mel-cepstrum vectors computed at successive
intervals of time 50 ms in length. The phoneme-recognition and phoneme-decoding
part was first tuned by the speech of nine male speakers using a 350-word vocabu-
lary, after which the parameters of the system were fixed. The phoneme strings used
in the following experiment were then collected from 20 speakers (15 male speak-
ers and five female speakers). The string classes represented 22 Finnish command
words. Finnish is pronounced almost like Latin. The results are shown in Fig. 2.
The classification accuracy of a usual SOM can be improved by supervised learning,
fine tuning the reference vectors by the Learning Vector Quantization (LVQ) (cf.,
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Table 2: Medians and means of garbled strings. LD: Levenshtein distance; FD:

feature distance

Correct string: MEAN
Garbled versions (50 per cent errors):

MAN
QPAPK
TMEAN
MFBJN
EOMAN

Al .

Set median (LD): MEAN
Generalized median (LD): MEAN

Set median (FD): MEAN
Generalized median (FD): MEAN

Correct string: HELSINKI
Garbled versions (50 per cent errors):

HLSQPKPK
THELSIFBJI
EOMLSNI
HEHTLSINKI
ZULSINKI

Ol b=

Set median (LD): HELSSINI
Generalized median (LD): HELSINKI

Set median (FD): HELSSINI
Generalized median (FD): HELSSINI

6. EN

7. MEHTAN
8. MEAN

9. ZUAN
10. MEAN

Set mean (LD):

Generalized mean (LD):

Set mean (FD):

Generalized mean (FD):

6. HOELSVVKIG
7. HELSSINI

8. DHELSIRIWKJII
9. QHSELINI

10. EVSDNFCKVM

Set mean (LD):

Generalized mean (LD):

Set mean (FD):
Generalized mean (FD):

MEAN
MEAN

MEAN
MEAN

HELSSINI
HELSINKI

HELSSINI
HELSSINI

e.g., [2]). It can be shown that a particular kind of LVQ is able to fine tune strings,

too.

In accordance with the Batch-LVQ1 procedure introduced in Ref. |3] and also ex-
pounded in the first article of this report, we obtain the Batch-LVQ]1 for strings by
application of the following computational steps:

1. For the initial reference strings take, for instance, those strings obtained in the

preceding SOM process.

2. Input the classified sample strings once again, listing the strings as well as
their class labels under the winner nodes.

3. Determine the labels of the nodes according to the majorities of the class labels

in these lists.
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Figure 2: A 13 by 9 unit string-mean SOM. The shades of gray represent distances
between neighboring reference vectors; dark means large distance, white small dis-
tance, respectively.

4. For each string in these lists, provide its distance (or its square of the distance)
from every other string in the same list with the plus sign, if the class label of
the latter sample string agrees with the label of the node, but with the minus
sign if the labels disagree.

5. Take for the new value of the reference string the string that has the smallest
sum of expressions defined at step 4 with respect to all the other strings in
the respective list. Continue by systematically varying each of the symbol
positions by replacement, insertion, and deletion of a symbol accepting the
variation if the sum of expressions defined at step 4 is decreased. Take the
best variation for the new reference string.

6. Repeat steps 1 through 5 a sufficient number of times.

The multi-speaker word recognition experiments for the 20 speakers were carried out
using smaller (9 by 9) hexagonal SOM lattices than in the previous examples. After
training of the SOMs, seven rounds of fine tuning by LVQ1 were performed. The
training and test sets consisted of 880 words each. The recognition results are given
in Table 3.

We can see from the experiments that the SOM alone may already yield a reason-
ably high recognition accuracy. For comparison, if the correct (linguistic) phonemic
transcriptions had been used as reference strings, the error percentage would have
remained higher: 5.8 per cent.
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Table 3: Recognition experiments. Average error percentages of four independent
runs

Median strings

training set | test set
SOM only, generalized median 4.3 4.5
SOM only, set median 3.7 3.7
SOM + LVQ1 3.2 3.3

Mean strings

training set | test set
SOM only, generalized mean 4.1 4.4
SOM only, set mean 4.0 4.0
SOM + LVQ1 2.6 2.7
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6 The SOM as a Model of Brain Maps

Teuvo Kohonen

The original motivation for the SOM algorithm was an attempt to explain various
spatially organized neural “maps” in the central nervous system. In the light of the
present knowledge, however, it seems necessary to distinguish three categories of
such “brain maps™ Al. Feature-sensitive cells that respond, e.g., to specific sensory
stimuli. A2. Anatomically organized representations of the body or some receptor
surface of it, e.g., in the visual, somatosensory, motor, and auditory cortices. A3.
Abstract feature maps that constitute a topographical or topological representation
of a specific feature space of the sensory experiences. Examples of such abstract
maps are the color map in the visual area V4, and various maps of the auditory
space.

Unlike the anatomical maps, the ordered mappings of abstract features cannot be
produced by genetically controlled ordered growth of axons, because no ordered
receptor system, from which such ordered axons could originate, exists for abstract
features. The order that has ensued in the mapping must have emerged by self-
organization.

The following three conditions seem to be necessary for the production of biological
maps of abstract features: B1l. All the cells of such a brain area must receive
essentially similar information. B2. There must exist a mechanism for the activation
of that particular cell (called the “winner”) which, in some sense, is “best fit” to the
input information. Its activity shall further be enhanced, for instance by lateral
excitation and inhibition, while the activity in the rest of cells is suppressed. B3.
There must exist a learning mechanism by which the “winner” and a subset of its
spatial neighbors in the area become “tuned” to the prevailing stimulus, while no
learning outside this subset occurs. In the long run, when different subsets of cells
are activated by different stimuli, a global order along with some dominant features
in the stimuli then ensues.

It will be necessary to notice that the above conditions B1 and B2 entail that an
area over which the input can be regarded similar, and in which lateral interactions
over the area may occur, cannot be very large. In view of the extent to which the
afferent axons and intracortical collaterals can spread, a feature map in the cortex
may only have a diameter of a few millimeters.

In the biological modeling it is customary to approximate the activation of a neuron
by the dot product of its input signal vector x and its synaptic weight vector m,;,
but if this law is used for the definition of the winner in the SOM, then the updating
law must be made self-normalizing:

m; (¢ + 1) = m;(t) + hei[x(t) — (my (£)x(t))my(1)] (56)
where h; is the neighborhood function, and the winner is defined by

c=arg miax{m;f(t)x(t)} . (57)

In the next report we shall show how the maximum selection in (57), in principle at
least, could be implemented by physiologically plausible networks.
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It can be shown that starting with arbitrary initial values m;(0), with ||x(¢)|| = 1,
and h; sufficiently small, the ||m;(¢)|| tend to the value 1. Nonetheless (56) preserves
the self-organizing property, which can be seen, e.g., from Fig. 3, where the phoneme
map has been computed using this equation.
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Figure 3: Self-organizing map of Finnish phonemes when 15-channel short-time
spectra of natural speech, evaluated at every 20 ms, were used as the x(¢) in (56).

The biological motivation for the bracketed expression in (56) may come from the
following argumentation. First, the adaptive changes of a synapse must be made
reversible in order to keep its weight on the dynamic range during its whole lifetime.
Such a law, in the discrete-time formalism, could have the general form

m;(t + 1) = my(t) + o[ Px(t) — Qm;(?)] , (58)

where « is a small factor. The term aPx(t) describes the memory traces due to all
presynaptic excitations, and the strengths of the memory traces are assumed pro-
portional to x(t), while —a@Qm;(t) represents the forgetting effect, which is assumed
proportional to m;(¢). It may be stipulated that the biological forgetting is mostly
“active,” e.g., () depends on the degree of activation of the cell, being proportional
to m; (¢)x(t). Furthermore, in order to hold the “memory traces” steady for indef-
inite periods of time, while being able to change them fast upon demand, it must
be assumed that both learning and forgetting (i.e., in general the synaptic changes)
not only depend on the presynaptic signal activity, but are also conditioned by some
plasticity control factor or “learning factor” produced by strong activities either at
the cell itself or at its neighboring cells. If then the activity of the neural network is
strongly clustered, i.e., if some kind of competitive process is at work selecting the
winner, enhancing its activity, and suppressing the activity in the rest of the cells,
then spatial spreading of the “learning factor” to neighboring cells means that P and
() must involve some interaction kernel h.; as a factor, relating to the active cell ¢
and cell 4. This argumentation then directly results in the adaptation law (56).

Reference

T. Kohonen and R. Hari. Where the abstract feature maps of the brain might come
from. Trends in Neurosciences, 22:135-139, March 1999.

36



7 Winner-Take-All (WTA) Network

Samuel Kaski and Teuvo Kohonen

In the practical SOM algorithms, selection of the winner by arithmetic computation
is no problem. However, as the biological neural networks must implement this
computation by dynamical components and networks with simple structures, special
solutions compatible with the real neurophysiology must then be sought.

The winner index ¢ in the biologically motivated SOM was defined by

¢ = argmax{m; x} . (59)

In modeling, the dot products m; x correspond to the total postsynaptic activations
I; of the neurons. They are formed directly at the inputs of the neurons. Therefore,
it will remain necessary to study under what conditions a physiologically plausible
simple network structure can select the largest of its scalar inputs (activations), i.e.,
implement the winner selection. Such a circuit is called the “winner-take-all” (WTA)
network. For an early approach to this problem, cf. [1,2].

Our analysis is potentially applicable to any network in which the connections com-
ing to each neuron can be grouped into external input, self-feedback, and feedback
from the other neurons within the network (Figure 4). We used a neuron model
introduced earlier [5|, which describes changes in the activity, averaged spiking fre-
quency 7, of a cell as a function of the external inputs to the cell, I, and a nonlinear
convez loss function +:

dn/dt =1—(n) . (60)

The nonlinear loss function represents the resultant of all losses and the effect of
the refractory time of the cell. (To be exact, equation 60 holds only when 1 > 0 or
when the right-hand side is positive, since spiking activity must always be positive.)
In the simplest network that we analyze, the input to neuron ¢ consists of the
external input coming from outside of the network, I7, self-feedback from the neuron
to itself, g*o(n;), and the feedback from the other cells, g~ >, o(n;). Here g* and
g~ are coefficients that determine the strength of the connections, and o models
the combined effects of the transfer functions of the possible interneurons and any
saturating nonlinearities on the signals. The dynamical system formed of the neural
network can be described with the following set of differential equations:

dni/dt = I + g% o(n) + 9~ > o(m) — v(m) , (61)

1=1,...,N, where N is the number of neurons in the network.

This simple network type had already been analyzed previously [6], but now it
turned out that the analysis could be generalized [4] to networks with several types
of even nonidentical feedback connections (interneurons). To make the analysis
most general the system of differential equations generalized from (61) was dressed
mathematically into the form of a certain class of dynamical systems,

dy;/dt = Ays)[ai(yi) + b(y)] , (62)
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Figure 4: A schematic winner-take-all network. The neurons compete through the
negative (inhibitory) feedback connections. The neuron receiving the largest input
will be the only neuron that remains active after the initial transient activity. Only
the connections coming to neuron ¢ are shown.

where A, a;, and b are certain functions, and y is a vector formed of all the state
variables y;. Convergence properties of these types of systems had already been
analyzed in [3].

It was then possible to prove that if certain restrictions are placed on the functions
A, a;, and b, only one of the state variables y; remains above a threshold, whereas
the rest of them remain below a lower threshold. The lower threshold is zero for the
neuron models. This is the essence of any WTA function.

When this more general analysis [4] was applied to the more general neural network
models, conditions under which the networks have the WTA property were obtained.
The most important conditions concern the external input: one of the neurons must
receive the largest input, and all the other inputs must lie within a sensible range
that does not depend on the largest input; otherwise also some other neurons may
become active. In the beginning of the competition the winner must also be at least
as active as the other neurons, which is the case, e.g., in the more complete network
model described later in this section. The other, very mild conditions concern the
form and steepness of the loss-function v and the conductance function o, and the
strengths of the feedback connections g* and g~.

The essential novelty in our analyses was their generality. Nevertheless, the models
incorporated the common assumption that “sigmoidal”-type nonlinear transfer func-
tions (function o in 61) are adequate for modeling the effects of interneurons. It was
possible, however, to further generalize the analyses by modeling the interneurons
explicitly; the system of differential equations (61) then includes one extra equa-
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Figure 5: a Auxiliary slower inhibitory interneurons (marked with (; in the schematic
network) inactivate the active neuron after a brief interval, whereafter the compe-
tition may start again. If the inputs have changed meanwhile the previous winner
was active, the new winner will be the one receiving the largest input. Otherwise
the “runner-up”, the neuron receiving the second-largest input will win. b A sample

period of the activities of the neurons in a 20-neuron network.
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tion for each interneuron. It is not possible, however, to guarantee in general that
such models converge, but we were able to give general conditions under which the
convergent models are WTA networks.

The WTA networks in which the winner remains active after it has become active are
of course not sufficient models of the activity in physical neural networks. We coined
such networks weak WTA circuits. In practice a network must be able to follow the
changing activity it receives — we called networks in which a new unit becomes
active when the inputs change strong WTA networks. We have demonstrated that
the networks we studied are strong WTA networks if there are certain auxiliary
slower interneurons in the network. These neurons provide negative feedback that
in effect resets the activity of the winning neuron after a certain period of time
(Figure 5).

We may summarize our analyses by concluding that the network structure of the
type schematized in Figure 4 has been shown to be very robust in implementing the
competition that is a necessary precursor of the Self-Organizing Map, or in fact any
competitive learning application.
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8 The Adaptive-Subspace Self-Organizing Map
(ASSOM)

Teuvo Kohonen, Samuel Kaski, and Harri Lappalainen

A long-standing goal in our research has been to find out how certain invariant-
feature filters may emerge in learning processes. This problem was recently solved
by one of the authors [1-3]. The key insight was that if input patterns must be recog-
nizable invariantly to certain transformations, the members in natural sequences of
such patterns must also be produced from each other by the same transformations.
If the sequences are relative short, one may think that a particular transformation
predominates in them, and the successive patterns then belong to some linear sub-
space that corresponds to this transformations. Such signal subspaces can be learned
by the architecture delineated in Fig. 6.

X 7

Winner take all (WTA)

! ! V

Figure 6: The ASSOM architecture.

Each dotted line in Fig. 6 distinguishes a module, a processing unit in a special SOM
array. The first-layer neurons are linear and they output the sums of dot products
of x with the various synaptic input weight vectors. The second-layer neurons (Q)
form quadratic functions of the first-layer neuron outputs. If the weight vectors
of the linear layer are orthonormalized, the neurons of the output layer shall form
sums of squares of their inputs. The circuit represented by Fig. 6 can then be shown
to compare the input pattern x with the linear subspaces spanned by the weight
vectors of the first layer. If the weight vectors can be defined in a way in which their
linear combinations represent some transformation groups, then matching becomes
invariant with respect to these groups. Below it will be shown that such weight
vectors emerge in an unsupervised learning process.

The outputs from the modules shall further be compared by a winner-take-all (WTA)
function, which in Fig. 6 is shown as a separate operation. The WTA function spec-
ifies the “winner” module, indexed by ¢, as defined below; module ¢ and its neighbor-
ing modules in the array will be updated in proportion to the so-called neighborhood
function h,; like in a usual SOM. In a physical network the WTA function may be
integrated with the modules, for instance by their lateral interaction. _
Let us denote the input weight vector, indexed by h of module 7 by bgf). The bff)
of the same module are now assumed orthonormal; at least they can be orthonor-
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malized easily. They can then be regarded as the orthonormal basis vectors of some
linear subspace L&, or a set of vectors x, where every x can be expressed as a general
linear combination of the bh .

Let % be the orthogonal projection of x on L%, or

. AT

0 =3"b{ x. (63)

h
For an arbitrary x that need not belong to £® one can define its distance d from
L defined by
d? = d*(x, £9) = |Ix|* — x@*. (64)

The wvectorial projection error is the residual

%W =z — %O (65)

For an arbitrary x, its minimum projection error can be defined as the distance of

x from the closest subspace L&, and the “winner subspace” with index ¢ is defined
by

9] = min{||x?]}, or (66)
2
K9] = max{||x?]} . (67)
(2
Our goal is to let all the modules of Fig. 6 approximate x by its different projec-
tions, and always select the module that produces the best approximation over the

array. The objective function that defines the average expected spatially weighted
normalized squared projection error is

z)||2

/ z hm SRS (68)

where h,; is the neighborhood function that defines the interaction of modules ¢ and
i like in a usual SOM, and c is the index of the winner subspace L% = L), Notice
that c is a function of x and all the basis vectors b;f).

Minimization of (68), i.e., selection of the basis vectors b;f) for all subspaces £ such
that the average expected distance of x from the closest subspace is minimized, is a
rather complicated process [1-3]. Some extra problems are caused by the stability of
the recursion by which F; is minimized. Without quoting all the details it may be
mentioned that if the Robbins-Monro stochastic approximation process [4] is used,
i)

the optimal values of the bEL are obtained in the recursion [5].

b (¢t + 1) = b (1) + A()hei () S22 (2) | (69)

Consider now an “episode” S that consist of a finite set of successive sampling times
tp; denote S = {t,}. The set of samples X = {x(t,)|t, € S} has to be recognized as
one class, such that any member of X and even an arbitrary linear combination of
the x(t,),t, € S shall be decoded by the same module of Fig. 6 (subspace £®). In
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learning, the vector set X, defined as the Cartesian product of the x(¢,), ¢, € S, must
be taken as one batch, instead of optimizing the error using single patterns x(t,)
one at a time. The error minimization problem will now be modified by defining the
new objective function in terms of the average expected spatially weighted normalized
squared projection error over the episodes:

xz) 2
b= [ ¥ Yhal . (10)

tp€S 4

Here p(X) is the joint probability density for the samples x(¢,),, € S that produce
the Cartesian product set X, and dX is a shorthand notation meaning a volume
differential in the Cartesian product space of the x(%,).

Minimization of (70) defines the basis vectors b\’ and a set of analyzers that are
optimally invariant to the transformations that occur in the input signal patterns.
The Robbins-Monro stochastic approximation is applicable to the minimization of
E5, too, when the gradient step is made to consist of the whole episode S. The
learning phase is then desribed by the following equation:

b+ =B+ A0rY ¥ XEELp . )

5 Ix@)P

When A(t) is small, (71) is equivalent with the following learning process in which
the basis vectors are formed by a product of elementary projection operators, each
one corresponding to one pattern x(t,),t, € S:

@) _ o x(tp)x" () (i)
b= IL | e e ) ()

The special learning-rate factor A = a(t,)||x(t,) || /|1X® (¢,)]] in (72) has been chosen
for stability reasons.

There are several other minor details in the process that improve the algorithm [3,5].
We have produced various ASSOM filters for very different input data [1,2]. Here a
simple demonstration, illustrating the basic idea, is shown.

Over the input field we generated patterns consisting of colored noise (white noise,
low-pass filtered by a second-order Butterworth filter with cut-off frequency of 0.6
times the Nyquist frequency of the sampling lattice). The input episodes for learning
were formed by taking samples from this data field. The mean of the samples was
always subtracted from the pattern vector.

In the translation-invariant filter experiment, the episodes were formed by shifting
the receptive field randomly into five nearby locations, the average shift thereby
being +2 pixels in both dimensions. Fig. 8 shows the basis vectors b;; and b,
similar to Gabor filters, in a gray scale at each array point of a two-dimensional
ASSOM. One should notice that the spatial frequencies of the basis vectors of the
same unit are the same, but the b;; and b;, are mutually 90 degrees out of phase.
(The absolute phase of b;; can be zero or 180 degrees, though.)

The episodes for the rotation filters were formed by rotating the input field at random
five times in the range of zero to 60 degrees, the rotation center coinciding with the
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Figure 7: Colored noise (second-order Butterworth-filtered white noise with cut-off
frequency of 0.6 times the Nyquist frequency of the lattice) used as input data. The
receptive field is demarcated by the white circle.
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Figure 8: The ASSOM that has formed Gabor-type filters: (a) The b;;, (b) The b;,.

center of the receptive field. Fig. 9 shows the rotation filters thereby formed at the
ASSOM units; clearly they are sensitive to azimuthal optic flow.

Scale-invariant filters were formed by zooming the input pattern field, with the cen-
ter of the receptive field coinciding with the zooming center. The filters thereby
formed, shown in Fig. 10, have clearly become sensitive to radial optic flow, corre-
sponding to approaching or withdrawing objects.
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i=13 14 15 16 17 18 19 20 21 22 23 24

Figure 9: One-dimensional rotation-invariant ASSOM. (a) Cosine-type “azimuthal
wavelets” (b;1), (b) Sine-type “azimuthal wavelets” (bs). Notice that the linear
array has been shown in two parts.
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Figure 10: One-dimensional zoom-invariant ASSOM. (a) Cosine-type “radial
wavelets” (b;1), (b) Sine-type “radial wavelets” (b;s). Notice that the linear array
has been shown in two parts.
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9 Speedup of SOM Computation

Teuvo Kohonen

9.1 Addressing Old Winners

If there are M map units (neurons) in the SOM, and for a certain statistical accuracy
one stipulates that the number of updating operations per unit should be some
constant (say, on the order of 100), then the total number of comparison operations
to be performed by exhaustive search of the winners is ~ M?2.

Koikkalainen [1,2] has recently suggested a speedup method in which a search-tree
structure, except its last layer, is replaced by pointers from data items to the next-to-
last layer. A more accurate search is then made among the last branches of the tree.
We will show below, however, that this idea is not restricted to tree structures, but
can readily be added to any SOM software package. The total number of comparison
operations can be made ~ M, provided that the training vectors have been given in
the beginning, i.e., their set is finite and closed.

Assume that we are somewhere in the middle of the training process, whereby the
last winner corresponding to each training vector has been determined; then the
training vectors can be expressed as a linear table, with a pointer to the correspond-
ing tentative winner location stored with each training vector (Fig. 11).

Training
vectors

Pointers

new winner

winner

SOM

/\\/

Figure 11: Finding the new winner in the vicinity of the old one, whereby the old
winner is directly located by a pointer. The pointer is then updated

Assume further that the SOM is already smoothly ordered although not yet asymp-
totically stable. This is the situation, e.g., during the lengthy fine-tuning phase
of the SOM, whereby the size of the neighborhood set is also constant and small.
If, after inputting a particular input, updating of a number of map units is made
before the same training input is used again some time later, it may be clear that
the new winner is found at or in the vicinity of the old one. Therefore, in searching
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for the best match, it will suffice to locate first the map unit corresponding to the
associated pointer, and then to perform a local search for the winner in the neigh-
borhood around the located unit. This will be a significantly faster operation than
an exhaustive winner search over the whole SOM. The search can first be made in
the immediate surround of the said location, and only if the best match is found at
its edge, searching is continued in the surround of the preliminary best match, until
the winner is one of the middle units in the search domain. After the new winner
location has been identified, the associated pointer in the input table is replaced by
the pointer to the new winner location.

For instance, if the array topology of the SOM is hexagonal, the first search might be
made in the 7-neighborhood of the winner. If the tentative winner is one of the edge
units of this neighborhood, the search must be continued in the new 7-neighborhood
centered around the last tentative winner (for the three map units that have not yet
been checked), etc.

This principle can be used with both the usual incremental-learning SOM and its
batch computing version.

A benchmark with two large SOMs relating to our recent practical experiments was
made. The approximate codebook vector values were first computed by the CNAPS
computer, whereafter they were fine-tuned by a general-purpose computer. During
this fine-tuning phase, the radius of the neighborhood set in the hexagonal lattice
decreased linearly from 3 to 1 units equivalent to the smallest lattice spacings, and
the learning-rate factor at the same time decreased linearly from 0.02 to zero. There
were 3645 training vectors for the first map, and 9907 training vectors for the second
map, respectively. The results are reported in Table 4.

Input dimensionality Map size Speedup factor Speedup factor

in winner search in training
270 315 43 14
315 768 93 16

Table 4: Speedup due to shortcut winner search.

The theoretical maximum of speedup in winner search is: 45 for the first map, and
110 for the second map, respectively. The training involves the winner searches,
codebook updating, and overhead times due to the operating system and the SOM
software used. The latter figures may be improved by optimization of computing.

9.2 Estimating Initial Values for a Large SOM

Several suggestions for “growing SOMs” (cf., e.g. [3-5]) have been made. The detailed
idea presented below has been optimized in order to make very large maps, and is
believed to be new. The basic idea is to estimate good initial values for a map that
has plenty of units, on the basis of asymptotic values of a map with a much smaller
number of units.

As the general nature of the SOM process and its asymptotic states is now fairly well
known, we can utilize some “expert knowledge” here. One fact is that the asymp-
totic distribution of codebook vectors is generally smooth, at least for a continuous,
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smooth probability density function (pdf) of input, and therefore the lattice spacings
can be smoothed, interpolated, and extrapolated locally.

As an introductory example consider, for instance, the one-dimensional SOM and
assume tentatively a uniform probability density function (pdf) of the scalar input
in the range [a,b]. Then we have the theoretical asymptotic codebook values for
different numbers of map units that approximate the same pdf, as shown in Fig. 12.

|
1
a WO WY WO WY b

I 1| | | | | | | 1| I
a l'1(110) “'(510) “(1100) b

Figure 12: Asymptotic values for the p; for different lengths of the array, shown
graphically

Assume now that we want to estimate the locations of the codebook values for an
arbitrary pdf and for a 10-unit SOM on the basis of known codebook values of the
5-unit SOM. A linear local interpolation-extrapolation scheme can then be used.
For instance, to interpolate ugm) on the basis of ,ugf’) and ,ugs), we first need the

interpolation coefficient A5, computed from the two ideal lattices with uniform pdf:

P = X + (1= As)” (73)

from which A5 for ,uglo) can be solved. If then, for an arbitrary pdf, the true values

of ,u’gf’) and o/ ;(35) have already been computed, the estimate of the true ﬂ;,(lo) is

i = oy + (1= Xy (74)
Notice that a similar equation can also be used for the eztrapolation of, say, ugm) on
the basis of u?) and ,ugs).
Application of local interpolation and extrapolation to two-dimensional SOM lat-
tices (rectangular, hexagonal, or other) is straightforward, although the expressions
become a little more complicated. Interpolation and extrapolation of a codebook
vector in a two-dimensional lattice must be made on the basis of vectors defined at
least in three lattice points. As the maps in practice may be very nonlinear, the best
estimation results are usually obtained with three reference vectors.
Consider a pdf that is uniform over a two-dimensional rectangular area, approxi-
mated by two different overlapping “ideal” two-dimensional SOM lattices with the
codebook vectors mgd) € N2, mgs) e 2, mg-s) € %2, and m,(f) € R? its nodes, where
the superscript d refers to a “dense” lattice, and s to a “sparse” lattice, respectively. If
mgs), m]-s), and m,(f) do not lie on the same straight line, then in the two-dimensional

signal plane any mgd) can be expressed as the linear combination

mgd) = apm!® + ﬂhmgs) +(1—ap— ﬂh)mg) , (75)

where 5, and [, are interpolation-extrapolation coefficients. This is a two-
dimensional vector equation from which the two unknowns «, and (3, can be solved.
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Consider then a pdf in a space of arbitrary dimensionality and two SOM lattices
with the same topology as in the ideal example. When the true pdf is arbitrary,
we may not assume the lattices of true codebook vectors as planar. Nonetheless we
can perform a local linear estimation of the true codebook vectors m'gd) € R" of the
“dense” lattice on the basis of the true codebook vectors m’z(s), m’g-s), and m’ 5:) e R
of the “sparse” lattice.

In practice, in order that the linear estimate be most accurate, we may stipulate

that the respective indices h, 4, 7, and k are such that in the ideal lattice mgs), mg-s),
and m,(f) are the three codebook vectors closest to mgd) in the signal space (but not
on the same line). With «;, and ), solved from (75) for each node h separately we

obtain the wanted interpolation-extrapolation formula as

fnlh(d) = ahm'gs) =+ ﬂhm'gs) + (1 — Op — ﬂh)m',(:) . (76)

Notice that the indices h,i,7, and k refer to topologically identical lattice points
in (75) and (76). The interpolation-extrapolation coefficients for two-dimensional
lattices depend on their topology and the neighborhood function used in the last
phase of learning. For the “sparse” and the “dense” lattice, respectively, we have
to compute first the ideal two-dimensional codebook vector values. As the closed
solutions may be very difficult to obtain, the asymptotic codebook vector values
may be solved by simulation. If the ratio of the horizontal vs. vertical dimensions
of the lattice is H : V, we may draw two-dimensional input vectors at random from
a uniform, rectangular pdf, the width of which in the horizontal direction is H and
the vertical width of which is V.
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10 Fast Evolutionary Learning in the SOM

Teuvo Kohonen

Above we dealt with vector-valued x(t) and m;(¢). The SOM philosophy, however,
can be much more general. The structures of the models and data can be different:
it will suffice that some fitness function is definable between the general inputs X
and the general models M;, respectively. Let this function be denoted f(X, M;).
Notice carefully that we do not need any distance function in the X space, nor in
the M; space.

Even under the above conditions, the SOM can be computed in an “evolutionary”
process (cf. [1], Sec. 5.7). We may initialize the models as random samples from
the set of possible models. Next we input the samples of X, one at a time, and at
each step determine that model M, for which

c = arg mzax{f(X, M;)} . (77)

The next step is some kind of variation of the M; in the neighborhood set N, of the
fittest model M,.. This variation usually means random but statistically independent
replacement of each M;, i € N, by some other possible model M on the condition
X, M) > f(X, M;).

The evolutionary learning can be implemented by the batch-type SOM without
random probing, whereupon it proceeds fast:

1. Initialize the models M;, e.g., by a random choice of their parameter values
from a set of possible values.

2. Input a number of items X and list each of them under the respective winner
unit (i.e. that M; for which some fitness function f(X, M;) is maximum). In
case there is a tie, i.e., two or more M; have the same fitness to X, select one
of them randomly for the effective unique “winner” under which the listing is
made.

3. Find a new value M/ for each M; such that if U; is the union of lists relating to
model M; in the same way as in the Batch Map algorithm discussed in Sec. 1,
the sum of the fitness-function values f(X, M]), X C U; is increased. If there
exist ties, a random choice between the best M/ is made.

4. Repeat from step 2.
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11 Statistical Data Analysis
by the Self-Organizing Map

Samuel Kaski and Teuvo Kohonen

Knowledge discovery in databases (KDD) [1]|, sometimes also referred to as data
mining, is a recently established field of research in which the aim is to discover
novel patterns or structures in large data sets. The complex interactive discovery
process involves several stages, of which the central stage called data mining refers
to the application of essentially any suitable methods for finding interesting patterns
in data.

KDD is related to a field of statistics called exploratory data analysis. Statistical
inferences are often made in a two-stage process. Hypotheses are first generated in
a data-driven phase, and the hypotheses are tested in another, confirmatory phase.
The first methods for the exploratory, data driven phase were developed already in
1970’s. The increase in computing power allows us to use much more sophisticated
methods for looking at the statistical structures in data, and to analyze much larger
data sets.

The central goal in exploratory data analysis is to present a data set in a form that is
easily understandable but at the same time preserves as much essential information
of the original data set as possible. The exploratory data analysis methods are
general-purpose instruments that illustrate the essential features of a data set, like
its clustering structure and the relations between its data items.

One may distinguish two categories of exploratory data analysis tools with some-
what different goals. First, some tools like the Sammon projection |5] project the
multidimensional data set to, e.g., a two-dimensional plane while trying to preserve
its whole structure (the distances between the data items) as well as possible. Other
methods [3] try to find clusters in the data, whereby instead of the large data set
only a small number of clusters needs to be considered.

A vast number of different algorithms to perform clustering is available. Choosing
suitable algorithms and applying them correctly requires thorough knowledge of
both the algorithms and the data set. There must exist enough clustering tendency
in the data set in order that the use of clustering algorithms would be sensible at
all, and as different clustering algorithms tend to find clusters of different shapes,
the suitability of the shapes to describe the data set must be verified.

The projection methods, on the other hand, do not reduce the amount of data to
be presented. Although they illustrate the essential features of the data set, the
illustration is costly to obtain and may still be difficult to understand if the data
set is large.

The self-organizing map algorithm is a unique method in that it combines the goals
of both the projection and the clustering algorithms. It can be used at the same time
to visualize the clusters in a data set, and to represent the set on a two-dimensional
map in a manner that preserves the nonlinear relations of the data items; nearby
items are located close to each other on the map. Moreover, even if no explicit
clusters exist in the data set, the self-organizing mapping method reveals “ridges”
and “ravines”. The former are open zones with irregular shapes and high clustering
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tendency, whereas the latter separate data subsets that have a different statistical
nature.

11.1 Case Study: Structures of Welfare and Poverty
in the World

In this study we have demonstrated how the Self-Organizing Map is able to describe
structures in a macroeconomic system. The map is shown to illustrate the “welfare or
poverty states” of the countries of the world, when the data set describes different
aspects of the standard of living. State transitions can easily be followed on the
map. It is hoped that this study would serve as a recipe on how, using standard
procedures, the state of any micro- or macroeconomic system can be presented in
an easily understandable form. Only the data set needs to be changed in different
applications.

The understanding and description of a complex entity like the standard of living
requires simultaneous consideration of a large collection of statistical indicators de-
scribing its different aspects and their relationships. In this study we used a total of
39 indicators that described factors like health, education, consumption, and social
services, picked up from the World Development Report of the year 1992 |7|. Based
on the set of statistical indicators the SOM can be used to represent the welfare and
poverty “states” of the countries on a “poverty map”.
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Figure 13: Structured diagram of the data set chosen to describe the standard of
living. The order of the abbreviated country names indicates the similarity of the
standard of living of the countries, and the colors indicate the degree of clustering.
Light areas represent areas of a high degree of clustering and dark areas gaps in
the degree of clustering. Different types of welfare and poverty are visible as the
clustered (light) areas on the map, separated by the dark “ravines”.
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Figure 14: Distribution of the GNP per capita, which was not used in computing
the maps, shown over the SOM groundwork. White indicates the largest value in
the material and black the smallest, respectively. The horizontal axis of the map
seems to correlate with the distribution of the overall welfare, as measured by the
GNP per capita.

The clustering tendency in the data set can be visualized as a false-color or gray-scale
display on the map (Figure 13; the display is a smoothed version of the so-called U-
matrix [6] display; cf. also [2]). Different types of welfare and poverty are manifested
on the display as clustered areas. For example, the cluster in the top left corner
consists predominantly of the OECD countries, and an annex on the right of it is
a cluster consisting mostly of the countries of Eastern Europe. It is evident from
the display that most of the clustered areas are neither regularly shaped nor easily
separated, but instead form some kinds of “hills”, “ridges” and “ravines”. It is then
a definitive advantage of the method that no assumptions need to be made about
the cluster shapes before the analysis, as is implicitly done in many other clustering
methods.

The overall order of the countries on the map was found to illustrate the traditional
conception of welfare; in fact, the horizontal dimension of the map seems to correlate
fairly closely with the GNP (Gross National Product) per capita (Figure 14).
Refined interpretations about the fine structure of the welfare and poverty types,
the clustered areas on the map display, can be made based on the original statistical
indicators. The values of the indicators can be displayed in their natural order on
the groundwork formed of the organized map. This display is much more easily
understandable that ordinary linear statistical tables (examples have been shown in
Fig. 15). Furthermore, such displays are readily amenable to interactive exploration
using suitable computer interfaces. For example, a click on an interesting location
on the cluster display (Figure 13) might highlight the corresponding location on the
indicator displays of Figure 15.

11.2 Case Study: Country Risk Ratings

Similar displays can be created to illustrate any data set. Another economic data
set that may be of interest to economists is a set of nine indicators published by the
Euromoney magazine (March 1996): Country risk ratings. In the display shown in
Figure 16, like in the previous display of welfare and poverty, Finland is situated in
the top left corner, together with, e.g., most West-European countries.

These kinds of displays provide an overview of the state of the world at a given
moment, and a possibility to explore the state further. It would of course be of
interest also to follow the changes in the state for several years. The Self-Organizing
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Figure 15: The values of some of the indicators visualized on the SOM ground-
work. Since the countries have been organized into a natural order, the displays
have clear “patterned” outlook instead of being purely random. Therefore they can
be interpreted quickly. (a) Life expectancy at birth (years); (b) Adult illiteracy
(%); (c) Share of food in household consumption (%); (d) Share of medical care in
household consumption (%); (e) Population per physician; (f) Infant mortality rate
(per thousand live births); (g) Tertiary education enrollment (% of age group); and
(h) Share of the lowest-earning 20 percent in the total household income. In each
display, white indicates the largest value and black the smallest, respectively.

Map is readily amenable also for such studies.

11.3 Conclusions

The SOM has been applied to case studies to show how it can be used as a decision-
support system, to get a quick but yet quite accurate impression of the structures
inherent in any data set.

Following exactly the same procedures the SOM could also be used for analyzing and
visualizing sets of statistical indicators in other similar applications. For instance,
the method has already been used for the analysis of states of banks [4]. The SOM
formed a “solvency map,” from which the state of the banks could be inferred at a
glance. In time series analysis it is important that the nature of change in the state
of the banks can be visualized on the map (e.g., as a slow shift toward the bankrupt
region) even if the changes could not be predicted by more traditional methods.
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Figure 16: Country risk ratings (Euromoney, March 1996). An illustration of the
structures within a data set that describes different aspects of the country risk
(economic performance, political risk, debt, access to finance etc.). Based on the
distribution of the original indicators on the map groundwork (not shown) it may be
summarized that, e.g., the countries in the upper right hand corner have significant
amounts of debts, and countries in the lower right hand corner perform poorly eco-
nomically. Countries in the upper left hand corner perform best on every indicator.
(The “10 labels” in the image refers to countries LUX, CHE, SGP, JPN, USA, NLD,
DEU, AUT, GBR, and FRA.)
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12 Methods for Interpreting Self-Organized Maps
in Data Analysis

Samuel Kaski, Janne Nikkild, and Teuvo Kohonen

The Self-Organizing Map (SOM) can be used for forming overviews of multivariate
data sets and for visualizing them on graphical map displays, as described in Sec-
tion 11. Each map location represents certain kinds of data items and the value of
a variable in the representations can be visualized in the corresponding locations on
the map display. Examples of such component plane displays have been shown in
Figure 15 in Section 11. The component planes contain all the information needed
for interpreting the map but information about the relations of the variables remains
implicit. We have developed methods that visualize explicitly the contribution of
each variable in the organization of the map at different locations.

It is additionally possible to summarize the characteristics of different areas on
the SOM, for instance areas corresponding to different clusters, by measuring the
contribution of each variable in the cluster structure within the area.

We are currently in the process of evaluating the proposed methods in case studies.
Here the methods will be demonstrated with a simple data set consisting of 13 prop-
erties of 16 animals. Each variable has the value one if the animal has the property
and zero if it does not. A SOM of the animal data set is shown in Fig. 17. Different
regions of the map represent different kinds of animals in an ordered fashion.

12.1 Local Factors

The SOM can be thought of as a nonlinear lattice of points that are determined by
the model vectors in the high-dimensional data space. It is not possible to interpret
the nonlinear lattice as simply as for example the set of linear factors obtained
by factor analysis. The lattice can, however, be approximated locally by a linear
hyperplane which is fitted to represent the model vectors within a certain radius
on the map. The approximation can be computed with the principal component
analysis algorithm resulting in two local factors.

The combined contribution of a variable on the local factors, computed as the sum of
squares of the “factor loadings”, at each location of the map lattice can be visualized
as a gray-level display that resembles a component plane (Fig. 17b). It can be seen in
the figure that the variable “has hair” contributes strongly to the organization of the
map along a stripe in the middle of the map where the representation changes from
birds to other animals. The variable “has hooves” contributes to the organization in
the top right corner.

12.2 Summary Generation

The methods described above aim at making the basis of organization of the SOM
explicit. They do not, however, further reduce the amount of data, and we have
therefore developed a method for generating briefer summaries of the important
characteristics of the maps. In this study the method is used in a partly manual
mode but most of the steps can be automated.
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Figure 17: Sample illustrations of the methods applied to the animal data. The SOM
of the animal data set is shown on the left; gray shades indicate clustering tendency
(white: clustered area, dark: sparser area in between clusters). On the right, the top
row visualizes the variable “has hair” and the bottom row “has hooves”, respectively.
a The component planes. Each plane describes the values of one variable at each
location on the map. b The contribution of the variables in the two local factors
(white: maximal contribution, black: minimal contribution).

CONTRIBUTION TO THE UMATRIX
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Figure 18: Characterization of a cluster in terms of the contributions of the original
variables in the cluster structure. The region around the cluster in the top right
corner is shown on the left, and the contribution of the variables within this area is
shown on the right.

After the user has found some interesting area on the map, for example a cluster, we
aim at summarizing which of the original variables contributes most to the direction
of the map around the area. A very simple and easily computable measure of such
contribution is the share of the component in the distances between neighboring
map units around the cluster.

An example of the analysis of a clustered area is shown in Figure 18. The cluster
consisting of cow, horse, and zebra seems to be characterized mainly by the variable
“has hooves”.
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13 Coloring that Reveals High-Dimensional Struc-
tures in Data

Samuel Kaski, Jarkko Venna, and Teuvo Kohonen

When illustrating statistical tables, it is commonplace to visualize different groups
of data items with different colors. For example, the World Bank visualizes different
groups of economies, viz. low-income, middle-income, and high-income economies,
by coloring the countries in each of the three groups with different, manually chosen
colors on a world map display.

Similar visualizations are being used so pervasively that the question naturally arises,
whether it would be possible to construct such a coloring that the relations of the
colors would represent the relations of the clusters or, more generally, so that the per-
ceptual relations in the colors would refiect the relations between the high-dimensional
data items.

In Section 13.2 we present a solution in the special case that is especially useful for
exploratory data analysis: coloring of data sets organized on Self-Organizing Maps.
First, however, the basic setting is introduced in a simpler form in which the coloring
is chosen interactively.

13.1 Simple method for interactive coloring

The starting point of the coloring is a Self-Organizing Map of the data set. The map
can be used to visualize cluster structures in the data on a map display as discussed
in Section 11. A sample display that describes the structures of welfare and poverty
in the countries of the world is shown in Figure 13 of Section 11, and reproduced in
Figure 19.

In the interactive coloring system the user decides, based on the clustering display,
how many clusters there are in the data, points out the cluster centers, and chooses
colors for them. A sample choice of the centers has been shown in Figure 19. An
automatic system |1] may be used to make preliminary choices.

After the cluster centers have been colored, the color is “spread” to the neighborhood
of each center; while the color spreads its intensity diminishes according to the
distance it has passed. The clustering structure (illustrated in shades of gray in
Figure 19) is taken into account when computing the distance: in the clustered
areas the intensity diminishes more slowly than in the “ravines” between the clusters.
Each location on the map receives the color that is a mixture of the colors that have
spread to it from the cluster centers, each weighted by the distance of that unit from
the corresponding center.

In the resulting map display (Figure 20) the colors have an intuitive interpreta-
tion: Each bright (pure) color corresponds to a certain data type, and mixed colors
correspond to intermediate forms.

13.2 Automatic coloring

The coloring described in the previous section was more faithful to the relations
between the actual data items than a completely manual coloring, but it was still
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not perfect.

Ideally, the colors should be such that the relations between the high-dimensional
data items would be reflected as closely as possible in the perceptual relations be-
tween their colors. The perceptual differences between colors can be approximated
by distances in a color space called CIELab. Therefore, any coloring actually cor-
responds to a certain mapping of the high-dimensional data set into a smaller-
dimensional space, the CIELab color space.

The perceptual color space is unfortunately only three-dimensional, and therefore
it is impossible in general to construct a mapping that would preserve all of the
pairwise distances between the data items. Fortunately, all of the distances are not
equally important for the quality of the coloring. Longer distances do not usually
need to be represented as accurately as shorter ones. In traditional hierarchical clus-
tering, for example, the relation between data items is represented as their relation
in a hierarchical tree of clusters. Distances of items in different clusters will then
not be represented individually but in terms of the relation between the clusters.
It has turned out in our studies that it is possible to construct a coloring that
concentrates almost entirely on representing the local, small distances, but which
still becomes globally ordered. The only additional constraint needed is that no data
item that is originally farther away may attain a color that is, intuitively speaking,
in between the colors of two close-by data items. Such a color would break the global
order. These constraints have turned out flexible enough to allow the mapped colors
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Figure 19: Locations of the chosen cluster centers, shown on top of the clustering
diagram formed by the Self-Organizing Map algorithm. The diagram describes dif-
ferent aspects of the welfare and poverty of different countries. Light areas represent
areas of a high degree of clustering and dark areas gaps in the degree of clustering.
Different types of welfare and poverty are visible as the clustered (light) areas on
the map, separated by the dark “ravines”.
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to fill the available color space reasonably well.

The mapping method has been applied to coloring SOM displays which are well-
suited for such coloring. Neighboring map units represent similar data items, and
therefore the distances between neighboring units may be regarded as the local ones
that will be represented accurately.

The mapping is constructed by requiring that (1) the local distances, i.e. distances
between model vectors of neighboring map units, will be preserved as accurately as
possible; (2) the model vectors belonging to farther-away map units remain farther
away (but their relative order may be arbitrary); and (3) the colors remain within
the region of the color space which is representable in the chosen media, for example
by the CRT tube. Each of these three conditions was dressed into a term in a
cost function, whereafter the minimum of the cost function can be sought with any
standard optimization algorithm. Sor far we have used stochastic gradient descent
which aids in avoiding local minima.

The result of mapping the model vectors of the SOM of Figure 19 into the CIELab
color space is shown in Figure 21. When the map units were colored according
to the projection (Figure 22), the differences in the hue of neighboring map units
corresponded well with the distances in the original data space, depicted as shades of
gray in Figure 19. In addition, the hues became ordered globally; different clustered
areas attained different, relatively uniform hues.

The resulting coloring is almost tailored for the human color vision system which

Figure 20: A Self-Organizing Map display in which different, manually chosen clus-
ters have been colored with different colors. The colors are brightest in the cluster
centers, and change gradually with increasing distance from the center. The col-
ors change in proportion to the clustering structure so that tight clusters have a
relatively homogeneous coloring, and the color changes the more sharply the more
clear-cut the border between the clusters is.
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is very accurate in detecting differences between the colors of neighboring areas, in
this case the neighboring map units.

Relation to possible alternative methods. The traditional multidimensional
scaling methods like the Sammon’s mapping [2] could in principle be used for pro-
jecting the data items into the color space. They do not, however, produce as flexible
mappings as our method, since they try to represent all of the pairwise distances.
The local differences will then necessarily be represented less accurately, except in
special cases. Moreover, it may be more difficult to utilize all of the available color
space when the mapping is more stiff.

In principle our method could be used to map the data set directly, instead of
mapping the model vectors of a SOM computed from the data set. It would, however,
be more difficult to define which distances are local enough so that they should be
represented accurately. If it is necessary to obtain a characteristic color for each data
item then local linear approximations, for instance, may be used to complement the

mapping.
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Figure 21: The projection of the model vectors of the SOM of Figure 19 into the
CIELab color space. Only part of the space was used to ensure that the obtained
colors would differ only in one perceptual quality, the hue. The lightness was fixed
to a constant value, which reduces the space into a two-dimensional slice of the
original three-dimensional color space, and projections onto non-saturated colors in
the middle, encircled in the figure, were discouraged. The small circles denote the
projections of the model vectors. Projections of model vectors of neighboring map
units have been connected with lines. The long lines delimit the region representable
by a typical CRT tube.
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13.3 Example: coloring of the world map according to
poverty types

The coloring can be even more useful if the original data set can be visualized also
in some other manner. Then each data item can be colored with the color that the
item has on the SOM display. The welfare and poverty structures can be visualized
in a straightforward manner: the countries can be colored according to their welfare
or poverty type on a geographic map display (Figure 23).

The result is a display where countries having a similar welfare or poverty type
have been colored similarly irrespective of their geographical location. Japan and
Australia, for example, are fairly similar to the European countries and the USA
and Canada. Countries which belong to very different types than their neighbors
pop out strongly, like Japan, Sri Lanka, and Albania.

Visualizations like the one shown in Figure 23 can be very useful if the data has a
“natural” ordering like the geographical order here. In fact, any order of the data
items can be used. For example, if the countries were ordered simply according to
the GNP per capita in a statistical table and colored using a SOM, then countries
in which the welfare or poverty type is different from the other countries having a
similar value of GNP per capita would be clearly discernible based on sharp discon-
tinuities in the coloring.

Figure 22: Coloring of the SOM according to the projection shown in Figure 21.
The relative differences in the colors of the neighboring map units reflect closely the
clustering display in Figure 19. The cluster areas have relatively uniform coloring,
and the differences are the larger the steeper the “ravine” between the clusters is.
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Figure 23: The types of welfare and poverty that the Self-Organizing Map has
revealed can be visualized on a geographical world map. Each country is colored
according to its color on the SOM display (Figure 22). Countries for which no data
was available (like Russia) have been colored with dark gray.

13.4 Conclusions

We have constructed an automatic method for coloring data so that the perceptual
properties of the coloring reflect closely the properties of the high-dimensional sta-
tistical data. The easily interpretable coloring makes it possible to visualize complex
statistical structures automatically for non-experts in statistics.
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14 Self-Organization of Very Large Document Col-
lections

Teuvo Kohonen, Samuel Kaski, Krista Lagus, Timo Honkela,
Jarkko Salojirvi, Jukka Honkela, Vesa Paatero, Antti Saarela,
and Antti Ahonen

In the vast majority of SOM applications, the input data constitute high-dimensional
real feature vectors. In the SOMs that form similarity graphs of text documents,
models that describe collections of words in the documents may be used. The
models can simply be weighted histograms of the words regarded as real vectors,
but usually some dimensionality reduction of the histograms is carried out, as we
shall see next.

14.1 Statistical models of documents
14.1.1 The primitive vector space model

In the basic vector space model [1| the stored documents are represented as real
vectors in which each component corresponds to the frequency of occurrence of a
particular word in the document: the model or document vector can be viewed as
a weighted word histogram. For the weighting of a word according to its impor-
tance one can use the Shannon entropy over document classes, or the inverse of the
number of the documents in which the word occurs (“inverse document frequency”).
The main problem of the vector space model is the large vocabulary in any sizable
collection of free-text documents, which means a vast dimensionality of the model
vectors.

14.1.2 Latent semantic indexing (LSI)

In an attempt to reduce the dimensionality of the document vectors, one often
first forms a matrix in which each column corresponds to the word histogram of
a document, and there is one column for each document. After that the factors
of the space spanned by the column vectors are computed by a method called the
singular-value decomposition (SVD), and the factors that have the least influence
on the matrix are omitted. The document vector formed of the histogram of the
remaining factors has then a much smaller dimensionality. This method is called
the latent semantic indexing (LSI) (2.

14.1.3 Randomly projected histograms

It has been shown experimentally that the dimensionality of the document vectors
can be reduced radically by a random projection method [3], [4] without essentially
losing the power of discrimination between the documents. Consider the original
document vector (weighted histogram) n; € R™ and a rectangular random matrix
R, the elements in each column of which are assumed to be normally distributed.
Let us form the document vectors as the projections x; € R™, where m < n:
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It has transpired in our experiments that if m is at least of the order of 100, the
similarity relations between arbitrary pairs of projection vectors (x;,x;) are very
good approximations of the corresponding relations between the original document
vectors (n;,n;), and the computing load of the projections is reasonable; on the
other hand, with the radically decreased dimensionality of the document vectors,
the time needed to classify a document is radically decreased.

14.1.4 Histograms on the word category map

In the “self-organizing semantic map” method [5] the words of free natural text
are clustered onto neighboring grid points of a special SOM. Synonyms and closely
related words such as those with opposite meanings and those forming a closed set
of attribute values are often mapped onto the same grid point. In this sense this
clustering scheme is even more effective than the thesaurus method in which sets of
synonyms are found manually.

The input to the “self-organizing semantic map” usually consists of adjacent words
in the text taken over a moving window. Let a word in the vocabulary be indexed
by k and represented by a unique random vector ry. Let us then scan all occurrences
of word (k) in the text in the positions j(k), and construct for word (k) its “average
context vector”

E{rjm-1}
Xk = 9 rj(k:) ; (79)

E{rjm1}

where E means the average over all j(k), rj4) is the random vector representing
word (k) in position j = j(k) of the text, and ¢ is a scaling (balancing) parameter.
Notice that this expression has to be computed only once for each different word,
because the r) for all the j = j(k) are identical.

In making the “semantic SOM” or the word category map, all the x; from all the
documents are input iteratively a sufficient number of times. After that each grid
point is labeled by all those words (k), the x;, of which are mapped to that point.
In this way the grid points usually get multiple labels. A sample map is shown in
Figure 24.

In forming the “word category histogram” for a document, the words of the document
are scanned and counted at those grid points of the SOM that were labeled by that
word. In counting, the words can be weighted by the Shannon entropy or the inverse
of the number of documents in the text corpus in which this word had occurred (=
“inverse document frequency”).

The “word category histograms” can be computed reasonably fast, much faster than,
e.g., the LSI.
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Figure 24: Examples of some clear “categories” of words on the word category map
of the size of 15 by 21 nodes. The word labels of the map nodes have been shown
with a tiny font on the map grid, and four nodes have been enlarged in the insets.

14.1.5 Randomly projected word category histograms

In a great number of experiments performed by us it has transpired that if the
histograms on the word category maps are used as models, the ability of our method
to discriminate between the documents is reduced if the grid points in the word
category map contain more than, say, ten words on the average: specific information
contained in the words is then lost. We have been interested in very large document
collections that may contain, say, hundreds of thousands of unique words, and even
after discarding very rare words, the remaining vocabulary may consist of tens of
thousands of words. In order to keep the number of words on each point of the word
category map at the tolerable level, the word category map therefore had to be
reasonably large, for example 13,432 grid points in some of our latest experiments.
The histograms of this dimensionality we then again projected randomly to form
315-dimensional statistical document vectors.

The combination of word categorization and random projection guarantees a certain
degree of invariance with respect to the choice of, e.g., synonyms, while a high degree
of discrimination between documents can still be maintained, for similar reasons as
in the random projection method.

14.1.6 Construction of the random projections by pointers

There exists a special method for forming projections that gives as good results as
the random projections discussed above but is computationally much more efficient
for sparse input vectors (Table 5). The method has been discussed in Section 15.

14.2 Construction of the document map

Our original document-organization system named the WEBSOM (http:
//websom.hut.fi/websom/) used word-category histograms as statistical models
of the documents. Certain reasons, among them the accuracy of classification, have
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recently led us to prefer the straightforward random projection (or its shortcut com-
putation by the pointers) in forming the statistical models of the documents. We
have carried out numerous experiments with maps of very different sizes; results
from a sample comparison have been given in Table 5. In these experiments the
word category map had 1598 grid points, and the dimension of the projected model
was 270.

Table 5: Classification accuracies in a sample comparison test

Matrix product Pointer method
(3 pointers/column)

Random projection 68.0 67.5
Randomly projected

word category 66.0 67.0
histogram

It must also be taken into account that with the word category map method we have
to deal with an extra self-organizing process, whereas forming the random projection
is a straightforward computation.

Our current method is a collection of programs that can be combined in different
ways. A brief overview of the computing phases is given in the following.

Preprocessing. From the raw text, nontextual and otherwise nonrelevant infor-
mation (punctuation marks, articles and other stopwords, message headers, URLs,
email addresses, signatures, images, and numbers) was removed. The most com-
mon words, and words occuring rarely (e.g., less than 50 times in the corpus) were
also discarded. Each remaining word was represented by a unique random vector of
dimensionality 90.

For a language like Finnish that has plenty of inflections, we have used a stemmer. In
our experiments we have so far regarded the various English word forms as different
“words” in vocabulary, but a stemmer could be used for English, too.

Formation of statistical models. To reduce the dimensionality of the models,
we have used both randomly projected word category histograms and randomly
projected word histograms, weighted by the Shannon entropy or “inverse document
frequency.”

Formation of the document map. The document maps were formed automat-
ically by the SOM algorithm, for which the statistical models of documents were
used as input. The size of the SOM was determined so that on the average 10 to
15 articles were mapped onto each grid point; this figure was mainly determined for
the convenience of browsing.

The speed of computation, especially of large SOMs can be increased by several
methods. In our latest experiments we have used the Batchmap algorithm (discussed
in Section 1) in which the winner search was accelerated. The search was started in
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the neighborhood of corresponding winners at the last cycle of iteration (discussed in
Section 9). The distance computation, or in this case actually computation of inner
products, can be speeded up even further by neglecting the components having the
value zero; a large proportion of the components are zeroes since the input vectors
are still sparse after the dimensionality has been reduced by the random projection
with pointers.

The size (number of grid nodes) of the maps was increased stepwise during learn-
ing using the estimation procedure discussed in Section 9. After each increase the
winners for all data vectors can be found quickly by utilizing the estimation formula
that was used in increasing the map size, equation 75 in Section 9. The winner is
the map unit for which the inner product with the data vector is the largest, and
the inner products can be computed rapidly using the expression

XTmELd) = apx’ m ) 4 Grxt m; S (1-ap— ﬁh)meE:) ) (80)

Here d refers to model vectors of the large map and s of the small map, respec-
tively. The expression (80) can be interpreted as the inner product between two
three-dimensional vectors, [an; B (1 — ap — B)]F and [xT (s) ;X m( o). xT m,c ]T
wrrespectively of the dimensionality of x. If necessary, the winner search can be
speeded up even further by restricting the search to the area of the larger map that
corresponds to the neighborhood of the winner on the smaller map.

For very large maps it may be necessary to save the amount of memory needed for
storing the maps. We have represented the model vectors with reduced accuracy and
used probabilistic updating to maintain numerical accuracy in adapting the model
vectors.

User interface. The document map was presented as a series of HTML pages that
enable exploration of the grid points: when clicking the latter with a mouse, links
to the document data base enable reading the contents of the articles. Depending
on the size of the grid, subsets of it can first be viewed by zooming. Usually we use
two zooming levels for bigger maps before reading the documents.

There is also an automatic method, discussed in Section 16, for assigning descriptive
signposts to map regions; in deeper zooming, more signs appear. The signposts are
words that appear often in the articles in that map region and rarely elsewhere.

Content-addressable search. The HTML page can be provided with a form field
into which the user can type an own query in the form of a short “document.” This
query is preprocessed and a document vector (histogram) is formed in the same way
as for the stored documents. This histogram is then compared with the “models” of
all grid points, and a specified number of best-matching points are marked with a
round symbol, the diameter of which is the larger, the better the match is. These
symbols provide good starting points for browsing.

If the document map is very large, the comparison between the document vector
and all the model vectors is time-consuming. It is, however, possible to make rapid
approximations by restricting the comparisons in such subspaces of the original space
that best represent the (local) organization of the map.

A problem may be encountered if the user wants to use a single keyword or a few
keywords only as a “key document.” Such queries make very bad “histograms.” In
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this case it is more advisable to use two different modes of use of the WEBSOM:
the user must then specify whether a document-type or keyword-type query has to
be used. In the former case the operation is like described before; in the latter case
one has to index each word of the vocabulary by pointers to those documents where
these words occur, and use a rather conventional indexed search to find the matches.

14.3 Examples
14.3.1 The largest published map

The biggest document map we have published so far consists of 104,040 grid points.
Each model is 315-dimensional, and has been made by projecting a word category
map with 13,432 grid points randomly onto the 315-dimensional space. The text ma-
terial was taken from 80 very different Usenet newsgroups and consisted of 1,124,134
documents with average length of 218 words. The size of the finally accepted vocabu-
lary was 63,773 words. The words were weighted by the Shannon entropy computed
from the distribution of the words into 80 classes (newsgroups). It took about 1
month to process the two SOMs without our newest speedup methods; searching
occurs in nearly real time.

The accuracy of classifying a document into one of the 80 groups was about 80 per
cent.

Fig. 1 exemplifies a case of content-addressable search. The document map has
been depicted in the background, and the shades of gray correspond to document
clusters. The 20 grid points, the models of which matched best with the short query,
are visible as a small black heap on the left-hand side of the document map. Using
a browser, the documents mapped to grid points of the document map can be read
out from the HTML page. Two title pages are shown.

Actually there is only one article in Fig. 1 that deals with NN chess. However,
the other computer chess documents were so similar that they were returned, too.
About one fourth of the found documents obviously does not deal with chess.

14.3.2 The largest map being processed

We are currently finishing the computation of a map of all of the patent abstracts in
the world that are available in electronic form, about 7,000,000 in total. The map
consists of about 1,000,000 units.

14.4 Conclusions

We have demonstrated that it is possible to scale up the SOMs in order to tackle
very large-scale problems. Additionally, it has transpired in our experiments that
the encoding of documents for their statistical identification can be performed much
more effectively than believed a few years ago [2]. In particular, the various random-
projection methods are as accurate in practice as the ideal theoretical vector space
method, but much faster to compute than the eigenvalue methods (e.g., LSI) that
have been used extensively to solve the problem of large dimensionality.

The content-addressable search must obviously be implemented differently when
complete new “documents” are used as key information vs. when only a few key-
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Figure 25: Content-addressable search from a 1,124,134-document WEBSOM

words are used. To this end one must first identify the users’ needs, e.g., whether
background information to a given article is wanted, or whether the method is used
as a kind of keyword-directed search engine.

Finally it ought to be emphasized that the order that ensues in the WEBSOM
may not represent any taxonomy of the articles and does not serve as a basis for
any automatic indexing of the documents; the similarity relationships better serve
“finding” than “searching for” relevant information.
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15 Construction of Random Projections of Word
Histograms by Pointers

Teuvo Kohonen

In the basic vector space model [1|, documents were represented statistically as real
vectors in which each component corresponds to the frequency of occurrence of a
particular word in the document: the model or document vector can be viewed as
a weighted word histogram. The main problem of the vector space model is the
large vocabulary in any sizable collection of free-text documents, which means a
vast dimensionality of the model vectors.

It was shown previously that the dimensionality of the document vectors can be
reduced radically by a random projection method [2,3] without essentially losing
the power of discrimination between the documents.

Before description of the new encoding of the documents, some experimental results
are presented that motivate its idea. Table 6 compares a few projection methods in
which the model vectors, except in the first case, were always 315-dimensional. As
the material in this experiment we used 18,540 English documents from 20 Usenet
newsgroups of Internet. When the text was preprocessed as explained in Sec. 14, the
remaining vocabulary consisted of 5,789 words or word forms. When the document
map as discussed more closely in Sec. (ibid) was formed, each document was mapped
onto one of its grid points. These points were then classified according to the
majority of newsgroup names in them. All documents that represented a minority
group at any grid point were counted as classification errors.

The classification accuracy of 68.0 per cent reported on the first row of Table 6 refers
to a classification that was carried out with the vector-space model with full 5789-
dimensional histograms as document vectors. In practice, this kind of classification
would be orders of magnitude too slow.

Random projection of the original document vectors onto a 315-dimensional space
yielded, within the statistical accuracy of computation, the same figures as the basic
vector space method. This is reported on the second row. The figures are averages
from seven statistically independent tests, like in the rest of the cases.

Consider now that we want to simplify the projection matrix in order to speedup
computations. We do this by thresholding the matrix elements, or using sparse
matrices. Such experiments are reported next. The following rows have the following
meaning: Third row, the originally random matrix elements were thresholded to +1
or —1; fourth row, exactly 5 randomly distributed ones were generated in each
column, and the other elements were zeroes; fifth row, the number of ones was 3;
and sixth row, the number of ones was 2, respectively.

The sparse projection matrices have now turned out sufficiently good in producing
reasonable classification accuracies, and we shall next concentrate on fast computa-
tion of the matrix-vector products. Consider first the following trivial-looking piece
of pseudocode, where we form the product x = Rn:
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Table 6: Classification accuracies of documents, in per cent, with different projection
matrices R. The figures are averages from seven test runs with different random
elements of R.

Accuracy  Standard deviation due to
different randomization of R

Vector space model 68.0 -
Normally distributed R 68.0 0.2
Thresholding to +1 or —1 67.9 0.2
5 ones in each column 67.8 0.3
3 ones in each column 67.4 0.2
2 ones in each column 67.3 0.2

for i:=1 step 1 until m do x(i):=0 ;

for all (i,j) such that R(i,j)=1 begin
x(1) :=x()+n(j) ;

end

This scheme is supposed to give us the idea that if we reserve a memory array for x
that acts like an accumulator, another array for n, and permanent address pointers
from all the locations of the n array to all such locations of the x array for which
the matrix element R(i,j) of R is equal to one, we can form the product very fast
by following the pointers.

In the method that is actually used we do not project ready histograms, but the
pointers are already used with each word in the text in the construction of the low-
dimensional document vectors. When scanning the text, the hash address for each
word is formed, and if the word resides in the hash table, those elements of the x
array that are found by the (say, three) address pointers stored at the due hash table
location are incremented by the weight value of that word. The weighted, randomly
projected word histogram obtained in the above way may be normalized optionally.
The computing time needed to form the histograms in the above way is about 20
per cent of that of the usual matrix-product method. We have now some indication
for the same speedup holding for larger maps, too.

References

[1] Salton G, McGill MJ. Introduction to modern information retrieval. McGraw-
Hill, New York, 1983

[2] Kaski S. Data exploration using self-organizing maps. Acta Polytechnica Scan-
dinavica, Mathematics, Computing and Management in Engineering Series No
82, 1997. Dr Tech Thesis, Helsinki University of Technology, Finland

[3] Kaski S. Dimensionality reduction by random mapping. In: Proc of IJCNN’98,
Int Joint Conf on Neural Networks. IEEE Press, Piscataway, NJ, 1998, pp 413-
418

73



16 Method for Characterizing Document Map
Areas with Keywords

Krista Lagus and Samuel Kaski

When large collections of data are organized onto a map to visualize the collection,
there is the need to characterize the different map areas. Characterization methods
exist that can be used with any self-organizing maps (see Section 12), but with
text document maps (see Section 14) there is a further possibility: keywords can be
extracted from the documents and written on the map display to characterize the
underlying area. The keywords aid in forming an overview of the document collection
and ease interpretation of individual map areas. Furthermore, the keywords serve
as navigation aids or landmarks during exploration of the map: they provide cues
for maintaining a sense of location while moving along and across different zoom
levels of the map display.

16.1 Keywords for map areas

A good descriptor of a cluster characterizes some outstanding property of the cluster
in relation to the rest of the data collection. Therefore, when characterizing a cluster
with a keyword, (1) the word must be outstanding within the cluster compared to
other words in the cluster, and (2) the word must be relatively more outstanding in
the cluster than elsewhere in the collection. These requirements can be combined
into the following general form of a goodness measure G for word w in cluster
k: G(w, k) = Fst(w, k) x Fw, k). By defining F*** to describe the relative
occurrence of word w in the cluster, and defining F°" to relate the word to its
occurrence in the rest of the collection, the obtained goodness measure implements
our intuition of a good descriptor.

The same principle can be used to describe any map areas instead of clusters. How-
ever, the contents of map areas often change gradually without clear borders on
the map. Therefore, instead of defining strict borders artificially, a better idea is to
leave around each area to be characterized a “neutral zone” that neither supports
nor inhibits a keyword (see Figure 26a). If the neutral zone is wide enough, it is
probable that the topic clearly changes when moving over the zone. The goodness
measure is described in detail in [1].

16.2 Labels for visual map displays

The keywords cannot be placed arbitrarily, however, since they may not overlap on
the visual display, and since it is desirable that most areas obtain some character-
istic label. Furthermore, the number of keywords should not be too large, to avoid
overloading the visual display. To find for a map the optimal combination of N
keywords, one would have to consider all the possible combinations of N keywords,
which is in general prohibitively slow for larger maps. However, the following heuris-
tic strategy may be used to obtain a good labeling in linear time: (1) Consider the
proposed keywords in the best-first order determined by the goodness value GG, and
(2) accept a keyword as a label for the map display if the location associated with
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Map unit j

a)

Figure 26: a) Only the white areas participate in calculating the goodness G of
words in map unit j. The frequent occurrence of a word within the inner circle, area
Ay, increases its possibility of becoming a keyword. Its frequent occurrence outside
the outer circle, area A}, inhibits the keyword. The shaded area A} is disregarded
and thus acts as a neutral zone neither giving support to the word nor inhibiting it.
b) The top level map view of a document map that organizes a collection of 10,000
scientific abstracts from INSPEC database, labeled with the described method.

the keyword is far enough from already accepted labels. Labelings with varying
density can be obtained for different map display levels (zoom levels) by controlling
the size of the map area in calculation of G as well as the minimum distance between
accepted labels.

Using this scheme we have obtained satisfying labelings for WEBSOM document
maps, e.g., the one in Figure 26b. Further examples of such maps can be explored
starting from the WWW page http://websom.hut.fi/websom/.

The applicability of the method is not limited to document maps. We believe the
method could be used to obtain characterizations for maps of very different kinds
of data, given that there exists some text material that can be associated with the
data items and therefore with the map units.
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17 Using Self-Organizing Maps for
Natural Language Processing

Timo Honkela, Ville Pulkki, and Teuvo Kohonen

Development of large-scale natural language processing applications is restricted by
quantitative and qualitative limitations. Quantitatively, a system for even a moder-
ately narrow domain requires a substantial knowledge base. One suggested solution
for this problem has been an approach where vast common repositories of knowl-
edge items (frames, facts, rules) have been collected. Qualitatively problematic areas
remain, e.g., graded phenomena, inherent ambiguity of natural language, and sub-
jectivity and variation in natural language generation and interpretation. Gradual
changes in the domain of the application make non-adaptive systems vulnerable.
The predominant approach among computerized models of language is based on pre-
determining and coding the linguistic categories and rules "by hand". The method-
ological basis is symbol manipulation. However, the fact that the expressions in
natural language appear to be inherently symbolic and discrete does not imply that
symbolic descriptions of linguistic phenomena are sufficient. This is expecially re-
markable when semantic and pragmatic issues are considered, i.e., the ability of a
system to interpret natural language expressions. To be able to model the gradually
changing relation between continuous phenomena and discrete symbols, the building
blocks of the theory must be sufficiently powerful.

The Self-Organizing Map [1] (SOM) algorithm can be used to automatically create
implicit emergent categories from uncategorised linguistic input [2]. Our experi-
ments have shown have unrestricted textual input can be analyzed by the SOM |3].
As the result a word category map is created. In the following, some of the details
of the basic experiment are described.

The encoding of the input words was made using a 90-dimensional random real
vector for each word. The codes were statistically independent so that there was no
correlation between them. The code vectors of the words in the triplet, i.e., three
subsequent words in the text, were then concatenated into a single input vector x(t),
the dimensionality of which was thus 270. The 270-dimensional input vectors x(¢)
were used as inputs to the SOM algorithm. The SOM array itself was a planar,
hexagonal lattice of 42 by 36 formal neurons. Our aim in this analysis was to study
in what context the “keys” (middle parts in the triplets) occur. The mapping of
the x(t) vectors to the SOM was determined by the whole vector x(t), but after
learning the map units were labeled according to the middle parts of the m;(t).
In other words, when the “key” parts of the different m;(¢) were compared with a
particular word in the list of the selected 150 words (the most frequent ones), the
map unit that gave the best match in this comparison was labeled by the said word.
It may then also be conceivable that in such a study one should also use only such
inputs x(t) for training that have one of the 150 selected words as the “key” part.
In order to equalize the mapping for the selected 150 words statistically and to
speed up computation, a solution used in [2] was to average the contexts relat-
ing to a particular “key”. In other words, if the input vector is expressed for-

mally as x = [x],x],x;|" where T signifies the transpose of a vector, and x;
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is the “key” part, then the true inputs in the “accelerated” learning process were
[E{x] |x;},0.2x] , E{x[|x;}]", where E now denotes the (computed) conditional
average. (The factor 0.2 in front of ij was used to balance the parts in the input
vectors.) In this way there would only be 150 different input vectors that have to be
recycled a sufficient number of times in the learning process. The information about
all the 7624 words is anyway contained in the conditional averages. Although the
above method already works reasonably well, a modification of “averaging” based
on auxiliary SOMs was used. For each codebook vector a small, 2 by 2 SOM was
assigned. It was trained with the input vectors made from the due word triplets.
After training, each codebook vector in one small map described more specifically
what context was used on the average with that “key” word.

The results of the computation are presented in Figure 27. The positions of the
words on the map are solely based on the analysis of the contexts performed by the
SOM. The general organization of the map reflects both syntactical and semantical
categories. The most distinct large areas consist of verbs in the top third of the
map, and nouns in the bottom right corner.

Word category maps can be used in practical large-scale natural language processing
applications, like in intelligent information retrieval. This particular application area
has been described in detail in the WEBSOM section of this report.
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Figure 27: The 150 most frequent words of the Grimm tales, their statistical con-
textual relations being represented two-dimensionally by the SOM. The words are
shown in their due position in the array; no symbols for “neurons” have been drawn.
Many words are ambiguous but usually only the most common category relating to
the tales is presented. All verbs can be found in the top section whereas the nouns
are located in the lower right corner of the map. In the middle there are words
of multiple categories: adverbs, pronouns, prepositions, conjunctions, etc. Modal
verbs form a collection of their own among the verbs. Connected to the area of nouns
are the pronouns. The three numerals in the material form a cluster. Among the
verbs the past-tense forms are separated from the present-tense forms and located
in the top right corner. Among the nouns, the inanimate and animate nouns forms
separate areas of their own.
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18 Speech Recognition

Mikko Kurimo and Panu Somervuo

18.1 The Recognition System

The recent projects in automatic speech recognition (ASR) are aimed both to use
the recognition system as a test bench for the neural network algorithms developed
in the laboratory and to develop the system itself as a pilot application of the neural
networks. To produce respectable results, the best modeling and learning methods
are applied with our own latest developments to fully exploit the available computer
technology so that the recognition can still operate online in real time with high-
dimensional input features. The results show that by the improved methodology
and hardware, reductions in recognition error rate have been successful.

The speech recognition by the system developed in our laboratory occurs in five
successive phases (see Figure 28). The most significant improvements have lately
been introduced to the second and third phases. Some new inventions have also
been tested for the spectrum analysis and for the phoneme string corrections.

Short-time Context HMM state
. HMM state Phonem
mel-cepstra feature classification
. . segmentatlo extraction
extraction selection probabilities

Figure 28: The main phases of the ASR by HMMs.

The recognition task used as a test bench for the new developments is the speaker
dependent, but vocabulary independent ASR. The recognition is based on connect-
ing the hidden Markov models (HMMs) of the phonemes to decode the phoneme
sequences of the spoken utterances [5|. The HMM parameters can be automatically
trained by neural network based methods using only a set of training words for each
speaker. The output density function of each state in each model is a mixture of
multivariate Gaussian densities.

18.2 Determination of the Error Rate

In the speech database collected here mostly in 1995, there are currently data of 20
speakers and at least four recording sessions of 350 Finnish words for each speaker.
The speaker dependent recognition models are trained using three word sets and
tested by the remaining one. The error rate given as the result is the number of
all phoneme errors (inserted,deleted and changed phonemes) divided by the total
number of phonemes. To gain statistical significance for the model comparisons, the
tests are normally made for seven different speakers and the error rates are averaged.
For verifying the robustness of the models for slightly different speech data also an
older database (from 1990) is sometimes used. In general, the older database gives
lower average error rates, probably because of the more experienced speakers.
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For comparisons of the models the post-processing by the Dynamically Expanding
Context (DEC) [1] is not applied in order to extract all the differences of the results.
The long phonemes like /AA/ are separated from their short counterparts by using
phoneme dependent duration limits learned iteratively during the model training.
This simple separation do not take the word context into account and produces
some errors which, in addition to some minor mismatches between the written and
spoken format of the words, affect to the lowest obtainable value for the error rate.
The acoustic features used throughout this work are the mel-cepstrum coefficients
and RMS value of the signal. The basic feature vectors for the experiments are 20
component cepstra, but also extended feature vectors like averaged, concatenated
and delta cepstra were tested and for those sometimes only 10-15 first coefficients
were used.

18.3 Selection of Context Vectors and Multiple Feature
Streams

The implementation of HMM is usually a first-order model and the context of short
time feature vectors is thus not fully used. By using the context of the short-
time feature vectors (see Figure 29), the coarticulation effect can be taken into
account already in the feature extraction stage. The problem is how to define a
suitable context. When the context is added to the recognition process there are
two alternatives: whether to concatenate it to the short time feature vector or to use
parallel feature streams in HMM so that the context is in its own feature stream.

N
o

mel-cepstrun

=

time

time window of congxt vector

Figure 29: The features of the spoken word "OTANIEMI". The context vectors are
combinations of several successive short-time features. The context window is 0.1s
wide.

Several experiments were done in order to find discriminative features and a suitable
context vector. Compared to the [4], new elements were delta features and the
investigation of a proper time span for both static short-time feature concatenation
and delta computations. One objective was to keep the dimension of the final feature
vector suitably low. The effect of kernel width in SCHMM using Gaussian kernels
was experimented with several feature vectors. All context vectors were found more
tolerable to the change of kernel width than a single short-time feature. Compared
to the case of using only one single mel-cepstrum, the use of three concatenated mel-
cepstra dropped the phoneme recognition error from 6.7% to 3.5% and from 7.6%
to 4.7% for two test speakers having different speaking rates. It was interesting
that good recognition results were obtained even by using only delta features. Two
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concatenated differences of mel-cepstra as a feature vector gave similar or even better
results than one static mel-cepstrum vector. This is remarkable because when only
difference features are used, the long time average of static features (channel bias) is
automatically removed from the feature vector. The phoneme recognition errors for
two test speakers using two concatenated mel-cepstra differences as a feature were
4.9% and 7.6%. When a static mel-cepstrum was concatenated to this feature vector,
the corresponding errors were 3.1% and 6.0%. In general, significant improvements
in recognition results were achieved when one or more additional static or difference
mel-cepstra was concatenated to the single static or single difference mel-cepstrum.
This shows the importance of using context of a single short-time feature vector.
Two alternatives, whether to concatenate the context vector into one feature stream
or use parallel feature streams in HMM were experimented. When one static mel-
cepstrum was used in one HMM input stream and two concatenated mel-cepstrum
differences were used in another input stream, the phoneme recognition errors were
3.0% and 5.4% for test speakers. Here equal stream weightings were used. The lat-
ter error dropped to 5.0% when more weight was given to the static mel-cepstrum
stream. The average phoneme error rate for six independent speakers using equal
stream weighting was 5.6% when the feature selection was done according to the
results obtained for two test speakers with different speaking rates. Compared to
the baseline system, which had used only one static mel-cepstrum as a feature the
phoneme error rate being 8.5%, the additional context stream gave the error reduc-
tion of 35%.

As a conclusion, the context of a single short-time feature vector is important and
this study has shown that significant improvements in the recognition rate can be
obtained by forming the context using only a few short-time feature vectors.

18.4 Scaling the Recognition System Up by using Extended
Feature Vectors

Despite that the ASR systems should be able to operate online, it is also vital to
study what will happen to the developed modeling and training method, when the
dimensions are doubled or trebled. Actually, the computational capacity of the
workstation used for the ASR demonstrations of the laboratory is now about five
times than three years ago.

In the tests reported in Table 7 the dimensions are increased by adding delta fea-
tures and concatenating averaged successive feature vectors into a high-dimensional
context vector. The objective of these extended feature vectors is to provide the
HMMs more freedom to create component-wise sequential dependencies by giving
the observation densities of the states information on variable length features.

The recognition times in the Table 7 includes simple optimizations such as the
partial distance computation and the ordered search mentioned in [3]for efficient
computation with high-dimensional vectors. The HMMs in test were mixture density
HMMs (MDHMMs) with 70 Gaussians per phoneme trained by SOMs and the
segmental LVQ3. The demonstration system developed in 1994 with 24 Gaussians
per phoneme gave the performance values 6.9 %, 9.8 % and 0.5 for the last three
columns of the Table 7, respectively.

A completely different preprocessing approach has also been studied to develop
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Feature Cepstra | RMS | Context | Total Error rate% Recognition
vector A A dim. | Data 90 | Data 95 | time factor
basic 20 1 no 21 5.5 7.7 1.0

delta2l 10| 10 |1 no 21 4.7 6.8 1.3

deltad2 201 20 | 1|1 no 42 4.0 6.4 1.8

context80 | 15 1 5 80 3.6 5.3 1.7
context105 | 20 1 5 105 3.4 5.3 1.8

Table 7: The contents of the alternative feature vectors in the tests and the average
test set error rates. The MDHMMs are trained by SOMs and the segmental LVQ3.
The recognition time factor is the average recognition time per word divided by that
of the baseline system (“basic” features).

feature extraction methods that correspond better the subjective voice observation
of a human. By visual inspection the phonemes seem to be more distinct by the
obtained auditive spectra than by the conventional mel-cepstra. One project is
currently going on to test the auditive spectra for ASR.

18.5 Continuous Density Phoneme Models

The HMM structure has been a subject for a continuous development throughout
the history of this work. The basic idea has been the simple temporal structure
of uni-directional chains without skips (see Figure 30) and the principle of using
one HMM for each of the 22 common Finnish phonemes including the silences di-
rectly before and after the word. For the output density of the states the building
blocks have been Gaussians with a shared diagonal covariance matrix. The currently
best performing version (Table 8) applies phoneme-wise tied Gaussian codebooks
(PWMHMM), where the mixture densities are shared so that the states represent-
ing the same phoneme use the same codebook [2]. Thus there are as many sets of
Gaussians as there are HMMs, which is a kind of intermediate for the traditional
continuous HMMs (CDHMM) (different set for each state) and semi-continuous
HMMs (SCHMM) (only one large set of Gaussians). The tied Gaussians resembles
the vector quantization codebook of DHMMs, except that the densities are smoothly
overlapped rather than partitioned.

By the PWMHMMs (and MDHMMs in general) the recognition occurs so that
for the feature vector of every time window, the K-best matching Gaussians are
extracted for every codebook and used to determine the HMM state classification
probabilities. The codebooks were estimated from the training data by SOM and
LVQ based training methods to ensure both the smoothness of the mapping and the
efficient discrimination between phonemes. The most probable state segmentation
for the feature sequence is then revealed using the HMM state structure and finally
the phonemes are extracted from the path. When comparing the performance of
the different continuous density HMMs the Table 8 shows that the PWMHMMs
provide clearly the most appealing configurations, when the number of parameters,
the recognition time and the error rate are compared.
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Figure 30: In phoneme-wise tied MDHMMs the same mixtures are used for the
states representing the same phoneme. The model is defined by the set of transi-
tion probabilities a;;, mixture weights c;, and mixture densities by(z). The output
probability of state C; at time ¢ is approximated by using only the best matching
mixture densities for the current observation vector x;.

18.6 Discrete HMMs and Long Context Vectors using
CNAPS

The experiments with high-dimensional context vectors [4] showed that the static
recognition accuracy of separate phoneme tokens can be increased from 87% to
99% by substituting the single 20 dimensional cepstra by a 140 dimensional context
vector and increasing the LVQ codebook size from 500 to 2000 units.

Since the winner search for the extended system was to slow to perform online in
a normal workstation, the context vectors and the codebooks were sent to CNAPS
parallel computer with 512 processing nodes. The search results are returned to the
workstation for the HMM probability computations and the decoding of the most
probable state sequence. To improve the HMM performance during the unstable
transition parts between the phonemes, information from another LVQ codebook is
also fed to the HMMSs. The input for this codebook is the same as for the other
codebook, but the classification task is to discriminate between phoneme centers
and transition parts.
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Type of Number of | Parameters (x10%) | Recognition

HMM mixtures | weights | means | time factor | error%
CDHMM 4 0.4 9 0.7 7.9
PWMHMM 24 3 11 0.7 6.9
SCHMM 494 54 10 2.6 8.1
CDHMM 24 3 5%} 3.1 5.8
PWMHMM 70 8 32 2.1 5.7

Table 8: Some comparisons between different continuous density HMM structures.
PWMHMM refers to the phoneme-wise tied mixture density HMMs. The CDHMM
and SCHMM experiments are made using the same speech database (Data 90) and
corresponding training methods. The recognition time factor is the average recogni-
tion time per word divided by that of the baseline system (24 mixture PWMHMM).

Host workstation CHAPServer
on

I C

Figure 31: The CNAPServer System.

In the tested system the CNAPServer performed parallel computations under the
control of a host workstation as shown in Figure 31. The context vectors are com-
puted in the normal workstation and then transferred in buffers to the CNAPS.
The information about the winner nodes is returned back to the workstation, which
computes the HMM state classification probabilities and finally shows the decoded
phoneme strings. However, despite the excellent off-line recognition results with
DHMMs and the two large LVQ codebooks [4], the system working with the CNAPS
had some problems in the fluent online operation.
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18.7 CNAPS/PC Board in the Continuous Density System

While it was observed that the high-dimensional context vectors can also improve
the performance of the new MDHMM system (see section 18.4), a CNAPS/PC
board was tested to overcome the bottle neck occurring in the search of K-best
match for all phoneme codebooks. The CNAPS/PC board is an ISA bus board that
implements the CNAPS architecture for 128 processing nodes. The motivation for
this work was also to see, whether there would be any major problems in transfer-
ring the workstation based system into the PC with a special board. At least the
data communication was expected to be much simpler and faster than between the
workstation and the CNAPServer.

The computations between the PC and the CNAPS are divided so that after the
collection and formation of each context vector, the CNAPS immediately finds out
the responses and the indexes of the K-best matching Gaussians. The PC then
computes the state-dependent weighted sums that approximate the HMM state
classification probabilities and takes care of the remaining phoneme decoding. So
the CNAPS/PC board actually performs only a part of the third phase from whole
the recognition process (see Figure 28), but this is the part that would otherwise
take over 50% of total recognition time.

As a result of the study, a demonstration system operating with Linux PC using
80-dimensional context vectors processed by the CNAPS/PC board was able to
perform the current ASR task smoothly online. The otherwise excessive codebook
transfers were reduced by performing the parallel search on all phoneme codebooks
in one operation, so that there is no need to change the codebooks in the processor
memory. The size of the memory restricts, however, the use of larger codebooks
and feature vectors. Due to the rapid capacity improvements in the general-purpose
workstations, the corresponding ASR task is now processed online also in the 1997
recognition system without any special hardware.

18.8 Post-processing of Output Strings

If the set of possible output strings is known, the recognition error rate can be
considerably reduced, even if the set is very large (e.g. 100 000 words). Successful
post-processing can be applied as well for an open string set, if the correct strings
are given corresponding to a set of evaluation samples.

A vocabulary-independent post-processing system for HMM based recognizers is
shown in Figure 32. First it extracts the /N best matching result strings using the
mixture density hidden Markov models (HMMs) [3] trained by neural networks.
Then the strings are corrected by the rules generated automatically by the Dynam-
ically Expanding Context (DEC) [1]. Finally, the corrected string candidates and
the extra alternatives proposed by the DEC are ranked according to the likelihood
score of the best HMM path to generate those strings.

The objective of the system is to improve the HMM result strings so that the final
result would be the best string allowed by the DEC rules. Since it is difficult to
directly take care of the DEC rule base during the HMM decoding, the task is
approached by transforming all the best HMM string candidates by the DEC. The
ranking of the transformed strings is obtained by using another HMM decoding pass
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Feature Recognition of Multiple output Selection of
extraction the N-best HMM DEC the best string by
output strings transformations the HMM rescoring

The sequence of Strings: S1,8S2,...,Sny Corrected strings: T1,T5,... ,Tn
feature vectors Extra DEC strings: T}, T, ...

Figure 32: The stages of the N-best HMM-DEC decoding and the information that
is transmitted between the stages.

which is this time restricted to the closed set of candidate strings. The experiments
show that N need not be very large and the method can decrease recognition errors
from a test data that even has no common words with the training data of the
speech recognizer.

If the set of acceptable strings (the vocabulary) is available for the post-processing,
a fast and efficient method based on Redundant Hash Addressing (RHA) [2| and
two successive HMM decoding passes can be applied. First HMM decoding pass is
made unconstrained and it provides one or more best-matching phoneme strings.
Using these strings as keys for hashing, the large vocabulary can be quickly reduced
by RHA so that only strings close enough to the keys will remain. The second,
closed vocabulary HMM decoding pass can be then made in real time and a good
approximation of the best matching acceptable string is found.

18.9 Other Activities

A separate report is given for the performance evaluation for a telephone based
ASR application. Also the results from the developments of the neural network
based training algorithms and fast density approximation methods are provided
separately.
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19 Using SOM and LVQ for HMM Training

Mikko Kurimo

19.1 New Training Methods for the HMMs

The training of the context-independent phoneme models for a minimal recognition
error rate is difficult, because the variability of the phonemes in different conditions
and contexts is substantial and the output densities of different phonemes do also
overlap. A structure that can automatically adapt to all the complicated density
functions, has a vast number of parameters and for proper estimation, the quality
and quantity of the available training data is crucial. The size of the models and
the training database demand robustness to the initial parameter values in order to
avoid an excessively large number of training epochs and long training times.

The problem in practice with the widely spread training algorithms such as the
segmental K-means (SKM) [8] and the segmental Generalized Probabilistic Descent
(SGPD) [1] is that they sometimes converge slowly to low error rates unless good
initial models are available.

Several common initialization methods have been compared for the mixture density
hidden Markov models (MDHMM). The best results in terms of quickly obtained
low final error rates in the automatic speech recognition (ASR) tests were obtained
by using the Self-Organizing Maps (SOM) [2] to first train phoneme dependent
codebooks and then use the codebook vectors as kernel centroids for the mixture
densities. If the Learning Vector quantization (LVQ) |2] is used in the training after
the SOMs, small improvements in the initialization can be achieved, but the SOM
training can be performed much faster, because each phoneme codebook can be
individually trained as a small SOM.

19.1.1 The Segmental SOM Training

The developed segmental SOM training for the HMMs [5] resembles to the conven-
tional SKM type Viterbi training, but the main difference is that the parameters
of mixtures belonging to the neighborhood of the best-matching component are
also adapted. The motivation for the neighborhood adaptation is the parameter
smoothing, where the level of the smoothing compared to the fitting accuracy to the
training data is controlled by the neighborhood size. A wide neighborhood at the
beginning ensures also that all the available codebook units will be drawn into useful
regions in the input space. Compared to the codebooks trained without smooth-
ing (e.g. by SKM) the accuracy provided by the best-matching Gaussian is usually
worse, but that of the next (K — 1)-best matches will be better, however, providing
generalization for slightly discrepant characteristics of the test data.

The motivation to have ordered density codebooks is to enable accelerated state
pdf estimation. In practice, a set of few best-matching kernels tend to dominate
the density estimates for high-dimensional Gaussian mixtures, and thus the densi-
ties can be well approximated by excluding the other kernels. Since the search for
the K-best matches consumes a significant part of the total computational load,
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the search speed-ups have a significant effect on the total recognition speed. By
exploiting the similarity of the successive feature vectors and the SOM topology
in the mixtures, the approximate location of the K-best candidates can be deter-
mined accelerating significantly the state pdf estimation [5]. As the radius of the
applied neighborhood function decreases gradually to zero the fine structure of the
topology is lost due to the folding that increases the density estimation accuracy.
However, some coarse structure will still be available to maintain smoothness and
search acceleration capabilities (see Figure 33).

10
15

Figure 33: The responses of the individual mixture density components in the
phoneme /A/ codebook organized into 10x14 grid are plotted for one randomly
selected input vector. The first plot (left) is the situation when the radius is de-
creased to one and the second is after training with zero neighborhood

19.1.2 The Segmental LVQ3 Training and the LVQ2 Based Tuning

The segmental LVQ3 training [4]is in many ways similar to the segmental GPD
improving the HMM parameters iteratively by comparing the best paths through the
HMM states to the path producing the correct phoneme sequence for each training
sample, updating the parameters and computing new paths. One of important
difference is the lack of discrimination for situations, where the models already
behave correctly in order to avoid extensive amount of adjustments to lower the
state likelihoods. An other important difference is that the tuning is not directly
dependent on the exact extent of the derivative of the whole word misclassification
measure 1], but only on the relative difference of the modifiable parameter values
to avoid the risk of improper learning step sizes for misses of variable error degree
in one word.

The learning in the segmental training by both SOM and LVQ is here made in
the batch mode, where each epoch includes the entire training data. The other
possibility is to use a variable learning rate parameter to relate the modifications
due to different training words. A proper definition of the learning rate would be
difficult, however, because the parameter changes affect to the subsequent word
segmentations. One method is, however, developed to train MDHMMs by LVQ
that follows a pre-specified learning rate schedule between the training words. The
method applies the LVQ2 type learning law to enhance the models by stochastic
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Figure 34: Adjusting the mixture densities of the competing states regarding to
one observation (here, value 12). The parameters to be modified are the centroids
of the nearest Gaussian for the correct state and, if a rival HMM state causes a
misrecognition, also its corresponding centroid. The mixture weights of the modified
mixtures are tuned respectively, but taking care of the normalization. The resulting
new pdfs are shown dashed for this simple one-dimensional three-mixture case.

learning steps derived from the detected misrecognitions. This is suitable for a
corrective fine tuning method, if the avoidance of the over-fitting in the training
data can be controlled.

The criteria in the evaluation of the segmental training algorithms (see Part I of the
Table 9) were the obtained average error rate for speakers on the both databases and
that the low error rate level is achieved quickly even with initially inaccurate models.
The suggested training in which the MDHMNMs are first initialized by the SOMs and
then trained by the segmental LVQ performed better than conventional methods
with K-means initialization and SKM or SGPD training. By mixing the segmental
training algorithms so that the models obtained by one is fed as an initialization to
another, combinations can be found that eventually give lower error rates than the
individual methods (Part II of the Table 9), but this requires much more training
effort.

19.2 Increasing the Recognition Speed by Optimizing the
Codebook Structure

When the dimension of the feature vectors and the size of the density codebooks
are increased for better recognition accuracy, the bottle neck in online operation is
the density approximation made by each HMM state for each feature vector in the

90



Initialization | HMM training Error rate%
algorithm algorithms Data 90 Data 95
basic | context80
Part I
KM SKM 6.0 6.2
KM SGPD 7.1 5.8
SOM SLVQ3 0.6 5.3
Part II
KM SKM+SGPD 7.3 5.4
SOM SLVQ3+SGPD 7.3 4.8
KM SKM+LVQ2 5.5 5.6
SOM SLVQ3+LVQ2 5.4 5.2

Table 9: Average test set error rates for alternative training methods after the
initialization by K-means or SOM. The training methods are segmental K-means,
segmental GPD, segmental LVQ3 and the corrective tuning based on LVQ2. In the
Part I, the 5 epochs of HMM training is applied (no significant improvements was
detected between 5 and 10 epochs). In the Part II, the last 5 training epochs were
made with another algorithm (the improvement is significant, except for applying
LVQ2 after the LVQ3) and the final error rates are given.

observation sequence. The topological K-best search was presented in [5]| to give
an example of a way to utilize the topology of an organized codebook for a fast
approximative search algorithm for large codebooks. In addition of the topological
order, this method assumes also that the successive feature vectors of speech usually
resemble each other. Briefly, the search method presented in the Figure 35 begins
by re-ranking the previous K-best matches and continues by checking the neighbors
of the currently best match. If a new best is found, also the new neighbors are
checked. This process continues until no more new best matches are found [6]. A
complete search through the codebook is performed periodically to react for abrupt
feature changes [7].

In the K-best search the fastest search time can be expected, if the candidates
are ordered so that the most likely winners are checked first and the components
of the feature vectors are processed in the order of decreasing significance. These
characteristics are important, because each individual check of one candidate can
be aborted immediately, when it becomes evident that it is not part of the K-best.
With no special knowledge about the rank of the candidates except the continu-
ous character of the signal, a good performance can be expected, if the candidates
are scanned according to the distance in SOM topology from the expected winner.
Similarly with no special knowledge about the rank of the components, it is best to
orgarnize them according to the decreasing variance, in general.

The frequency of the complete search affects to the ability to react to fast changes
in the signal characteristics and is, along with the number of the K-best matches
and the size of the basic search neighborhood, a controllable variable to increase the
accuracy or the speed of the search.
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Figure 35: The topological search order for SOM codebooks.

The tree-search SOM |3] suits well to the fast approximative search for large code-
books, because the tree structure offers O(log N) search complexity instead of the
normal O(N). The possible loss of accuracy may follow from the sequential branch-
ing decisions by which most of the units are eliminated from the individual inspec-
tion. For K-best search the effect of the branching decisions is softened by expanding
the search into the lower layer search areas associated with the rival best-matches
from the upper layer. For density approximation purpose the Gaussian kernels are
trained only for the lowest SOM layer and the upper layers act only as a search tool.

Figure 36: Two layers of the Tree-search SOM. In this map, each upper layer unit
has a grid of 9 child units.

The results from the experiments indicate that the Tree-search SOM can be used as
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a slightly worse performing, but a faster substitute to the normal SOM codebook.
In the comparison by a ASR test to the corresponding normal SOM codebook, the
Tree-search SOM, in which the recognition time decreased by 20%, increased the
average number of recognition errors by 14%.

The topological K-best search compared to the unordered complete search offers
a speed-up in the ASR experiments about 30-60% depending on the mixture sizes
and feature vectors, while the increase of the average number of errors is only 4-
10%. Despite the loss of most of the codebook topology, after the segmental LVQ3
training the same topological K-best search provide about 10% less recognition
errors (about the same error rate as by complete search before the LVQ3). Thus,
fortunately, the LV(Q training seems to be more efficient to reduce the errors by
increasing the discrimination than it is to generate them by destroying the topology
required for fast search.
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20 Competing Hidden Markov Models on the Self-
Organizing Map
Panu Somervuo

Models associated with the nodes of the Self-Organizing Map (SOM) can learn to
become selective to the segments of temporal input sequences. Using the probability
as a similarity measure between the input and the models leads to the concept of
hidden Markov models (HMMs) as the nodes.

HMDMs are stochastic signal models which have commonly been used in speech recog-
nition. Their benefit is to tie separate observations in time together and utilize the
time-dependency and order of acoustic phenomena in recognition while at the same
time represent the speech patterns in a compact form as a state network. Besides
speech recognition, HMMs have also been used in various other tasks, like natu-
ral handwriting recognition, text analysis, coding theory, ecology, and molecular
biology.

Usually the training of the HMMs is supervised which requires that the segment units
to be modeled are pre-defined. However, it might be advantageous to let the system
choose the segment units itself. This was experimented in the present work. Input
data may consist of unsegmented feature vector sequences with arbitrary lengths.
The unsupervised training of the segment models proceeds by utilizing the
competitive-learning principles of the SOM. This is illustrated in Fig. 37.
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Figure 37: Competitive-learning of segment models on the SOM. Each map node
is associated with an HMM having one or more states (three states in this case).
The thick line represents the Viterbi segmentation of one input sequence. This
corresponds to the best matching unit (BMU) search. The models of the BMUs and
neighboring units are then updated by the corresponding segments.

Unsupervisedly derived segment models were experimented in the word recognition
task. The recognition rate was 99.1% for a speaker-dependent system with the vo-
cabulary of 350 Finnish words. This was equal to the best results of the supervisedly
trained linguistic speech unit models.

The main result of this work was to demonstrate that the SOM gives a framework
to train emergent state models by using unsupervised learning. A two-dimensional
SOM array offers also a convenient way to visualize the state space of the recognition
system.
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21 Time Topology for the Self-Organizing Map

Panu Somervuo

In this work the time information of the input samples is taken into account when
constructing the connections between SOM nodes. Those two nodes are connected
which are the best-matching units for two consecutive input samples in time. This
gives the time topology to the network. The reference models associated with the
SOM nodes are first trained in the usual way, treating the input samples as static
vectors and defining the neighborhood of the map nodes on the regular map grid.
Once the map has been trained, old node connections are removed and new con-
nections are created according to the time information of the input samples. The
SOM training can then be continued by using the new node connections as a neigh-
borhood when adapting the reference models. The result is a network where node
connections represent temporal signal paths in the input space. Since any two nodes
which are the best-matching units for two consecutive input samples in time can be
connected independently of their Euclidean distance on the regular map lattice, the
new connections may provide “worm-holes” to the original map lattice space.

In the following example, input data consist of sequences of two-dimensional feature
vectors proceeding from the origo to the unit circle, see Fig. 38a. One-dimensional
SOM with 100 nodes was constructed using this data. Figures 38b, 38c, and 38d
illustrate three different map node connections when the reference vectors of the
maps are kept the same. Fig. 38b shows the prototype vectors (depicted by dots)
and the neighborhood connections (depicted by line segments) of the original one-
dimensional SOM. Fig. 38c shows the connections created between the nodes which
are the two best-matching units for each single input sample. Fig. 38d represents
the time topology where the connections are created between the best-matching
units of two successive input items in time. This gives a representation for temporal
signal paths in the feature space. The network in Fig. 38d represents clearly best
the original input data of Fig. 38a.

Figure 38: a b c d

The SOM with the time topology was experimented with speech data. 10-
dimensional cepstrum vector sequences were computed from 1760 utterances of 20
speakers. Experiments consisted of training the SOM with the regular map lattice
and with the time topology. The average quantization error and the word recognition
error was then computed using a separate test set. The best results were achieved
when the SOM was trained by using the time topology as a node neighborhood.
Error in speaker-independent word recognition was 3.6 %.
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22 The Self-Organizing Map and Learning Vector
Quantization for Feature Sequences

Panu Somervuo and Teuvo Kohonen

The Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) algo-
rithms are constructed in this work for variable-length and warped feature sequences.
Instead of a single feature vector, an entire feature vector sequence is associated as
a model with each SOM node. Dynamic time warping is used to obtain time-
normalized distances between sequences with different lengths. In addition to the
generalized median [2| (see also Sec. 5), an arithmetic average can be defined for fea-
ture vector sequences with different lengths [3]. Therefore both incremental learning
and the Batch Map method can be used. Starting with random initialization, an
ordered feature sequence map then ensues, and Learning Vector Quantization can be
used to fine tune the prototype sequences for optimal class separation. The resulting
SOM models, the prototype sequences, can then be used for the recognition as well
as synthesis of patterns. Although time signals are here of main concern, warping
can also be made in other dimensions. As pointed out in [1|, many static processes
can be reinterpreted as dynamic processes in which an artificial time coordinate is
introduced.

Speaker-independent word recognition was experimented using one reference tem-
plate for each of the 22 Finnish command words in the vocabulary. Recognition
tests were repeated 20 times, each time having a different speaker in the test set
and the remaining 19 speakers in the training set. 10-dimensional cepstrum vectors
were used as features. The average recognition errors are given in Table 10.

reference templates error, per cent
one randomly picked sequence from each class 18.5
one median sequence from each class 3.1
one LVQ-fine-tuned sequence for each class 1.5

Table 10: Speaker-independent word-recognition experiment with 1760 utterances
from the vocabulary of 22 Finnish command words.

References

[1] R. Bellman, Dynamic Programming, Princeton University Press, Princeton,
New Jersey, 1957; 6th printing 1972.

[2] T. Kohonen, “Self-organizing maps of symbol strings”, Report A42, Helsinki
University of Technology, Laboratory of Computer and Information Science,
Espoo, Finland, 1996.

[3] D. Sankoff and J. Kruskal, Time warps, string edits, and macromolecules: the
theory and practice of sequence comparison, Addison-Wesley, 1983.

96



23 Redundant Hash Addressing of Feature
Sequences using the Self-Organizing Map

Panu Somervuo

Temporal sequences arise from various kinds of sources in the nature. Sensory ele-
ments transform the events into measurements and corresponding feature vectors.
The present work addresses the question of how to efficiently process the feature
sequences. Applications include retrieval, error correction, and recognition of se-
quential data. Due to the durational differences in the feature sequences and the
variation and noise in the feature vectors, both temporal and spatial fluctuations
must be tolerated in the sequence comparison. Dynamic programming (DP) based
methods provide solutions for this, but they can be computationally heavy. A dif-
ferent approach is to use local fixed-sized features of the sequence. This facilitates
the use of fast associative methods.

The present work combines two methods developed by Teuvo Kohonen. These are
Redundant Hash Addressing (RHA) [1, 3] and the Self-Organizing Map (SOM) |[3].
The central idea in the RHA is to extract multiple features from the same input
item. The comparison of the input item against the reference items is based on these
features. In case of character strings, segments of N consecutive letters (N-grams)
have been used. The RHA system consists of the N-gram table and the dictionary,
see Fig. 39. Multiple features (/N-grams) are extracted from the input string and
each extracted N-gram associates the input string with the dictionary items.

training strings N-gram table dictionary
LITTLE (L_‘-,IEN —
GENTLE ENT| _] LITTLE
ITT —
. . —
input string: -ll\-l-;li GENTLE
AITTLE TLE

Figure 39: The RHA principle applied to character strings. The N-gram table is
constructed by extracting the N-grams from training strings. Here trigrams are used
(N = 3). From each item in the N-gram table there are associations (pointers) to
the dictionary items. Associations activated by the erroneous input string ’AITTLE’
are depicted by thick lines.

RHA has mainly been used for correcting textual output from speech recognizers, see
e.g. [2]. In these, the recognition result is already in the form of a phoneme string.
But in some applications, e.g. music processing, it is more difficult to extract, or
even define, the underlying symbol sequence. Nevertheless, the RHA principle can
still be used. As the RHA makes use of the N-grams of symbols and therefore the
feature vectors must first be quantized, the SOM is used as a codebook to map the
input feature vectors into the finite set of prototype vectors. When each SOM node
is provided with an index, feature vector sequences can be mapped into symbolic
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index sequences. Each feature vector is encoded by the index of its best-matching
unit (BMU). The node indices of the SOM are thus the alphabet of the system.
Music retrieval and speech recognition experiments were carried out as a demon-
stration of the method. Mel-scaled spectrum vectors were computed from acoustic
piano music samples. A 10-by-10-unit SOM was trained and the RHA table was
constructed using 24 training sequences with duration of 10 seconds each. The test
material consisted of 24 subsequences of the training sequences with the duration
of one second. The beginnings of these subsequences were randomly chosen. As a
result, for N=1, there were 2 erroneous retrievals, 4 completely correct retrievals,
and 18 retrievals where the correct music piece shared a tie with an incorrect re-
trieval. For N=2, all retrievals were completely correct. Also for the values N=3,
N=4, and N=5, all retrievals were completely correct.

The speech material used in the experiments consisted of 1760 utterances collected
from 20 speakers (5 female speakers and 15 male speakers). The vocabulary was 22
Finnish command words. The recognition results are shown in Table 11.

feature recognition method error, per cent time/ms
10-dim cepstrum DTW D 34 78
BMU index Levenshtein ) 3.4 1060
BMU index RHA N=22 6.6 5

Table 11: Multi-speaker speech recognition experiment. Averaged results of four
independent runs. Time is the average recognition time for one input sequence. 1)
one reference sequence per class, 2) 60 reference sequences per class.

Although the recognition accuracy of the RHA method is not as high as the ac-
curacy using 10-dimensional cepstrum vectors and DTW, the recognition time is
an order of a magnitude smaller. The BMU index sequences were matched against
reference templates also by using the Levenshtein distance. This result shows that
the recognition accuracy using BMU index sequences can be as good as using cep-
strum vectors and DTW if multiple reference templates are used for each class, but
this increases the recognition time considerably. A remarkable property of the RHA
method is that adding new sequence templates to the recognition system does not
slow its performance distinctly.
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24 Speech Recognition for the Hearing-Impaired

Panu Somervuo

Presently there are communication services available in Finland based on human
speech-to-text (STT) and text-to-speech (TTS) interpretations, e.g. in telephone
network and similar services in meetings attended by deaf persons. Such aid, based
on human interpreters, is expensive and often problematic due to the intimate dis-
cussions that are interpreted.

The progress in speech technology has opened possibilities to automate these tasks.
Finnish language appears to be very well suited to automatic STT conversion be-
cause the mapping from phonemes into graphemes is straightforward and the phone-
mic speech recognition has given promising results [2]. Therefore it could be possible
to construct communication aids for the deaf and hard-of-hearing persons by using
computer-based speech-to-text (STT) and text-to-speech (TTS) conversions.

By using a good phonemic speech recognizer in the STT conversion, the final word
and content recognition could be left to the subject reading the raw output of a
speech recognizer (grapheme string) on a screen. The other conversion direction,
i.e., T'TS synthesis, is no technical problem; several synthesizers exist for Finnish.
Recognition score requirements for STT conversion were assessed in the Laboratory
of Acoustics and Audio Signal Processing at Helsinki University of Technology by
simulating the reading of recognized messages. It was found that for isolated words
the comprehension is good up to a 10 % phoneme error rate, for sentences up to 10-
20 %, and for dialog sentences up to even 25 %. These results defined requirements
for the recognition rate in the present application domain.

24.1 Experiments

The speech database was collected from 12 male speakers and 5 female speakers.
The baseline speech recognition experiment was done with speech having 16 kHz
sampling rate. A speaker-dependent speech recognizer [1] based on semi-continuous
hidden Markov models was trained separately to each speaker. A 30-dimensional
feature vector consisted of three concatenated mel-cepstra and the time window for
its computation was 100 ms. Three first speech sets of each speaker were used in
the training of the system and the fourth speech set was used for testing it. One
speech set consisted of 350 Finnish words. Recognition error was computed as a
number of inserted, deleted and changed phonemes in the recognized word divided
by the number of the phonemes in the correct word spelling. The average phoneme
recognition error was 9.1 % for male speakers and 8.9 % for female speakers. Another
measure was computed as an amount of correct phonemes in the recognized word.
These numbers were 93.2 % and 93.9 % for male and female speakers, respectively.
Examination of the speech database revealed that there were missing endings and
not well articulated words in some speakers’ speech so that some of the phoneme
errors using this speech database were due to the errors in the data.

For the evaluation of the speech recognition using analog telephone, the content of
the database was filtered to the frequency range 300 Hz - 3400 Hz and downsampled
to 8 kHz. The average phoneme errors were now 10.6 % for male speakers and
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11.0 % for female speakers. The amount of correct phonemes was 92.0 %.

Some attempts towards the speaker-independent speech recognition were also made
because this is a highly desirable feature in the target applications. As a by-product
of this, new speaker clustering method was proposed. When the Self-Organizing
Map is used as a codebook of each phoneme for each speaker, the similarity between
two speakers can be defined as a distance between the phonemewise codebooks of
the speakers. This allows the mapping of speakers into two-dimensional plane so
that similar speakers are located near each other and speaker clusters can then be
easily visualized.
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Figure 40: Speakers denoted by their initials are mapped into a two-dimensional
plane so that similar speakers are located near each other. The similarity measure
is based on the phonemewise Self-Organizing Maps of the speakers which form the
basis of the speech recognition. The manually drawn dashed line shows that male
and female speakers are discriminated.

The experiments reported here were done in the Neural Networks Research Centre
as a feasibility study belonging to the project of the Laboratory of Acoustics and
Audio Signal Processing at Helsinki University of Technology. The objective of
this project was to experimentally investigate how different phonemic recognition
schemes could be used in speech-to-text conversion aids for the hearing-impaired.
Other set of experiments was done in the Speech and Audio Systems Laboratory,
Nokia Research Centre. To our knowledge this was the first study where phonemic
recognition was evaluated and shown to be a potential method for practical speech-
to-text aids of the hearing-impaired.
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25 Application of the Self-Organizing Map to the
Categorization of Voice and Articulation
Disorders, and to Exploration of Emotional
Variation of Voice Quality

Lea Leinonen

A series of experiments was carried out to explore the applicability of the self-
organizing map to visual imaging of voice and articulation disorders. The visual
imaging technique was implemented on a portable PC for demonstrations. For
acoustic categorization of voice qualities, a method was developed to select acoustic
features with respect to their perceptual significance. The speech samples were as-
sessed by experienced speech pathologists using auditory ratings along 6 dimensions:
pathology, roughness, breathiness, strain, asthenia, and pitch.

The clinical studies suggested that visual imaging of speech with the self-organizing
map could be used as a feed-back device during therapy: to show the deviation of
voice quality from the norm, to show the deviation of phonemes from the norm (mis-
articulations of children, correction of articulation after cleft palate surgery), and to
aid speech training of deaf children. In these applications visual feed-back is supe-
rior to auditory feed-back because even hearing subjects with voice or articulation
disorders do not usually hear the difference between correct and incorrect perfor-
mance. At present there is no such visual feed-back device for clinical use. Some
training programs to support voice production and correct utterance of phonemes
are commercially available for deaf children.

The self-organizing map, or the learning vector quantization, could also be used
as diagnostic aid to measure: the degree and the quality of voice and articulation
disorder before and after treatment, and deterioration of voice in provocation tests.
At present, clinical evaluations are based on auditory ratings. The reliability of
auditory rating tests is low because of high intra- and interrater variability. Repeated
auditory ratings with several judges are difficult to carry out. For these reasons, the
comparison of different surgical or other therapeutic maneouvres is difficult. The
lack of reliable measures also restricts the diagnosis of voice disorders without visible
anatomical changes, such as those induced by allergens or some inhaled medicines.
For all applications, statistically representative sets of speech data from healthy
subjects and subjects with voice and articulation disorders are required. In our
clinical studies speech samples were gathered from 200 subjects. This body of data
proved to be too small for the selection of acoustic features for comprehensive clinical
categorizations.

The self-organizing map was also applied to study emotional variation of voice qual-
ity. Spectral energy distributions, modeled by the map, showed differences among
speech modes of anger, fear, asthonishment, sadness, scorn, plea, admire, and emo-
tional neutrality.
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26 Self-Organizing Map in Recognition of
Topographic Patterns of EEG Spectra

Sirkka-Liisa Joutsiniemi and Samuel Kaski

Traditional automated EEG analysis methods detect abnormalities and suggest di-
agnoses on the basis of classifiers drawn from the EEG samples of different subject
groups. The samples are collected from short artifact-free epochs that are chosen for
the analysis by visual inspection; the evaluation of the whole record is practically
not possible.

Methods that aim at distinguishing between different groups of samples require that
there exist some pre-defined classes. The end result will be a separation of the classes
based on a classifier that has been constructed using either a parametric model of
the signals or a classifier that has learned to classify the available set of samples.
Even neural classification methods have been applied to EEG signals; cf., e.g., [1-4].
When these kinds of methods are used, the whole work is concentrated on separating
the classes, and no other information in the data samples than the class labels is
considered important.

We aim at an EEG analysis method that would not need such predefined classes
but which could learn representations of the different kinds of data types that there
occur in the data set. The discovered data types can then be located on visual map
displays, and these same data types can be detected quickly from new data samples
by placing them on the same display. For example the time periods containing
overwhelming muscle activity or eye blinks can be discarded from further analyses
if necessary. What may be even more useful is that since no assumptions of the
class structure of the data need to be made but instead the Self-Organizing Map
tries to represent and illustrate the structures in the data, it may be possible to
discover new structures that have not been apparent when the EEG signals have
been visually inspected, as is traditionally done.

Our study was a pilot study where the goal was to verify the structures that the
Self-Organizing Map discovers from multichannel EEG spectra. We used routine
clinical EEG for which there exists a traditional classification that is predominantly
based on the dominant frequency content of the signal, and that is correlated with
the vigilance state of the subject. Also certain artifacts can be detected by a skilled
EEG analyst. We used 6 classes in total, “a” for continuous alpha activity, “t” for flat
EEG due to alpha attenuation, “t” for theta of drowsiness, “e” for eye movements,
“m” for muscle activity, and “g” for bad electrode contacts. These classes were used
in verifying the structures the Self-Organizing Map has revealed from the EEG. We
investigated how well maps that had learned in a completely unsupervised manner
were able to distinguish between these classes. After the capabilities of the SOM in
EEG analysis have been verified in the pilot study, it is hoped that similar methods
could be useful for both clinical routine monitoring of the EEG signal, and for
searching for new structures and patterns from the signals.
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Figure 41: A self-organized map, taught with EEGs of 16 subjects, showing the
locations of the EEG epochs with continuous alpha, “a,” with muscle activity, “m,
and with eye movements/blinks, “e,” in two subjects. In each small map, the squares
stand for the 300 map locations. The shading indicates the projections of all labeled
epochs in one recording, black color depicts the locations most often selected. An
example of the epochs projecting onto the black units is shown below each map.
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26.1 Methods

We used routine clinical 20-channel EEG signals recorded from 17 children. Short-
time FFT (Fast Fourier Transform) was applied to each channel and the power in
seven overlapping frequency bands was measured to generate the feature vectors
that were input to the map. The features from each channel were used together,
resulting in 140-dimensional vectors that describe the short-time frequency content
all around the scalp.

26.2 Verification of the Results

To verify the structures the map has extracted from the EEG data we tested how
well the map was able to distinguish between certain types of EEG activity that are
clearly discernible in the EEG signals even by naive analysts (examples are shown
in Figure 41). The maps were able to correctly recognize these EEG-epochs chosen
by an EEG analyst about 90% of the time; examples of the locations of the samples
of different classes on the map have been shown in Figure 41.

The verification was made using subjects whose EEGs were not included in the
teaching of the map, and the map learned in a completely unsupervised manner.
The class information was only used for deciding which locations of the already
learned map represent each of the classes.

26.3 Monitoring of EEG

After the map has learned to represent EEG it can be used for monitoring of the
EEG activity. Each EEG sample (a short-time multichannel EEG power spectrum)
can be visualized as a point on the map, and successive samples form trajectories
(Figure 42). Any auxiliary information can be used for creating labels on the map to
aid in interpreting the trajectories. Unless the analyst has considerable amounts of
experience in interpreting EEGs, the trajectories are much more easily interpretable
than the set of original signals.

26.4 Discovery of Novel Patterns

If the same methods were applied to a set of EEG measurements collected in spe-
cially designed circumstances or from special groups of subjects, unexpected patterns
might perhaps be recognizable either by inspecting the trajectories of the signals on
the Self-Organizing Map, or the model vectors of the map. Most useful results would
probably be obtained by tuning the feature extraction stage of the method to reflect
any special nature of the experimental setting.

There exists an especially convenient method for visualizing the model vectors in
the case of EEG signals: they can be plotted on an image of the scalp, in the
location from which the measurements were made. A coarse display of this type is
presented in Figure 43. The Self-Organizing Map display would be readily usable
interactively: a click on a map location would result in the corresponding model
vector to be visualized on an image of the scalp.
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Figure 42: Locations of two continuous EEG segments of one subject on the map.
a During the first segment, the subject is lying awake with his eyes closed. b
During the second segment, the subject opens his eyes. The 1.28-s EEG epochs,
each corresponding to a single location on the map, are indicated below the EEG
records, and the locations of the epochs on the map are indicated by the numerals.
The EEG segments were measured from a subject whose EEG was not used in the
teaching of the map.

26.5 Summary

A Self-Organizing Map, taught with routine clinical EEGs of several subjects, was
shown to be able to recognize similar topographic spectral patterns in different
EEGs, also in EEGs not used for the teaching of the map. The results were verified
by showing that the map differentiates between different types of background activ-
ities. The resulting map display can be used for both monitoring the ongoing EEG
activity and for inspecting the types of activity there are in the individual EEGs.
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Figure 43: A model vector of an EEG map can be visualized as a topographic display
of the feature values corresponding to each of the 20 channels. The small black bars
give the amplitude of the feature components (activity at certain frequency bands

on each channel). Here a model vector from the alpha,

43 77

, activity area of the map

is shown.
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27 Increasing the Error Tolerance in Transmission
of Vector Quantized Images by Self-Organizing
Maps

Jari Kangas

In this study we consider an image compression system for its transmission error-
tolerance properties. Efficient data compression is needed in image transmission
applications. That is, because images consist of such a large number of elements.
On the other hand, the image data can be compressed with high compression ratio,
because the nearby pixels in images contain rather similar values.

The compression method used in this study is vector quantization (VQ), which is a
powerful approach, but usually rather sensitive to transmission errors. It has been
shown that the VQ codebooks produced by the Self-Organizing Map algorithm are
comparable in quantization accuracy to codebooks designed by the LBG algorithm.
Vector quantization is a very powerful compression method which naturally takes
into account the redundancy of nearby image elements. The method considers vec-
tors that are collected of nearby pixels in an image, a usual choice is to take a square
of 4 by 4 (or 8 by 8) pixels. The compression happens when the vector is represented
by an index to one model vector selected from a suitably designed codebook. The
selection is done in such a way that the error occurring while replacing the original
vector by the model vector is minimum.

The main problem in vector quantization is to design such codebooks that the
average representation error over the compressed image is minimum. The above
description is valid when there happens no errors in the index transmission. Then
the codebook indexing can be done independent of the model vectors. If there are
errors in the index transmission, we must consider the index relationships and the
model properties together. The main problem is that if the codebook is indexed in
an unordered manner, and if the transmitted index is changed to some other index,
the representative model vector might change to a completely different model vector.
The situation would be very different if we could order the codebook indexes in such
a way that those codebook indexes which are easily mixed (due to transmission
errors) would represent rather similar model vectors.

The Self-Organizing Map is trained in such a way that the model vectors in the
map are spatially ordered after training, i.e., the neighboring model vectors in any
place and in any direction of the Map are more similar than the more remote ones.
This gives the idea of using the array coordinates of the Map as indexes in vector
quantization. If we define the neighborhood function in the Self-Organizing Map
training in such a way that the easily mixed models are always neighbors in the Map
array, the training algorithm will ensure that the desired properties are achieved.
In other studies error-theoretic considerations were applied to the design of a VQ
codebook for noisy environment. The algorithm turned out to be almost identical to
the Self-Organizing Map algorithm. The identity was achieved when it was required
that the training neighborhood was defined by the likelihood of changing an index
to another one.

To demonstrate the performance of the SOM based error-tolerant image compression
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system, two transmission coding systems were designed. In the first scheme we used
a digital pulse amplitude modulation (PAM) model with eight possible modulation
amplitudes. The errors in the PAM model are amplitude level changes due to channel
noise. As a second coding scheme we used a binary symmetric channel (BSC), where
the errors were independent bit changes.

The SOM dimensions for codebooks had to be selected according to the principle
of transmission. For the PAM transmission line, we selected a three- dimensional
SOM, where there were 8 units in each dimension. The total number of codebook
models is then 512. Each image block was transmitted over the PAM transmission
line in three codes, one for each coordinate. Because the errors in each coordinate
was independent of the others the probability of error in an index was considerably
higher that the probability in a single code.

For the BSC channel we used a 9-dimensional SOM, where there were only two units
in each dimension. The total number of units was then the same 512 as in the PAM
model.

In the figures below two reconstructed images transmitted over a simulated PAM
line are shown. In these the probability of errors was 0.1, which means that more
than 40 % of the indexes were erroneous in the receiving end of the transmission line.
In the image with random order the errors are usually rather severe. For example, in
the middle of dark areas there are light blocks, and dark blocks are inserted in light
areas. In the image with error-tolerant coding the errors are of different nature. For
instance, in the dark area the erroneous blocks are never light, but “almost” dark.
The subjectively experienced qualities of the images differ significantly, although the
same number of errors were present in both.

Figure 44: The encoded and decoded images after transmission through a moder-
ately noisy (p = 0.01) channel. The image on the left has been vector quantized
with a nonordered codebook, and the image on the right with an ordered codebook,
respectively. The subjectively experienced qualities of the images differ significantly,
although the same number of codeword errors was present in both images.
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28 Extraction of Features Using Sparse Coding

Harri Lappalainen

In various pattern recognition tasks the main problem is the extraction of features
from raw data. Classification methods are well developed and they work generally
very well if the features are suitable for the task. In some cases, physical or some
other type of knowledge of the underlying structure of the patterns to be recognized
guides the selection of the features. Usually, however, no such knowledge is available
or it is incomplete. In these cases, the features have to be chosen heuristically, or
by applying adaptive methods, which learn the features directly from the raw data.
Sparse Coding combines many properties of two classical adaptive feature extraction
methods: Principal Component Analysis and Vector Quantization.

The ability of sparse coding to extract features has been tested using natural images
as raw data. A total of 15 images where used in the simulation. A part of one of
the images is shown in figure 45. Figure 46 shows 16 out of 400 extracted filters.
They are qualitatively similar to Gabor filters, which are widely recognized as a
good set of features for image processing. This shows that sparse coding can be
used to extract features from raw data.

Figure 45: A part of one of the natural images used in the simulation.

Figure 46: Some examples of features extracted from the images.
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29 Neural Networks for Nonlinear Principal
Component Analysis, Independent Component
Analysis, and Blind Signal Separation

Erkki Oja, Juha Karhunen, Jyrki Joutsensalo, Aapo Hyvirinen,
and Petteri Pajunen

During the past ten years or so, many neural network architectures and correspond-
ing unsupervised learning rules have been introduced for performing standard Princi-
pal Component Analysis (PCA); for a review, see for example [4]. These world-wide
developments are largely based on the pioneering work of the first two authors,
initiated by E. Oja, in the beginning of the 1980’s. We showed that relatively sim-
ple, neurobiologically justified Hebbian-type learning rules can provide PCA [1] and
made a mathematical analysis of the related learning rules [2|. This early work was
collected in the book [3]. Our work on neural PCA is now covered in many of the
present-day textbooks on artificial neural networks. In fact, neural PCA is often
seen as the other major paradigm in unsupervised neural learning, the other one
being competitive learning and especially the Self-Organizing Map.

PCA networks have many applications in optimal linear representation of data in
pattern recognition, data compression, and signal processing. They are especially
suitable for on-line learning in situations, where it is not expedient to collect a
data set and compute the PCA in batch mode. However, they have some inherent
limitations, too, that have led researchers to study various forms of unsupervised
neural learning beyond PCA. Such techniques are often collectively called nonlinear
PCA methods. The main advantages of nonlinear PCA networks over standard
PCA networks are:

1. The input-output mapping may be nonlinear while standard PCA is able to
realize only linear mappings.

2. Higher than second-order statistics are taken into account in processing the
input data via nonlinearities at least implicitly. This property is especially
important in blind signal processing. Standard PCA is based on the use of
covariances. These second-order statistics are sufficient for complete charac-
terization of Gaussian data only, and for standard linear signal processing.

3. Neural realizations become more competitive compared to conventional nu-
merical methods in nonlinear cases, because closed form solutions do not ex-
ist. Standard PCA can be determined efficiently using standard eigenvector
computation routines.

Nonlinear PCA methods have applications in at least the following areas:

1. Robust PCA. Using suitable nonlinearities which grow less than linearly makes
the analysis results more robust against outliers and non-Gaussian noise in the
data. See Section “Robust fitting by nonlinear neural units”.
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2. Blind signal separation and Independent Component Analysis (ICA). See the
corresponding section. These methods have applications in telecommunica-
tions, sensor array processing, medical signal processing, speech processing,
financial time series analysis, and image feature extraction, to mention just a
few of the most important application areas. We have applied methods devel-
oped in our laboratory to some of these problems with very interesting results;
this will be discussed in more detail in later Sections.

3. Clustering of data and neural projection pursuit.

It is noteworthy that Nonlinear PCA methods, especially Independent Component
Analysis, which is closely related to the blind signal separation problem, provide
often a very meaningful representation of the input data. Furthermore, this rep-
resentation is data dependent, and emerges in a completely unsupervised manner
from the input data. Recently, Independent Component Analysis has been shown
to be closely related to certain fundamental information-theoretic principles, such
as maximization of output entropies of a neural network, minimization of mutual in-
formation, and information maximization. Currently, many leading neural network
researchers share the opinion that these principles are fundamental in designing
efficient neural network based information processing methods. Together with in-
teresting applications, these facts have over the past few years prompted a great
worldwide interest in neural realizations of Independent Component Analysis and
related approaches.

We started a research project on ICA in 1994, based on our earlier theories of
nonlinear PCA. Our research group is presently one of the leading ones in the world
in this area, which is demonstrated for example by the many invited talks by Prof.
Oja and Dr. Karhunen, invitations to international co-operation, visits etc.

In the next few sections of this report, sub-projects of the research effort in Nonlinear
PCA and ICA neural networks will be covered in more detail by the members of the
research group.
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30 Nonlinear PCA Networks and
Optimization Criteria

Juha Karhunen, Erkki Oja, Petteri Pajunen, Liuyue Wang,
and Jyrki Joutsensalo

In this work, which was our earlier principal research topic in 1994 and before
that, we have developed several different relatively simple nonlinear and robust
generalizations of neural PCA methods.

A common rigorous approach to these developments is to derive new unsupervised
neural learning algorithms by considering generalizations of the optimization criteria
leading to the standard PCA solution. There exist several different optimization
problems which lead to a standard PCA solution. These include:

1. Maximization of linearly transformed variances E{[w(i)Tx]?} or outputs of
a linear network under orthonormality constraints (WZW = I). Here x is
the input (data) vector, w(i) is the weight vector of i-th neuron, and W =
w(l),...,w(M) is the weight matrix of a PCA network.

2. Minimization of the mean-square representation error E{|| x — % ||?}, when
the input data x are approximated using a lower dimensional linear subspace
x = WW'x.

3. Uncorrelatedness of outputs w(i)?x of different neurons after an orthonormal
transform (WITW = 1).

4. Minimization of representation entropy.

In [2,3], we have derived a number of robust and nonlinear PCA learning algo-
rithms from these generalized criteria for both symmetric and hierarchic network
structures, and shown their relationships to existing neural PCA algorithms. In
particular, generalization of the first variance maximization criterion leads for sym-
metric orthonormality constraint to the so-called Robust PCA rule:

Wi = Wi+ [l — W, W x,g(x) Wy). (81)

Here and later on the nonlinear odd function g(¢) is applied separately to each
component of its argument vector. The index k denotes iteration or sample number,
and p is the learning parameter at iteration k. This rule has been shown to be useful
in clustering, projection pursuit, and robust PCA. It is often useful to preprocess
the data vectors x;, by whitening (sphering) them. After this, the learning rule (81)
responds directly to higher-order statistics in the data.

Similarly, generalization of the second optimization problem, minimization of the
mean-square representation error, leads to so-called Nonlinear PCA rule:

Wi = Wi+ p[xe — Wig(ye)lg(yi), (82)

where the output vector y, = W7x,. We have shown in several papers, summarized
in [4], that with prewhitening the learning algorithm (82) can be successfully applied
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to blind separation of certain type source signals. The blind separation problem is
discussed in several other sections of this report. The nonlinear PCA rule provides
an especially simple neural solution to this difficult problem. This has been analyzed
rigorously in [4,10].

The learning rules (81) and (82) were proposed on intuitive grounds already in |7].
Later on, their relationship to optimization problems were made rigorous in the
theoretical papers [2,3]. We have also developed a number of other algorithms using
this optimization based approach to nonlinear PCA; see [2,3,6]. In particular, the
so-called bigradient algorithm developed and analyzed in [6] provides a versatile
tool. In various forms, it can be applied both to robust PCA problems, making
the results insensitive to outliers in the data and inpulsive noise, as well as to blind
source separation.

We have also developed fast converging approximative least-squares algorithms [5]
for minimizing so-called nonlinear PCA criterion given by

J(W) = || x - Wg(x"W) |I* (83)

These least-squares algorithms can again be applied to blind separation of sources
after prewhitening of the input data [5]. - The same criterion (83) is used as a
starting point in deriving the Nonlinear PCA rule (82), too.

Recently, we have derived new results on the nonlinear PCA criterion (83) in blind
source separation and related problems [8,9]. The criterion can be expressed for
prewhitened data in a simple form. This allows an easy comparison with other cri-
teria used in blind signal processing and independent component analysis, including
cumulants, Bussgang criteria, and information theoretic contrast functions. The
results show the close connection of the nonlinear PCA learning rule (82) with cer-
tain well-known other algorithms used for blind source separation, and help in the
optimal choice of the nonlinearity [8,9].

Still other theoretical results include stability considerations of these algorithms.
In [1], a rigorous stability condition has been derived for PCA subspace rule, and
the stability of the robust algorithm (81) is shown to be better if the the nonlinear
function ¢(t) grows less than linearly.
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31 Blind Signal Separation and
Independent Component Analysis

Erkki Oja, Juha Karhunen, Jyrki Joutsensalo, Aapo Hyvérinen,
Petteri Pajunen, and Ricardo Vigario

Both Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) |2] attempt to find a coordinate transformation of a collection of multivariate
data, by which the new coordinates or feature dimensions have some desirable prop-
erties in terms of data compression and representation. In the case of classical PCA,
the new coordinates are uncorrelated and an optimal linear compression is achieved
in the minimum mean square sense. In the case of ICA, the new coordinates are
statistically independent, which means that a very efficient data representation is
possible.

An especially interesting connection of ICA exists to the problem of Blind Sig-
nal Separation |1,3]. A mathematical definition is the following: an L-dimensional
vector-valued discrete signal x;, = [z4(1),...,74(L)]T at the discrete time k is as-
sumed to be of the form

M
X = Asp+n,= ) si(i)ai) + ng. (84)

i=1
Here s, = [sg(1),...,s,(M)]" is a source vector consisting of M wunknown
source signals (independent components) sg(i) (¢ = 1,...,M) at time k. A =
[a(l),...,a(M)] is a fixed L x M unknown mixing matrix whose columns a(i) are

the basis vectors of ICA, and n; denotes possible corrupting additive noise. The
noise term ny is often omitted from (84), because it is usually impossible to distin-
guish it from the source signals. Instead of time, k£ can also stand for the spatial
location of a pixel, like in the example of Figs. 47, 48.

The problem is to find the mixing matrix A, when only a sample x;, k =1, 2, ... of
the mixtures is available.

The following assumptions are typically made [1]:

1. A is a constant matrix with full column rank. Thus the number of mixtures
L is at least as large as the number of sources M, which is usually assumed
to be known in advance. If M < L, the data vectors x; roughly lie in the
M-dimensional subspace spanned by the basis vectors of ICA.

2. The source signals sg(z) (¢ = 1,..., M) must be mutually statistically inde-
pendent at each time instant k, or as independent as possible. The degree of
independence can be measured using suitable constrast functions.

3. Each source signal s () is a stationary zero-mean stochastic process. Only one
of the source signals s(i) is allowed to have a Gaussian marginal distribution.

Note that very little prior information is available for the matrix A. Therefore, the
strong independence assumptions are required to fix the ICA expansion (84). Even
then, only the directions of the ICA basis vectors a(i), i = 1,..., M, are defined.
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To get a more unique solution, one can normalize the variances of the source signals
to unity.
In the techique called blind source (or signal) separation, one tries to extract the

unknown waveforms {s,(7)}, £ = 1,..., of the independent source signals in (84)
from the data vectors x; by a linear transformation
Y = Bxk7 (85)

where B is called a separating matrix. The elements of y; approximate the source
signals sg(¢). Such blind techniques are useful for example in array processing,
speech enhancement, and communications. A typical example is the “cocktail party
effect”: suppose we can record the mixed voices from a party by several microphones.
The blind source separation would give the voices of the individual speakers.

In several blind separation algorithms, the data vectors x; are preprocessed by
whitening (sphering) them, so that their covariance matrix becomes the unit ma-
trix. After whitening, the separating matrix B can be assumed orthogonal. This
auxiliary constraint makes the separating algorithms simpler, and also normalizes
the variances of the estimated sources automatically to unity.

A practical difficulty in designing source separation and ICA algorithms is reliable
verification of the independence condition. It is impossible to do this directly because
the involved probability densities are unknown. Therefore, approximating contrast
functions which are maximized by separating matrices have been introduced [2]. As
an example, for prewhitened input vectors it can be shown that the relatively simple
contrast function based on the fourth-order cumulant or kurtosis

Z|Cum @)1 = ZIE{y =3B {y(i)*} | (86)

is maximized by the separating matrix B in model (85), if the sign of the (unnormal-
ized) kurtosis cum[s(7)?] is the same for all the source signals s (i), i =1,..., M.
A 3-layer feedforward network was proposed in [4] for ICA and blind source separa-
tion. Each of the 3 layers performs one of the processing tasks required for complete
ICA: 1. whitening; 2. separation; and 3. estimation of the mixing matrix. Any of
these three tasks can be performed either neurally or conventionally.

For whitening, simplified versions of neural PCA learning rules are convenient. For
separation, we can use the nonlinear PCA rule [5]:

Wi = Wi+ pu[xe — Wig(ye)lg(yi)- (87)

with py the learning rate, x; the mixture vectors that are now assumed whitened,
and yr = WFx, the output vector from a neural layer whose weights are given by
matrix Wy. The function ¢(.) is a suitable nonlinearity, e.g. the hyperbolic tangent
function. During learning, the weight matrix W/, converges to a (transposed) sepa-
rating matrix [5], and the elements of yy, or the outputs from the neural layer, tend
to the source signals.

A connection of nonlinear PCA to some other statistical and information theoretic
criteria, as well as the learning rules, are discussed in another Section of this report.
In 1995, we also developed another so-called bigradient algorithm 6], which is applied
for learning the orthonormal separating matrix B as follows:

Wit = Wi+ uexxg(yr) + 7 Wie(I — W, Wy). (88)
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Here 7, is another gain parameter. usually about 0.5 or 1 in practice. Again, the
weight matrix W} tends to the separating matrix B.

Since 1996, new algorithmic development into the ICA and BSS problem has con-
centrated on the fixed-point learning rules, implemented in the FastICA software
package (see the section on one-unit and fixed point ICA algorithms). Also sev-
eral extensions have been studied recently, like nonlinear mixing models, robust
algorithms, and relations with complexity criteria - see the separate section on ex-
tensions.

Our ICA / BSS ideas have been applied to a number of artificial and real signals, e.g.
to separate 10 speech signals from their mixtures. As an illustrative example, Fig.
47 shows 9 mixtures of 9 natural images. This means that the 9 original images
(not shown) have been multiplied pixel-wise by randomly chosen coefficients and
added together, to obtain one of the mixtures shown here. Different multiplying
coefficients have been used for the 9 different mixtures. The 9-dimensional mixture
vectors X in eq. (84) are obtained by collecting the gray levels of pixels in the 9
mixture images at the same pixel location. Thus k is a running index for the pixel
location. In this experiment, there was no additive noise in the mixtures. These
mixture vectors where whitened by PCA and input to the nonlinear PCA learning
rule, eq. (87). The outputs after learning, again collected into images, are shown in
Fig. 48. These are quite close to the original images used in forming the mixtures.
Note that no information whatsoever was used on the mixing coefficients (elements
of matrix A) or the original images in computing these results. The only information
the algorithm had were the mixtures of Fig. 47.

More conrete applications are in biomedical signal analysis, financial time series
analysis, and feature extraction for digital images. All of these are covered in their
separate Sections in this report.
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Figure 47: Mixtures of 9 natural images.
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32 One-unit and Fixed-point ICA Algorithms
with Applications

Aapo Hyvirinen, Erkki Oja, Razvan Cristescu, Patrik Hoyer,
Jarmo Hurri and Kimmo Kiviluoto

The starting point of this research project on Independent Component Analysis is
the development of neural learning rules for a single unit [9,11,12]. Using these learn-
ing rules, a neural unit learns to separate from a multi-dimensional input signal one
of the independent components, or a direction that has certain information-theoretic
properties. This research can be considered a direct logical continuation of the orig-
inal work by Oja on one-unit PCA [15], and shows clearly the connection between
ICA and PCA. These one-unit learning rules are especially useful in exploratory
data analysis, where they can be used to find single directions in the data space
that show the most interesting and independent components in the data space.

For example, assuming that the observed signal x(t) is whitened, or sphered, we
have obtained the following very simple learning rule for separating a sub-Gaussian
independent component (i.e., an independent component of negative kurtosis):

Aw(t) o x(t)g(w(t) x(t) — w(t) (89)

where the function g is a simple polynomial: g(u) = au — bu® with a > 1 and b > 0,
w is the weight vector a neuron, and x is its input. This a very simple example of
learning rules that are called Hebbian (or Hebbian-like), and which constitute one
of the main paradigms in neural computing. In addition to learning rule (89), which
separates sub-Gaussian independent components, one needs also a learning rule for
separating super-Gaussian independent components (i.e., independent components
of positive kurtosis). To achieve this, we have derived another learning rule:

Aw (t) o bx(t) (w(t)"x(t))” — allw ()] *w(?). (90)

where a > 0 and b > 0 are constants. This is also a Hebbian learning rule.

We have also developed a fast numerical method to implement the one-unit learning
rules, the FastICA algorithm [10]. This method is based on a fixed-point iteration
that usually speeds up the computations needed in ICA by a factor of 10 to 100.
The FastICA algorithm is in a way a combination of the two preceding learning
rules; the weight vector w is updated as follows:

w*(t) = BE{x(w(t — 1)"x)*} — 3w(t — 1) (91)
w(t) = w(@)/[[w* (1)l (92)

where the expectation is, in practice, estimated using a large sample of x vectors.
The difference from the preceding learning rules is basically that instead of using
the inputs one-by-one, the FastICA algorithm first collects a batch of input data,
and then uses all those data in the same learning step, in the computation of the
average. The fast convergence of this fixed-point algorithm is illustrated in Figure
1, in which four images were recovered from four mixtures using altogether only 30
iterations. Another convenient property of this algorithm is that the same algorithm
separates both super-Gaussian and sub-Gaussian independent components.
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Figure 49: Three photographs of natural scenes and a noise image were linearly
mixed to illustrate our algorithms. The mixtures are depicted on the left. On the
right, the images recovered by the FastICA algorithm are shown. Only 7 iterations
of the FastICA algorithm were required, on the average, for separating each image.

To separate several independent components, one can construct a network of several
neurons, each of which learns according to the learning rules given above, and then
add a feedback term to each of those learning rules.

The above learning rules, which are based on finding the extrema of kurtosis, have
also been generalized for a large class of criteria of non-Gaussianity [12,2,5,9]. This
means that the cubic non-linearity in the learning rules can be replaced by almost
any other non-linearity. (Of course, some other changes are then also necessary.)
Thus one obtains algorithms that often perform the ICA decomposition in a much
more reliable and accurate way, according to such statistical criteria as asymptotic
variance and robustness [3,9]. Also, the FastICA algorithm can be modified so that
it works even when the data is corrupted by Gaussian noise [7].

The development of the FastICA algorithm has enabled us to apply ICA on data
sets that are of a very high dimension. One example is image processing [1,8|, where
the FastICA algorithm has been used with success. Taking small windows of ordi-
nary, real-life photographs, we decomposed the images into small components whose
occurence is as independent from each other as possible. Some image components
are depicted in Figure 2. Such a decomposition is likely to have interesting applica-
tions in image data compression, pattern recognition, and other domains of image
processing. There are two reasons for this. First, such a decomposition resembles
closely a so-called sparse coding. In sparse coding, one finds a coding method for
the data that has certain interesting statistical properties, and fits with some neu-
rophysiological measurements on the neural processing of sensory data. Second,
the components found are reminiscent of so-called wavelets, which are used in some
highly efficient techniques for image compression.

Based on the features given by ICA, we have developed a new method for image
denoising [13,4] . This is based on modeling the noisy data by a noisy version of the
ICA data model, and then estimating the original image by maximum likelihood
estimation of the model. This results in the application of a (soft) thresholding
operator on the features described above. Figure 3 shows an example of the appli-
cation of this method, called sparse code shrinkage. The advantage of this method
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Figure 50: Image feature extraction by ICA. The FastICA algorithm was applied
on image data, this time using small sub-windows of images as the data. Thus
images were decomposed into hypothetical components whose occurrences are rather
independent from each other. This figure shows some such components. One can see
that the components define certain features that are often quite local, and resemble
bar or edge detectors.

Figure 51: Image denoising by sparse code shrinkage. Using the theory of noisy ICA,
one we have developed an image denoising method. This leads to a thresholding of
the coefficients of the wavelet-like features shown in Figure 2.

over wavelet methods is that it is completely adaptive: both the features and the
involved thresholding (shrinkage) functions are adapted to the statistical properties
of the data.

We have also applied these methods on analysis of financial time series [14]. We
used data that represented the simultaneous cash flow at several stores belonging
to the same retail chain. ICA detected factors that affect the cash flow of all the
stores. When the effect of these “fundamental factors” is removed, the impact of the
actions of the management became more visible.
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33 Robust Fitting by Nonlinear Neural Units

Erkki Oja and Liuyue Wang

A central problem in statistics is fitting a model which is linear in the parameters to
a set of observation points. Examples are regression, curve fitting, time series mod-
elling, digital filtering, system theory, and automatic control. The usual approaches
are least squares (LS) or total least squares (TLS) regression. The difference between
these approaches is shown in Fig. 52 in a simple line fitting example.

The TLS criterion is mathematically equivalent to finding the minor component of
the input points, based on the eigenvector of the input covariance matrix corre-
sponding to the smallest eigenvalue. In impulsive and colored noise environments,
or in the presence of outliers, these methods are not optimal, however. Then robust
fitting, based on a non-quadratic criterion, may give better results than the usual
TLS.

The main objection to the use of robust fitting in practice has been a computational
one: while the TLS criterion can be solved in closed form and the minor eigenvector
can be computed with standard numerical techniques like the singular value de-
composition (SVD), this is no longer true for more complicated criterion functions.
An iterative gradient descent algorithm is necessary. Neural networks can be an
advantage here [1,2,3].

Figure 52: To fit a set of data points by a line, LS minimizes the sum of the squared
lengths of the vertical distances e;, whereas TLS minimizes the sum of the squared
lengths of the distances d; perpendicular to the estimated line.

Referring to Fig. 52, it holds d; = |[w'x;|/||w||. Instead of using the TLS criterion,
one may use an alternative criterion by minimizing the sum of certain functions of
variable d; instead of squares:

Tr(w) = 1/N'Y f(d). (93)

Generally, function f(d;) would be a monotonically increasing function of its non-
negative argument d;. A meaningful choice is an even function, increasing slower
than d?. This will decrease the effect of strong outliers on the solution.

Replacing the finite sum in eq. (93) by the theoretical expectation of f(w?x) and
using a Lagrange multiplier for the constraint wlw = 1 gives the following cost
function:

Jo(w,\) = BE{f(w'x)} +1/2A(1 — wl'w) (94)
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whose solution by an on-line gradient descent algorithm gives the following neural
learning rule:

Wit = Wi — arlg(ye)xk — (9(ur)ye + 1 — Wi wi)wy] (95)

where y;, = Wixy, g(y) is the derivative of f(y), and a4 is a positive learning rate.
An especially suitable function for robust TLS fitting is f(y) = %lncosh(ﬂy), giving
the usual sigmoid g(yx) = tanh(Byx) as the neural network learning function. We
call this the Nonlinear Minor Component Analysis (NMCA) algorithm.
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Figure 53: An experiment of surface fitting. Left: Gaussian noise. Right: outliers.

In an experiment of surface fitting 2], a data set D, was used
D, = {(zs,yi,21),1 =1,...,993)}
coming from an ellipsoid
0.042% 4+ 0.0625y* + 0.11112* = 1.

Gaussian noise or six strong outliers were added to the sample points, as shown
in Fig. 53. Like in line fitting, the problem is now to fit a parameterized model
w122 +way? + w322 = 1 to the point set D, by estimating the parameters wy, ws, ws.
The results indicate that the error in the estimated parameters using the Nonlinear
MCA algorithm (95) was about one third of the error obtained with conventional LS
estimation in the Gaussian noise case and about 6 per cent in the case of outliers.
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34 Analysis of Independent Components in EEG
and MEG

Ricardo Vigéario, Jaakko Sireld, and Erkki Oja

Without any doubt, the brain is among the most intriguing and complex systems
ever studied by human-kind. In an attempt to give a plausible explanation to the
why’s and how’s of human perception and cognition, many conjectures have been
formulated and theories have been tested throughout centuries. In a bootstrapping
(reinforced) manner, the discoveries made on the human brain are leading into the
formulation of more efficient computational methods which in turn make it possible
to design new signal processing tools for better extraction of information from brain
data. Some of the most promising such tools are in the field of artificial neural
networks, of which the independent component analysis (ICA) algorithm of this
project is a good example.

The challenges presented to the signal processing community by the completely non-
invasive electro- and magnetoencephalographic recordings from the human brain
may be divided in two classes, one dealing with the identification and removal of
artifacts from the recordings, and another the understanding of the brain signals
themselves (see the Table below). The amplitude of the artifactual disturbances
may well exceed that of brain signals, turning the analysis of brain activity into
a very hard process. Moreover, artifacts may present strong resemblance to some
physiological brain responses, bringing an erroneous interpretation of the recording.

Artifacts ‘ Brain signals
Ocular artifacts Evoked responses (e.g. auditory,
somatosensory, visual, ... )
Myographic activity Spontaneous rhythmic activity
Externally induced artifacts Abnormal brain behavior
(e.g. epileptic seizures, infarction, ... )

Over the past 3 years, combining the expert efforts from the Laboratory of Computer
and Information Science, and the Brain Research Unit (both from the Helsinki Uni-
versity of Technology), we have shown that ICA techniques are very effective in help-
ing to solve the problem of the extraction of artifacts from electroencephalographic
and magnetoencephalographic recordings (EEG and MEG, respectively) [2,3] , en-
abling a better appreciation of these recordings by the physician.

Figure 54 presents a sample of the 122—-channel MEG recordings, showing brain ac-
tivity corrupted by a considerable amount of artifacts produced by eye saccades and
blinks, head muscle activity and the cardiac cycle. The last three electrical signals
were not used in the experimental setup, but are plotted for validation purposes.
The artifacts, extracted using the FastICA algorithm (see section on ICA fixed-point
algorithms), are shown in Fig. 55. Note that not only the strong corruptive signals
(i.e. the muscle and eye activity) are correctly extracted, but even very weak ar-
tifactual signals are clearly isolated (IC4 and IC6 correspond to the cardiac cycle,
and a digital watch, present in the shielded measuring room).

It is common to use event related activity as an entry level to the study of the human
brain’s functioning. This activity is time-locked to a particular stimulus, that may
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Figure 54: A sample of the 122-channel MEG recordings. For each of the 6 positions
shown, the two orthogonal directions of the sensors are plotted (see [3] for further details).
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Figure 55: Six independent components extracted from the MEG data. For each com-
ponent the left, back and right views of the field patterns are shown — full lines stand for
magnetic flux coming from the head, and dotted lines the flux inwards. (from [3] )

be of auditory, somatosensory, or visual type. Brain responses to the stimulation
present minimal inter-individual differences to a particular set of stimulus parame-
ters. In order to understand the physiological origins of the event related activity,
it may be desirable to decompose the complex brain response into simpler elements,
possibly easier to model and to localize their neural sources. In addition, the sep-
aration of multi-modal responses to complex stimuli, may represent a hard task to
conventional methods, but is surely of capital importance, due to the diversity of
stimulus modalities used in the perception of the real world.

Figure 56 shows a sample of the brain magnetic responses to a combined auditory
and somatosensory stimulation a). The complex signals obtained are not resolved
through PCA projection b), but rather well using an ICA approach ¢). The field
patterns corresponding to the first two independent components (two columns of
the estimated mixing matrix A), are depicted in frame d). The different colors
used stand for the different orientations of the magnetic flux on the sensor plane.
Using this information, together with some dipole source modeling, we reach the
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Figure 56: Results of the application of FastICA to the average brain MEG responses
to a vibrotactile stimulation. The last frame show the localization of the brain sources
superimposed onto an MRI scan. (adapted from [4] ).

localizations present in frame e), superimposed onto an MRI scan of the subject.
The locations found have a perfect agreement to the ones suggested by conventional
neurolophysiological theories. Further information on these experiments may be seen
in [4,5] . Promising results were as well obtained in the analysis of non-averaged
evoked responses [1] .

The results reported in this section showed that ICA is not only a very efficient
artifact removal tool both for EEG and MEG, but as well gives very promising
results when dealing with the more demanding problem of extracting information
from the brain’s own activity. The global list of publications, at the end of this
report, contains further references to this work. The ones in this section should
give a good starting point to the understanding of the results achieved within the
project.
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35 Extensions of the Basic Source Separation
Problem

Petteri Pajunen, Juha Karhunen, Aapo Hyvirinen,
Harri Lappalainen, and Simona Mailiroiu

35.1 Nonlinear mixing of the sources

In the basic Independent Component Analysis (ICA) model
x(t) = As(t) (96)

it is assumed that the M unknown source signals are linearly mixed into M different
known mixtures. Here s(¢) denotes the M-vector containing the M source signals
at time ¢. The matrix A = [a;,...,ay] is a constant M x M mixing matrix whose
elements are the unknown coefficients of the mixtures. The columns a; of A are the
basis vectors of ICA, and x(¢) is the M-dimensional ¢th data vector made up of the
mixtures at discrete time (or point) t.

In realistic applications the linearity assumption of the simple basic model (96) is
not necessarily valid. Since ICA defines a linear transformation B which makes the
components of the random vector y(t) = Bx(¢) as independent as possible, it is
natural to consider more general transformations which have the same effect.

The Self-Organizing Map (SOM) can be used to define a nonlinear transformation
which approximately estimates the probability density of the input data. The weight
vectors of SOM are distributed proportionally to the input vector density. Using
certain learning rules this relationship is accurate, and the distribution of the SOM
weight vectors is asymptotically the same as the distribution of the input vectors.
This forces each weight vector to have the same probability of 'winning’ and therefore
the distribution on the converged map is uniform. By using a rectangular map, the
output vector coordinates become approximately statistically independent [1]. We
have successfully applied this property of the SOM to the blind source separation
problem when the source signals have a flat (sub-Gaussian) distribution, and the
nonlinear mixing function is not too nonlinear [2]. The restriction of using SOM
is that the source densities are implicitly modeled as uniform densities. If there
is prior knowledge of the source densities, this can be used to improve the results.
The generative topographic map (GTM) allows to do this. We applied this to the
nonlinear ICA problem with improved results compared to SOM |7].

Even though this method has some limitations, its advantage is that it is truly
neural, contrary to the few other existing approaches to the generally very difficult
nonlinear blind separation problem.

We have also studied the theoretical questions that arise when considering nonlinear
ICA. Especially we have shown that the solution to nonlinear ICA always exists but
is highly non-unique. We have also developed a set of conditions which lead to a
unique solution [9)].
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35.2 Binary sources

Another restriction of the basic ICA model is the assumption that the number of
available mixtures equals to the number of source signals. If the source signals
are continuous, it is generally impossible to separate more sources than mixtures,
because the solution of the blind separation problem becomes highly nonunique.
However, assuming that all the source vectors are binary and all the mixtures are
different, the mixing transformation is one-to-one, and in theory it then becomes
possible to separate the sources. In the special case of two mixtures the separation
can be achieved by computing the convex hull of the observed mixtures [3]. It can
be shown that the convex hull uniquely determines the basis vectors of ICA (and the
number of them) under mild assumptions. The sources can then be easily separated
when the basis vectors are known.

Figure 57: Noisy mixture images.

An example of blind separation of binary sources is given in figures 57 and 58
highlighting the possibility of separating binary signals from less mixtures than
sources. In figure 57, two noisy linear mixtures of four binary images are shown. A
binary source separation algorithm developed by us was applied to these mixtures
producing the separated images shown in figure 58.

35.3 The effect of noise, correlation, and various network
structures to separation results

In a joint project with the laboratory of Artificial Brain Systems, RIKEN research
institute, Japan, we have considered some other in practice interesting extensions of
the basic blind source separation problem. Such extensions have been outlined and
discussed in an invited tutorial review paper [4]. We have in particular considered
what happens in different neural network structures when the number of source
signals is different from the number of sources and/or outputs of the network, and
proposed various methods for handling such situations. We have also studied the
ability of the networks to separate correlated sources, and the effect and removal
or suppression of noise in context with blind separation. Two journal papers [5,6]
summarize the results achieved in this joint project on these topics.
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Figure 58: Separated images.

Later on, we have shown [16] that if there is additive noise present in the basic
ICA /BSS model (96), the optimal solution of the problem in fact depends nonlinearly
on the observed mixture vectors x(¢). Computationally efficient approximations
to the optimal maximum likelihood solution of this problem have been derived in
various situations in [16].

35.4 Local ICA methods

In standard ICA, a linear data model (96) is used for a global description of the data.
Even though linear ICA yields meaningful results in many cases, it can provide a
crude approximation only for nonlinear data distributions. In [10], a new structure is
proposed, where local ICA models are used in connection with a suitable clustering
algorithm grouping the data. The clustering part is responsible for an overall coarse
nonlinear representation of the underlying data, while linear ICA models of each
cluster are used for describing local features of the data. The goal is to represent the
data better than in linear ICA while avoiding computational difficulties associated
with nonlinear ICA. In first experiments with such a local ICA method, we have
used simple K-means clustering. The proposed method performs well for natural
image data, yielding meaningful local features with suitable preprocessing [10].
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35.5 Generalization of ICA using complexity and coding

It is possible to generalize independent component analysis by considering represen-
tations of the observed mixtures which can be coded using as few bits as possible.
Equivalently, we can look for representations that have a minimum complexity.
Choosing a linear representation and measuring the complexity using entropy, we
obtain the same approach as in ICA where mutual information is minimized [8].
The generalization here is conceptual and is of fundamental importance. It allows
principled application of ICA to any data instead of noiseless data containing linear
mixtures of strictly independent sources. The general form of the complexity mea-
sure serves as a framework for true extensions. The entropy can be replaced by any
other coding measure, which can be chosen quite freely. Using compression algo-
rithms to approximately measure the codelength yields improved results compared
to standard ICA algorithms [8]. Using principal component analysis to measure the
complexity leads to new algorithms as well [11, 12].

35.6 Bayesian learning

In modeling there is a trade-off between the flexibility of models and robustness
against overfitting. Too simple a model is not able to capture all the regularities
and structure of the data, but too complex a model overfits, i.e., learns also the
coincidental noise always present in real data.

Bayesian approach to learning solves the trade-off by finding the most probable
model. It is closely related to information theoretically motivated approaches which
minimize the description length of the data, because the description length is defined
to be the minus logarithm of the probability. Minimal description length thus means
maximal probability.

In practice, Bayesian learning involves approximating the posterior density of the
models. This has been done using a recently developed method called ensemble
learning, where a simple parametric approximation is fitted to the posterior density
by minimizing the Kullback-Leibler distance. The method has been applied to linear
ICA in [13]. A nonlinear extension, where the nonlinear mapping from the sources
to the observations is modeled by a multi-layer perceptron (MLP) network, has been
studied in [14]. The methods for using ensemble learning with MLP networks have
been developed in [15] using an information theoretically motivated approach.
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36 Intelligent Process Data Analysis

Olli Simula, Jussi Ahola, Esa Alhoniemi,
Johan Himberg, Pekka Hippeldinen, Jaakko Hollmén,
Juha Parhankagas, Jukka Parviainen and Juha Vesanto

Analysis and control of complex nonlinear processes constitutes a difficult problem
area in many practical applications. In complicated systems it is not possible to
model the system analytically. In this case analysis of the available process data is
the only possible approach. The data analysis begins with acquisition of all available
data describing the system. The quality of the data is improved by removing noise
and clear-cut errors. After this, based on process knowledge some variables may be
combined to form new ones which are more useful from the problem point of view.
The process, depicted in Figure 59, is repeated iteratively in order to find the most
important variables relevant to the problem.

Variable Data Pre- — . .
Problem . o . Combinatior) Analysis Conclusions
selection acquisition processing

Figure 59: Data analysis process. In practice this sequential schema is iterated over
and over again.

The SOM has proven to be a powerful tool to aid in the analysis due to its ability to
form a visual illustration of data with respect to the selected set of variables. The
SOM has the desirable feature of describing the nonlinear relationships between the
large number of parameters and variables phenomenologically. Because the SOM
algorithm performs a topology preserving mapping from the high-dimensional space
to map units, it can also serve as a clustering tool of high-dimensional data. The
SOM has also a capability to generalize, i.e. the network can interpolate between
previously encountered inputs.

In this research project, several industrial processes have been analyzed in close
cooperation with industrial partners. These include companies in steel and forest
industry as well as design and consulting. Part of the work has been carried out in
the TEKES Technology Program on Adaptive and Intelligent Systems Applications.
In addition, work has been carried out in the Brite-Euram project, Application of
Neural Networks Based Models for Optimization of the Rolling Processes (NEU-
ROLL), which concentrates on improving steel manufacturing processes: using the
methodology presented above, it is possible to investigate complex dependencies be-
tween incoming raw materials, process parameters at different stages, and quality
parameters of the final product. Some case studies will be described in more detail
below.

36.1 Pulp Mill

In a case study, behavior of a continuous pulp digester was analyzed. An illustration
of the digester and separate impregnation vessel is shown in Figure 60. Wood chips
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and cooking liquor are fed into the impregnation vessel. After the impregnation, the
chips are fed into the digester. At the top of the digester, they are heated to cooking
temperature using steam, and the pulping reaction starts. During the cook, the
chips slowly move downwards the digester. The cooking ends at extraction screens
by displacement of hot cooking liquor by cooler wash liquor, which is injected to the
digester through bottom nozzles and bottom scraper. The liquor moves counter-
current to the chip flow and carries out washing of the chips.

Continuous
digester

Steam

Impregnation
vessel

V—Immmﬂm:ﬂm:l 7777777 Topsereen
“-~-.__ Old extraction
==777 screens

Black liquor
Extraction
screens

Black liquor
Wash Eﬂ Eﬂ

Wash liquor EL\ FFW» 3\ Pub
; |£| { ¢ 7 3

White liquor | | Kappa measurement

Figure 60: The continuous digester and the impregnation vessel. The cooking and
wash liquor flows are marked by thin lines and the chip flow by thick line.

Digester operation problems indicated by drops of pulp consistency in the digester
outlet were the starting point for the analysis. In those situations, end product
quality variable (kappa number) values were smaller than the target value.
Measurement data were obtained from the automation system of the mill. The
analysis was started with several dozens of variables which were gradually reduced
down to six most important measurements during the data analysis process. The
data used in the experiments consisted of three separate measurement periods during
more than one month of normal pulping operation.

The periods were segmented by hand in such a way that they mainly consisted of
faulty situations of the process. The production speed was required to be constant.
During the measurement periods there were no significant errors in the measure-
ments. Process delays between signals were compensated using beforehand known
digester delays. In Figure 61 the six signals and production speed of the fiber line
are shown. The three segmented parts are shown by solid line and the parts that
were left out of the analysis by dotted line.

In Figure 62, the component planes of a 17 by 12 units SOM trained using signals
of Figure 61 are presented. Five of them depict behavior of the digester and the
last one is the output variable, the kappa number. The most problematic process
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Figure 61: Measurement signals of the continuous digester. The analyzed parts are
marked by solid line and the parts that were ignored by dotted line.

states are mapped to top left corner of the SOM: the model vectors in that part of
the map have too low kappa number value.

Correlations between the kappa number and other variables were studied using Fig-
ure 63, where the SOM of Figure 62 has been presented using continuous color
coding. The colors assigned to map units are shown in the top left corner of Fig-
ure 63. The five scatter plots are based on model vector component values of the
SOM. They all have the values of kappa number on the x-axis and the other five
variables on y-axis.

The scatter plots indicate that in the faulty states denoted by violet color there is
weak correlation between kappa number and H-Factor, which is the variable used
to control the kappa number. Otherwise there is a negative correlation as might
be expected. On the other hand, the variables Ezxtraction and Chip level seem to
correlate with the kappa number. Also, the values of Press. diff. are low and the value
of variable Screens (which during the analysis was noticed to indicate sensitivity of
digester faults) is high.

The interpretation of the results is that in a faulty situation, the downward move-
ment of the chip plug in the digester slows down. The plug is so tightly packed at
the extraction screens that the wash liquor cannot pass it as it should. There are
two consequences: the wash liquor slows down the downward movement of the plug
and the pulping reaction does not stop. Because the cooking continues, the kappa
number becomes too small. In addition, the H-factor based digester control fails: in
the H-factor computation, cooking time is assumed to be constant, while in reality
it becomes longer due to slowing down of the chip plug movement.
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Figure 62: Component planes of the SOM trained using six measurement signals of

the digester.

Figure 63: Color map and five scatter plots of model vectors of the SOM. The points
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36.2 Pulp and Paper Mills Technology

In this case study, the technology of pulp and paper mills all over the world was
studied. The data was divided to three separate sets: information of the mill itself,
its paper machines, and its pulp production. One SOM was trained for each of the
three sets, and a fourth SOM was built using the combination of BMU coordinates
of the input data on the three low level maps.

Figures 64a and 64b show the unified distance matrix (u-matrix) of the combined
map, and the distribution of Chinese and Scandinavian paper mills on the map.
The two mill sets are easily separable, although there was no geographic information
present in the data. It can also be seen that in the area where the Chinese mills
are, the values of the u-matrix are very low. That is, the variation between weight
vectors in that area is low, which means that most of the Chinese mills resemble
each other.

Figures 65a, 65b and 65c show the distribution of Chinese paper mills on the three
low level maps. Also from these figures it is apparent that most of the Chinese mills
are centered on a single area of the map. Taking a look at the weight vectors in these
areas, it can be seen that the typical Chinese paper mill has small capacity, a large
number (e.g. 4) of paper machines and it most probably produces printing/writing
paper. The paper machines are small, slow and the paper weight is low. The pulp is
produced chemically. Scandinavia, on the other hand, represents a technologically
advanced region. The mills are new, they have big-capacity paper machines and the
majority produces printing/writing papers or pulp.

(a) Chinese (b) Scandinavian

Figure 64: Chinese (a) and Scandinavian (b) paper mills on the u-matrix of the
combined map.
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(a) Mills (b) Paper machines (¢) Pulp production

Figure 65: Chinese paper mills on the three low level maps: mills (a), paper machines
(b) and pulp production (c).

36.3 Other Applications

In a project completed in 1998, a process control software, SOM-Line, based on SOM
was implemented. The software was a tool for monitoring functions of a galvanizing
line of steel. The SOM is first trained by classified measurements. After training
the software is capable of monitoring change in process status illustratedly in real
time. If necessary the process can be adjusted based on information supplied by the
software.

In a project with Suomen Perusmetalli continuous casting is being investigated.
Continuous casting is a large scale industrial method for producing steel slabs for
further refinement, e.g. for hot rolling. There may come up surface ruptures on the
steel slab during the casting. The ruptures lower the product quality, and sometimes
they may cause a breakthrough of liquid steel that leads to a long maintenance pause
in the casting plant. The casting process is, however, monitored by thermocouples
inside the mold. The obtained temperature data is analyzed using SOM-based
visualization tools in order to get efficient features for rupture and breakthorugh
warnings in the automation system.

The NEUROLL ("Application of Neural Network based Models for Optimisation
of the Rolling Process") in an EU-financed project, the objective of which is to
improve the efficiency of the production and the end quality of the hot rolled steel
products. This is achieved by detecting complex relationships between measured
or calculated process parameters and input/output variables, using statistical data
analysis methods. Furthermore, the process is modeled at some level and methods
are developed for the process state visualization and monitoring, as well as for
diagnosis purposes.

In our laboratory the study has concentrated in finding correlations between qual-
ity parameters (e.g., width and thickness deviation and surface defects) and other
process parameters using traditional correlation analysis and the SOM-based meth-
ods. This task is almost done and the results are utilized in improving the process
in the general level and finding the variables for the process modeling. So, this
task is also in progress and several, mostly SOM-based, approaches for process state
visualization and monitoring have been considered.

In a project with Metsiteho Oy, the Finnish forest research organisation, data col-
lected by forest harvesters is analysed. Data consists of measurements from indi-
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vidual trees and forest areas as a whole. The main goal is to apply unsupervised
clustering techniques to group similar forest areas together. This clustering could
prove to be useful when controlling the resource management for Finnish sawmills.
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37 Adaptive Receivers Based on
Self-Organizing Maps

Kimmo Raivio, Olli Simula, and Teuvo Kohonen

In this research project, new receiver structures based on the Self-Organizing Map
(SOM) algorithm [2] have been developed. The SOM is used both as an adaptive
decision device and to follow up error signals.

The SOM is a competitive neural network algorithm that produces localized re-
sponses to input signals and represents the topology of the input signal space over
the network. Due to the active topology preserving property of the learning scheme,
the SOM is able to adapt to time-varying situations. In communication systems,
the signals are corrupted with various distortions caused by the transmission chan-
nel, interfering signal and noise (Fig. 66). These distortions can be adaptively
compensated using the capability of on-line adaptation of the SOM |3, 5].

Trans- 7Transmission | | Re- Desti-
Source mitter channel ceiver nation
Noise, ISI,

nonlinear
distortions

Figure 66: Communication system

When the SOM is used as an adaptive decision device, comparisons with conven-
tional equalizers such as the linear equalizer and the decision feedback equalizer
(DFE) [4] have been performed. The new structures were also compared with other
neural methods like radial basis function (RBF) networks and multi-layer percep-
trons (MLP) [1]. The performances of the neural equalizers and especially the SOM
have been found to be better in nonlinear multipath channels and about equal in
linear channels.

When the SOM has been used to follow up error signals, the actual idea has been
to cancel interference. This task has been divided between following up the error
distribution and finding out the error estimate. The error is approximately the
same as the interference. Other sources of error are noise, intersymbol interference,
wrong error estimates and detection errors due to the reasons mentioned before.
The error distribution can be followed up, but the problem is how to predict the
error. Some solutions have been found, but they do not provide satisfactory results.
The performance has been compared with a pure detector without any kind of
interference cancellation and with a receiver based on the RBF network.

In our research, the wanted signal has been of QAM (Quadrature-Amplitude Modu-
lation) type as well as the interfering signal if it is present. The aim of the research
has been to use the SOM as a building block of new adaptive receivers, which are
able to compensate the nonlinear distortions or cancel the interfering signals.

146



37.1 Compensation of Nonlinear Distortions

Neural networks are an obvious choice for the compensation of nonlinearities, be-
cause the task is often such that either analytic solutions do not exist or they cannot
be found. The networks can be trained to follow up distortions.

The Self-Organizing Map algorithm is used as an adaptive detector preceeded by
the DFE (Fig. 67). In the conventional SOM the samples are classified one after
each other, but the algorithm can also be made to accept input data as batches.

x(n) . L -
—l —l | Self-Organizing m (n)

f 4=
y(n) - @

Figure 67: DFE and SOM in cascade

[ Control unit }

Usually, the nonlinear distortion is introduced by transmitter or receiver amplifiers,
but other sources are also possible. More often the distortions are unwanted, but
sometimes the signal is distorted on purpose. It is possible, that the distortion has
been created in the receiver amplifier in order to cut off the amplitude peak values.
When such a distortion is compensated, the signal to interference ratio (SIR) vs.
bit-error-ratio (BER) of the equalizers in a two-path channel are as shown in Figure
68.
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Figure 68: Compensation of nonlinear amplifier which decays the signal.

37.2 Interference Cancellation

The SOM has been used to interference cancellation by feeding detection errors into
the map. The idea is to form an estimate of the error on the basis of previous error
and signal values. A signal sequence is fed into the SOM. The error estimates are
listed in a separate table, the output of the SOM is used to decide which one of
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the error estimates is the best. The interference estimate is subtracted from the
incoming signal before the classification. This kind of an interference cancellation
can be combined with various equalizer structures. The cancellation can also be
preceded by a DFE.

One possible architecture of the SOM based receiver is shown in Figure 69. In
this structure, the DFE is used only for cancellation of intersymbol interference
and multipath propagation. Other distortions are cancelled by the feedback loop, in
which the error signal corresponding to the distortion, i.e. the interference and noise,
is calculated and used in estimating the next value of the error for compensation.
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Figure 69: The sep-SOM receiver structure.

In computer simulations interference cancellation with various receiver structures
utilizing the SOM algorithm have been investigated. We have concentrated on
interference effects by using QAM modulation (16-QAM). Interference has been
both from a Gaussian noise source and from a similar signal source as the desired
signal. The latter with equally modulated signals is called co-channel interference
(CCI). Some results of cancellation of the CCI are shown in Figure 70.

g0 —— = WITHOUT 5
—— =WITHOUT X
o—o =DFE
—=o =DFE N
. com - -- =som1 AN
5 - 107 _ NN
107, L - RBF+DFE 7 X =ReF S
| + — + = RBF+DFE F R
D }
~ . . . . . 107 L L L N L
0 5 10 15 20 25 30 0 ° 10 SR ode 2 > %
SIR in dB
(a) Linear two-path channel (b) Nonlinear one-path channel

Figure 70: CCI cancellation

The BER vs. the signal to interference ratio (SIR) of the receivers have been studied.
The SOM is compared to the DFE, the RBF network, and to the situation where
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no interference cancellation is performed. With no cancellation the samples are only
classified to predefined states.

37.3 Conclusion

In this research, the Self-Organizing Map has been used in compensating nonlinear
distortions and cancellation the Gaussian and co-channel interference. The simula-
tion results have been derived using the QAM-modulation. The SOM based receivers
are able to compensate nonlinear distortions, but their performance in interference
cancellation is not so satisfactory.
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38 Adaptive Resource Management Methods in
Telecommunications

Haitao Tang and Olli Simula

38.1 Resource Management Problems in Telecommunica-
tions

Adaptive resource management of telecommunication networks has become more
and more important with the advent of Intelligent Networks, ATM, mobile commu-
nication networks, etc. With the increase of processing capacity alone, it may still
not be possible to cope with the requirements, e.g., the Quality-of-Service (QoS)
requirements to network. Thus, adaptive resource management methods are appre-
ciated. In addition to their help to meet the requirements, the adaptive resource
management systems have demonstrated their ability to increase system utilization,
i.e., the more efficient use of system resources.

To solve the resource management problems, it is quite helpful to model the telecom-
munication networks with the ideas of server, client, and agent. The server, related
to data networks, is a host in the network if it offers one or more services to the
network, subnetworks, or applications in the networks. Likewise the network is the
server for the hosts in the networks to get the needed transmission services. Those
who receive the service(s) are called clients. For further dimensioning, sometimes,
some components in the networks are called agents if they act between the server(s)
and the clients. The agents pre-process the requests from the clients and route cer-
tain requests to certain server(s) for the required services; in this sense, the agents
take both server and client roles. Therefore, the relation between a server and other
components in the network can be modeled as the client-server or the client-agent-
server. The server consists of certain elements, where some of the elements can take
the manager role while others are simply the managed elements.

The server is usually a resource-sharing system (e.g., time-sharing system, memory-
sharing system, or bandwidth-sharing system) which is the case in data networks.
The server provides one or more services to the clients.

38.2 Adaptive Approaches to Resource Utilization

Generally, for the resource assignment, we have to consider two issues: the traffic
adaptation and the adaptive resource allocation. The traffic adaptation is the first
step of resource assignment, which understands the resource requirements for the
services. The adaptive resource allocation is the final step of the resource assignment,
which conducts the resource allocation for the requirements according to the traffic
adaptation and server capacity (the effective resource of the server). When a server
serves several services or service classes, the resource allocation for different service
is correlated with each other, which may add difficulty to the adaptive resource
allocation.

Because of the various traffic and server features, the solutions (if found) can be
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Figure 71: The principle of the admission control of an application for a service
provided by the computer.

largely case-dependent or even heuristic. Thus, adaptive methods are used to solve
the adaptation problems. They may help to decrease the case-dependency somehow,
i.e., at least for the adaptive information processing part which is the heart of the
resource assignment. Moreover, the adaptive methods may offer better solutions.
There have been some studies which demonstrate the above advantages.

From 1995 to 1997, we proposed several methods for traffic adaptation, which were
introduced in the 94-96 triennial report. They are not covered in this report. Since
1997, several other methods for traffic adaptation have been found. Furthermore,
the corresponding resource allocation methods which include the resource reuse have
been developed.

In the first approach, a mnemonic map (or age-boosting) is developed and used with
the aging algorithm to adapt to the accessing environments of data pages and to
increase the page access throughput of a database or other information systems.
The scheme consists of the partially-weighted majority algorithm and the aging al-
gorithm. These methods have been tested successfully by simulations. The results
show: (a) the age-boosting scheme converges very fast; (b) the throughput improve-
ment of the age-boosting scheme over the aging scheme is 8% - 45% and 22% on the
average after the age-boosting scheme has converged. The integrated performance
of the age-boosting scheme is much better than that of the aging scheme and is
similar to that of the “fixed scheme”.

The second approach is proposed for the systematic analyses of the effective capac-
ities of a computer as a node in the network. The approach is developed through
modeling a computer as a resources server, its components as resource objects, and
its service tasks as resource-consuming processes with effective resource demands
(ERDs). The service admission and the QoS management of the computer are then
developed with the approach. A resource-consuming process on a resource object is
the amount of resource units that the resource object should provide to the process
in each time unit in order to achieve the given QoS requirement(s). The examples
show that the approach is applicable. The principle of the service admission control
is shown in Figure 71.

In the third approach, a combined flow control approach of IN is proposed as shown
in Figure 72. A dynamic model is created to predict the SCP system state, where
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two methods are also proposed to adapt to a functional relationship in the model.
The service rate for the flow from SMS (the internal flow control) is then decided
according to the predicted system state and the guaranteed system response delay
which is calculated through the analytical relationship among the system state,
the system response delay, and the confidence level. The combined flow control is
thus constructed by the internal flow control and ACG, which provides the needed
performance.

THe Imerlrligent' Nodé'(SCP’)'

ACG Controller

Queue A

The Queue of SMS

A (t)

Queue B

As (1)

o~

x(t)

=

R
Rate Controller

Figure 72: The queueing model for the major part of an Intelligent Network, where
an SCP is connected with an SMS and n SSPs; the model is oriented to investigate
the combined flow control.

As the fourth publication, the doctoral thesis of Haitao Tang summarizes some
essential issues of the adaptive resource management and introduces the adaptive
resource management approaches proposed by focusing mainly on the adaptive re-
source management, of Intelligent Networks and computer-based end systems.
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39 Subspace Techniques in CDMA Reception

Jyrki Joutsensalo and Juha Karhunen

The explosive growth in wireless communications, in conjunction with emerging new
applications, has increased the demand for developing more efficient mobile radio
systems. Analog mobile phone systems, such as NMT (Nordic Mobile Telephone)
are called first generation systems. They were accompanied by digital second gen-
eration systems, for example GSM (Global System for Mobile communications).
Those systems are primarily voice oriented; however, especially second generation
systems also support low data rate services. Due to the high acceptance of cellu-
lar mobile radio systems, capacity limits have already emerged in highly populated
areas. For capacity reasons and offering new services and system features, third
generation mobile radio systems are under development. These systems emphasize
the importance of coverage and access throughout the world. Trends towards multi-
media applications and video transmission in mobile environment require high rate
data transmission capability over radio interface. A potential practical system must
provide reliable data transmission with very small bit error ratio. Third generation
system should be able to adapt quickly to different user requirements and to build
up solutions tailored to customers.

All these requirements increase the demand for more bandwith efficient multiple
access schemes. There are several ways to allocate the frequency spectrum to users.
The most widely known multiple access schemes are FDMA (Frequency Division
Multiple Access; e.g. NMT) and TDMA (Time Division Multiple Access; e.g. GSM).
Both methods rely on user partitioning in the time-frequency plane. The number
of users that can be served is determined by the available frequency slots in FDMA
(Figure 73 left), and by the available time slots in TDMA (Figure 73 middle).
CDMA (Code Division Multiple Access) is considered as a promising solution for
mobile communications. In CDMA all users are using the same frequency band at all
times (Figure 73 right), as opposed to FDMA and TDMA. In CDMA, the separation
of users is carried out by assigning each user with a unique code sequence (Figure
74).

FDMA TDMA CDMA

Figure 73: Different multiple access schemes.

Standard receiver structure for CDMA is simply a bank of matched filters (MF),
kinds of keys, each matched to a particular user code. MF is optimum when only
one mobile phone is in use, or when the codes of all the users appear to be orthogo-
nal. In mobile environment orthogonality cannot in general be guaranteed because
transmitted signal propagates through several paths (Figure 75).

In such a multipath environment standard receiver fails, especially when the different
powers of different users received by the base station are very dissimilar due to their
dissimilar distances to the base station. This is called near-far problem. Therefore,
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Figure 75: Urban multipath environment and channel impulse response.

more sophisticated receivers have been proposed. Common to all of these receivers
is that they require knowledge of one or several parameters, such as propagation
delay, carrier phase, and received power level. Frequently, the propagation delay
estimate is a necessary prerequisite to the estimation of other parameters.
Conventional delay estimators are based on MF, correlator and delay-locked loop
structures, but they suffer from the same performance degradation as standard
receivers. More efficient methods have been introduced to overcome these prob-
lems. Theoretically optimal maximum likelihood method (MLM) requires multi-
dimensional optimization, and thus is computationally too demanding in practice.
Therefore, algorithms providing a trade-off between achieved performance and com-
putational complexity are of primary interest. Subspace-based methods offer a po-
tential solution for the delay estimation problem. Many of these methods are based
on the projection matrix estimation via eigenanalysis. They use the knowledge of
users’ code sequences to form a parametric model for communication system. The
observation space of the received signal is separated into the hyperplanes, called
signal and noise subspaces (Figure 76).

Signal subspace
U, = [u; u,]

Noise subspace
U, = [u]

Figure 76: Illustration of signal and noise subspaces.
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The power of the subspace methods lies in that under some mild conditions, signal
and noise subspaces uniquely determine the unknown delays, even if the codes are
not orthogonal. Code sequences are the only information needed on users. Moreover,
multi-dimensional optimization problem is reduced to a series of one-dimensional
problems, which decreases the computational requirements considerably. The best
known subspace method called MUSIC (MUltiple Slgnal Classification) produces
delay spectrum, from which one can estimate the delays by selecting those test
delays producing the largest values to the spectrum (Figure 77).
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Figure 77: Resolvability of delays using MUSIC when spacing is 1, 2, 3, and 4
samples. Correct delays are indicated as circles.

This research project has been carried out in co-operation with Nokia Research Cen-
ter. During the project, Mr. Petteri Luukkanen from Nokia Research Center finished
his Master’s Thesis Subspace Delay FEstimators for CDMA Systems under the in-
struction of Dr. Jyrki Joutsensalo. The research project focused on the propagation
delay estimation in asynchronous CDMA communication system. Performances of
several novel and “classical” subspace methods have been evaluated in the multiuser
multipath environment by Monte Carlo simulations. The estimators were compared
to the conventional MF delay estimator. Subspace methods have earlier been studied
in the Laboratory of Computer and Information Science in context with sinusoidal
frequency estimation and array signal processing, leading to development of several
new, computationally efficient variants of standard eigenvector-based MUSIC.

The main contributions of this project were:

e Development of hierarchic algorithms for implementing MLM as well as ACM-
MUSIC type method. ACM-MUSIC has been introduced by the authors in
1990. Especially hierarchic MLM is computationally very attractive compared
to the brute-force version of the MLM. The performance of the new algorithm
HMLM (Hierarchic MLM) is based on the following fact: if the data can be
modeled as linear combinations of some basis functions and noise, then the
largest peak given by a simple linear transfrom based method, e.g. matched
filter or sliding correlator, is usually close the true value. The value corre-
sponding to the largest peak can be removed, and the next parameter can be
estimated in similar manner. Under suitable conditions maximum likelihood
estimator can be constructed hierarchically by estimating the parameters se-
quentially. This approach do not usually lead to the true values. However, it
yields a very good initial estimate, so that one can finally perform a search
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Algorithm | N SNRs 4 3 2

HMLM 10 | 10,20,10,25 | 25 % | 65 % | 10 %
MUSIC 10 | 10,20,10,25 | 0% | 35 % | 65 %
HMLM 10 | 20,30,20,35 | 45 % | 50 % | 5 %
MUSIC 10 | 20,30,20,35 | 5% | 45 % | 50 %
HMLM 20 | 20,30,20,35 | 65 % |30 % | 5%
MUSIC 20 | 20,30,20,35 | 45 % | 50 % | 5%
HMLM 50 | 0,10,0,15 |65 % |20 % | 15 %
MUSIC 50 | 0,10,0,15 | 0% |55 % | 45 %

Table 12: Comparing HMLM to MUSIC. Percentage of the number of correct delay
estimates when two users and two paths exist. The total number of delays is four.
N is number of observed symbols, and SNR:s are signal-to-noise ratios of different
signals with respect to the noise.

Algorithm SNR= 15 dB | SNR= 20 dB
MF 20.00% 31.00 %
MUSIC 28.00 % 69.25 %
ACM-MUSIC 99.50 % 100.00 %

Table 13: Comparison of different algorithms in nonstationary environments. The
delays are changing, and users and paths are suddenly appearing or disappearing.
Percentage of the number of correct delay estimates.

only in the vicinity of the estimated values, or use a gradient algorithm for
fine tuning the estimates. Table 12 shows that HMLM works clearly better
than MUSIC. The algorithm for hierarchic ACM-MUSIC is quite similar. See

references [1,3,5,6].

Modification of the ACM-MUSIC for tracking the changing delays. The per-
formance of the algorithm is based on the assumption that the delays are
changed sufficiently slowly so that one can detect the changes only near an
“operating point”, which is the point defined by previous estimates. In Table
13, the ACM-MUSIC has been compared to MF and MUSIC. See references
[5,6].

Introduction of criteria for estimating the model order. These criteria, on
the contrary to the minimum description method based on the information
theory, exploit efficiently the parametric form of the data, being still as simple
as minimum description length (Figure 78). See references [2,3,5,6]. The new
criteria have also been applied to sinusoidal frequency estimation and array
signal processing [4].

Introduction of simple methods for blind delay estimation and source separa-
tion in the mobile phone environment have led to the patent application.
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40 Satellite Image Analysis

Jukka Iivarinen, Markus Peura, Olli Simula,
Kimmo Valkealahti, and Ari Visa

The Finnish Meteorological Institute (FMI) receives the high-resolution satellite
images from weather satellites. The images are used for weather forecasting daily.
The need for automatic methods to cloud detection was a main motivation for the
present study. The automatic interpretation of satellite images has been studied in
two projects in the Laboratory of Computer and Information Science in Helsinki
University of Technology since 1991 [1-5]. In the first project the cloud classification
was required over the Nordic Countries. In the second project the cloud cover and
the cloud classification were required but only for some parts of Finland. The main
interest has been the classification of clouds from satellite images by means of neural
network methods.

(b) Visible channel 2
= A

(c) Near-infrared channel 3 (d) Infrared channel 4

Figure 79: AVHRR channels of the NOAA-11 satellite image. The image was taken
over southern Finland on 19th September, 1993, at 12:06 p.m. (GMT).

The applied satellite images are collected by the AVHRR on board the NOAA-
10, the NOAA-11 and the NOAA-12 polar orbiting satellites. The AVHRR data
consist of visible, near-infrared, and infrared channels (4 or 5 channels depending
on satellite) (Figure 79). In Scandinavia the low level of daylight during the winter
causes severe problems to the utilization of weather satellite images.
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40.1 The Cloud Classifiers

The classification of a satellite image is performed in two phases. In the first phase
the clouds are separated from the surface (referred as cloud screening), and in the
second phase the cloudy regions are further classified into ten different cloud types
(referred as cloud classification).

CLOUD
CLOUD SCREENING [—J| CLASSIEICATION

Figure 80: The classification is performed in two phases.

40.1.1 The First Classifier

The classification of clouds was based on the Self-Organizing Map (SOM) and on the
Learning Vector Quantization (LVQ). A simple thresholding procedure was used in
cloud screening. The selection of the Self-Organizing Map for the cloud classification
in the present work was strongly motivated by the fact that no preclassified samples
were needed for the initial training of the network. The feature maps were computed
with hundreds of thousand unclassified feature vectors, obtained from tens of images
acquired at different times of day and year. A small set of 260 preclassified samples
was used only for the labeling and fine-tuning of the trained map.

The cloud classification was performed by extracting texture and spectral features
from the information inside a gliding window. The window scanned all the bands
of the satellite image at the same time. The extracted feature vector was fed to the
classifying map. The classification result was obtained as a response from the best
matching neuron. The classification result of the actual image point is the label of
the best matching neuron. The procedure is shown in Figure 81.

Feature Vector

ClassifyingMap

Image Classifiedimage

Figure 81: The cloud classification process.

40.1.2 The Second Classifier

When evaluating the first classifier there were situations where it clearly made false
classifications. Because the classifier was taught with neural network methods, it
was hard, sometimes impossible, to say what causes these false classifications. It
is important for the finetuning of the classifier to know if the false classification
is due to the classification method itself, or to something else, perhaps to a false
classification of the preclassified sample.
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This was the reason why a simplified classifier was used in the second approach.
In the simplified classifier the codebooks are formed straight from the preclassified
samples. This means that the feature vector of a preclassified sample is used as a
codebook vector. The classifier consists of 32 codebooks. Each of the four seasons
has four codebooks, a night and a day codebook for cloud screening and a night
and a day codebook for cloud classification. The surface and cloud samples were
collected by an experienced meteorologist. The samples were taken from the NOAA-
11 satellite images between autumn 1991 and autumn 1993. The total number of
samples is 1106.

In the cloud screening procedure a feature vector is extracted for each image pixel
and compared with the codebook. The label of the best-matching codebook vector
is presented as output. The classification of cloudy regions is then accomplished. A
new feature vector is extracted and the classification is done as in the cloud screening
procedure (Figure 82). The pooled form KNN algorithm (K = 3) with the Hamming
distance is used to find the correct classifications in both procedures.

[— -
M
Feature Cloud classification
vector codebook
—

| Sueening\y /_\'
vector codebook
.

Image where cloudsare

Five channel AVHRR image separated from surface

Final classified image

Figure 82: The classification procedure. Only cloudy regions are considered in cloud
classification phase.

The classes used in cloud screening procedure were open sea, land, and cloud. In
wintertime snow and ice were also classified (Figure 83(a)). The cloudy areas were
further classified to ten cloud types which were cirrus over land/sea (Cil), cirrus
over low clouds (Ci2), cirrus over middle clouds (Ci3), cirrostratus (Cs), altostra-
tus/altocumulus (Ac), stratus/stratocumulus (Sc), fog/stratus (Fog), cumulus (Cu),
cumulonimbus (Cb), and nimbostratus (Ns) (Figure 83(b)).

40.2 Conclusions

Two versions of multispectral cloud classifiers were implemented to automate the
processing of satellite images. The classifiers are automatic, and they can be adapted
to changing situations by giving new examples. In the first approach the training
of the classifier was done with the SOM and the LVQ algorithms. Neural networks
offer a rapid way to get good results and to study the process. The use of neural
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(a) Cloud screened image (b) Final classification

Figure 83: Classifications of the NOAA satellite image in Figure 1. In (a) is the
classified image after cloud screening procedure, and in (b) is the final classification.

networks during the development process made it possible to reach the present stage
in four years. However, in the final evaluation study a simplified classifier was used
so that the false classifications could be traced and possible corrected.

The quality of the classifier has been verified with hundreds of images. In addi-
tion to the visual inspection, the automatic evaluation scheme is developed [1,3].
The comparisons with other published results show that the simplified classifier is
working relatively well. The cloud classifier is in the evaluation use at the Finnish
Meteorological Institute.
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41 Land-Based Cloud Classification

Markus Peura and Ari Visa

41.1 Introduction

Classification of clouds has remained one of the few essential meteorological obser-
vations that have not yet been automatized. Typically, clouds have been detected
by means of satellites; a recent study is reported by Visa et al. [1]. The scope in
this study [2] was in land-based imaging of clouds, data being received by an all-
sky imager. The research was initiated by Vaisala Oy, the company manufacturing
detectors for weather observations. The emphasis was in developing recognition al-
gorithms based on wvisual appearance of clouds. The hardware implementation was
expected to apply visible and infrared domain. Another study involving land-based
cloud classification is presented by Buch et al. [3].

In many problems of computer vision, the targets are distinct objects and the major
challenge remains in optimizing image formation and in finding powerful features for
classification. In our case, both the nature of the target (clouds) and the imaging
method (land-based remote sensing) imply a challenging recognition task.

41.2 Basic idea

>

e N
. | Data
Whole-Sky . Feature W o : Encoding
Imager ! Preprocessing Extraction Classification ! and Transfer

Figure 84: Proposed classification scheme

An outline of a device implementation is shown in Fig. 84. The aim for the classifier
is to distinguish between thirteen target classes: ten cloud genera, fog, sun or clear
sky. The elementary features are calculations between graylevels of neighboring
pixels. These features are designed to indicate sharpness of cloud edges, fibrousness
and specks of different size.

Typically, central parts of clouds belonging to different genera resemble each other
by having similarly smooth appearance. In practice, this means that classification
at edges, being the most reliable, should be utilized in classifying the whole patch of
a cloud. That is, a cloud is seen as a fuzzy aggregate of segments containing some of
the possible texture types of the respective genus. This principle was applied in the
classification algorithm by propagating edge information to central areas of clouds.
In order to obtain a primary evaluation of the performance of the feature set, Self-
Organizing Map 4] was applied. A small but comprehensive set of cloud images
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was used as source data for the map shown in Fig. 85. The labels indicate classes of
interest, cloud genera being subdivided to specks (S), edges (E), bulk (B) and gaps
(G). The organization of the labels indicates some consistent clusters. The map
verifies the intuitive assumption that different genera have visually similar details.
Moreover, the intra-genus differences seem to be greater.

The smooth classes sun and sky occupy the center of the map, whereas specks, edges
and other classes with pronounced graylevel variations are organized at the edges of
the map. Precipitative clouds form an own cluster at the right edge of the map. The
distinct cluster in the bottom refers to oddities in the applied imagery: branches of
trees, street lamps etc.

41.3 Classification

For meteorological purposes, the required spatial resolution for the classification is
much lower than the one of the source image. In addition, the subclasses of clouds
(edges, specks, bulk, gaps) are of little interest and should be recombined to form
integral specks of clouds. After pixelwise classification the image is divided to inner
and outer areas in eight directions, resulting in total of 16 sectors. Each sector is
labelled to the class having the largest amount of occurrences.

Two source images are shown in the top of Fig. 86. The final classification is shown in
the bottom. Both images contain misclassified sectors. The errors are often logical:
visual appearances of different cloud genera are known to be confusing in practice.
According to the experience obtained in this study, clouds, despite their physi-
cally complex nature, seem to be interpretable by means of image processing. Of
course, performance of classification would be improved if altitude measurements
were available. Nevertheless, this study can and should be seen as an indication of
classification power when applying visual information only. It must be kept in mind
that cloud classification is problematic also to human observers because no exact
definitions exist for a cloud or cloud genera. Consequently, the results of the study
can be considered promising.
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42 Application of Statistical and Neural Classifiers
to Recognition of Handwritten Digits

Erkki Oja, Jorma Laaksonen, and Lassi Tuura

Recently, many benchmark and comparison studies have been published on neural
and statistical classifiers. One of the most extensive was the Statlog project [4] in
which statistical methods, machine learning, and neural networks were compared
using a large number of different data sets. As a general conclusion of that study,
good statistical classifiers included the k-Nearest Neighbor (k-NN) rule, and good
neural network classifiers included Learning Vector Quantization (LVQ) and Radial
Basis Function (RBF) classifiers. One of the databases used in that study consisted
of handwritten digits. The good performance of nearest neighbor classifiers for
handwritten digits was also confirmed by Blue et al.|1], who however only compared
the result to RBF and Multi-Layer Perceptron (MLP) neural classifiers. A kernel
discriminant analysis (KDA) type method, the Probabilistic Neural Network (PNN),
also did very well in that study.

In our study [3], we wanted to compare some classification methods developed
within our research group to the standard classifiers. Special interest has been on
the subspace methods of classification. The Averaged Learning Subspace Method
(ALSM) [5] and some new modifications of it have been used in our experiments
and compared against the classification error levels obtained with some other, more
commonly used classification methods. As a case study, recognition of handwritten
digits was used.

Off-line character recognition is one of the most popular practical applications of
pattern recognition. During the last two decades, the research has mostly focused on
handwritten characters. This is mainly due to the fact that while recognition of ma-
chine printed characters is considered a solved problem, the reliability achieved with
handwritten text has not yet reached the level required in practical applications [2].
Handwritten character recognition has become a popular application area for neural
network classifiers, which through their adaptive capabilities have often been able
to achieve better reliability than classical statistical or knowledge-based structural
recognition methods. For these reasons, we have also chosen to use handwritten
digit data in our experiments.

The design of the feature extraction stage is an essential step in the development
of a complete pattern recognition system. We have chosen to use simple statistical
features obtained by applying Karhunen-Loéve transformation on the normalized
input images. Similar approach has been taken by many research groups in the
Second Census OCR Conference [2] and also in the comparison [1]. Some exemplary
images of handwritten digits are displayed in the leftmost column of Figure 42. The
reconstruction of the original images from the calculated features is seen to get more
accurate as the number of feature terms is increased.

Our evaluation study has been carried out by using systematic training set cross-
validation in all classifier design. The final performance estimates are based on an
independent testing set that has had no role in classifier construction, including
the choice of optimal pattern vector dimension. The classification accuracies of
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Figure 87: Some examples of handwritten digits and their reconstructions from
increasing number of feature terms.
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a subset of the classifiers tested are displayed in Table 14. While the case study
does give some indication of the relative merits of the tested methods in the two
particular applications studied, we want to emphasize that the results obtained by
no means provide grounds for any objective ranking of these methods as alternative
general classification schemes. The best classifier for a given task can be found
by experimenting with different designs and basing the choice on criteria which,
in addition to classification error, can include other issues such as computational
complexity and feasibility of efficient hardware implementation.

classifier | error-%
KDA 3.5
MLP 3.5
LLR 2.8
k-NN 3.8
ALSM 3.2
cominittee 2.5

Table 14: Some examples of classification error levels obtained in the study.

As the last part of the evaluation, a committee comprising of three different classifiers
was formed. By doing a majority vote of the outputs of the three member, the
committee classifier was able to lower the error rate to a level below the accuracy
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of any of the classifiers involved. In the prototype handwritten digit recognition
system developed for the current study, the option to reject a difficultly classifiable
input image has also been implemented. As a general phenomenon in recognition
of handwritten characters, it has been observed [2| that the rejection-error curve is
linear in the ploge-plane where p and € denote overall rejection and misclassification
rates, respectively. This feature has been confirmed by our experiments as seen in
Figure 88.
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Figure 88: The rejection-error trade-off curve of the LLR classifier.
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43 Adaptive On-line Recognition of Handwritten
Characters

Erkki Oja, Jorma Laaksonen, Vuokko Vuori,
Matti Aksela, and Jarmo Hurri

Automatic on-line recognition of handwritten text has been an on-going research
problem for four decades. It has been gaining more interest lately due to the in-
creasing popularity of hand-held computers, digital notebooks and advanced cellular
phones. Traditionally, man-machine communication has been based on keyboard
and pointing devices. These methods can be very inconvenient when the machine is
only slightly bigger or same size as human palm. Therefore, handwriting recognition
is a very attractive input method.

The most prominent problem in handwriting recognition is the vast variation in
personal writing styles. There are also differences in one person’s writing style de-
pending on the context, mood of the writer and writing situation. The writing style
may also evolve with time or practice. A recognition system should be insensitive to
minor variations and still be able to distinguish different but sometimes very similar
looking characters. Recognition systems should, at least in the beginning, be able
to recognize many writing styles. Such multi-user systems usually have problems
with recognition accuracy. One way to increase performance is adaptation, which
means that the system learns its user’s personal writing style.

The goal of the On-line Recognition of Handwritten Characters project is to de-
velop adaptive methods for on-line recognition of handwritten characters. In this
case, adaptation means that the system is able to learn new writing styles during
its normal use. Due to the learning, the user can use his own natural style of writ-
ing instead of some constrained style. Our work concentrates on the recognition of
isolated alphanumeric characters. The project is a part of the TEKES’s technology
programme Adaptive and Intelligent Systems Applications (AISA) and a subproject
of the research project IMPRESS - Intelligent Methods for Processing and Explo-
ration of Signal and Systems. The work is carried out in co-operation with Nokia
Research Center.

The handwritten character recognition systems developed during this project are
all based on template matching. They consist of a set of known characters (or
prototypes), a similarity measure, and decision criteria. When a character is input
to such a system, it is first preprocessed and normalized, then compared with all
the prototypes, and finally classified according to its k£ nearest, or most similar,
neighbors.

The preprocessing operations are very simple and they are used for altering the
sampling of the characters. There were approximately 40 000 characters written by
46 subjects used in the experiments. The characters were collected with a system
whose properties, such as sampling rate and resolution, are beyond the capabilities
of the existing hand-held devices. Therefore, it was important to examine how
sensitive the recognition methods are to the amount of data for each character.
Prior to the matching, the characters are normalized by moving their centers, either
mass or bounding box, onto each other. In addition, the characters can be rescaled
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(a) (b) (c)

Figure 89: a) An original character and its two preprocessed versions when b) the
sampling frequency is reduced to one third of the original frequency, and c¢) data
points are sampled so that they are equidistant in space instead of time.

so that their bounding boxes are of equal size. In Figure 89, the original and two
preprocessed versions of an example character are shown.

The prototype set is formed by clustering a large number of training samples and
selecting one sample from each cluster to present all the samples in that cluster.
The characters used for creating the prototype sets were written by different sub-
jects than the character used for evaluating the performances of the recognizers.
Therefore, all the experiments can be considered to be writer independent. The
clustering algorithm applies the same similarity measure as the recognizer in the
matching phase. Various similarity measures, all based on dynamic time warping
(DTW) algorithm, have been suggested. DTW-algorithm enables nonlinear match-
ing of curves or chain codes consisting of a variating number data points or items |7].
Adaptation of the recognition system is performed after each classification and it is
based on the following ideas:

1. The prototype set is modified according to the recognition results of the new
character samples. The prototype set is modified by by adding new prototypes,
inactivating confusing prototypes, and reshaping existing prototypes with an
algorithm based on Learning Vector Quantization (LVQ) [3]. These operations
are carried out depending on how many of the k£ nearest prototypes belong to
the correct class and their long term performances [8],[5],[6].

2. A set of classifiers is combined in a committee machine whose decision cri-
teria are modified. The committee adaptation is based on the Dynamically
Expanding Context (DEC) principle of Kohonen [1],[2]. The DEC principle
adds new decision rules if the existing ones produce incorrect results. The new
rules always strive to utilize more contextual information and are thus more
specific than the old ones. In this case, the context is formed from the outputs
of the committee members as is shown in Figure 90 [4].

Experiments performed with a recognition system which is able to adapt its pro-
totype set have showed that a writer-independent classifier can be changed into a
writer-dependent. Due to the adaptation, recognition accuracy high enough to be
acceptable for a real-world application can be attained for most of the writers. An
adaptation strategy which adds the input character into the prototype set if all the
k nearest prototypes do not belong to the correct class was found to be the fastest
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Figure 90: The basic setting of the DEC-based adaptive committee classifier.
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Figure 91: Evolution of the error rate during data collection in which the characters
were recognized on-line. In the true data collection corresponding to the lower plot,
input characters were added to the prototype set if one of the four nearest prototypes
belonged to wrong class. The higher plot illustrates the nonadaptive simulation of
the data collection. These result are obtained by averaging the result of eight writers.

way to decrease the error rate. However, the size on the prototype set increases
considerably even if the recognition performance has ceased to improve.

Reshaping of the existing prototypes with a modified LV(Q training rule nearly halves
the error rate but is not sufficient when used alone as new writing styles fundamen-
tally different from those represented by the initial prototypes cannot be learned.
When these two adaptation strategies are combined so that new prototypes are
added only if all the neighboring prototypes are incorrect and LVQ-learning is car-
ried out otherwise, the growth of the prototype set is insignificant and the evolution
of the recognition performance is nearly as good as with the pure adding strategy.
A part of the data was collected with a program that recognized the characters
on-line and adapted itself to the writing style of the subject. The collected char-
acters were both upper and lower case letters and digits. They were written in
random order after the directions prompted by the program. The evolution of the
error rate during the data collection and its nonadaptive simulation is illustrated in
Figure 91 [8],[9].

A drawback of these adaptation strategies is that they all are supervised methods.
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In practical applications, perfect supervision cannot be guaranteed. The recognition
results are not necessarily correct even though they are accepted by the user, and, the
user might change correctly recognized characters while correcting writing mistakes.
In the future work, the recognition system’s sensitivity to bad learning samples will
be examined.

Several approaches to the DEC rules have been tested. Approaches for deciding
the first result and order of the results taken by the system to form the context
have been best classifier, majority voting, weighed majority voting, adjusting best
classifier and adjusting majority voting. In the adjusting versions a measure of
how well an individual classifier has performed has a direct contribution as to how
decisive it is. As for the formation of the rules, examples of restrictions posed include
requiring the output to belong to the context, predetermining the size of the context
and various approaches to the situation where a new rule with the same context is
created.

The use of the DEC rules has most notable effect when other adaptation is not
used. Still, the use of the committee produces slight improvement in classification
percentage when the members of the committee themselves are adaptive. Judging
from the results available at this time, the most effective approach might be to at
first have just the member classifiers adapt and begin using the DEC rules at a
point when the error percentage of the individual classifiers has already reached a
reasonably low level.

The main future goals of this project involve testing the sensitivity of the system
in ambiguous situations and the development of a portable, hand-held testing and
data gathering system.
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44 Fault Analysis of Running Paper Web

Jukka Iivarinen and Ari Visa

On-line inspection is an essential part of modern web or sheet manufacturing. There
are plenty of applications in different processes, e.g., in paper, nonwoven, plastic,
metal, and plywood industries. The purpose of an inspection system is to detect
and classify those defects which impair the quality of a product as compared to
the requirements set by a user. The requirements mostly deal with the suitability
of a product for the intended use of it. Certain defect types are so harmful that
their presence in a product will make its further processing or converting difficult
or impossible.

Typical characteristics of web manufacturing processes, when compared with other
sheet or flat product manufacturing, are the large values of web width and produc-
tion speed. Paper manufacturing is an extreme example of such demanding web
processes. The web width of a modern paper machine may exceed 9 metres and
its speed may reach 30 m/s. Such a machine makes about 3-10®mm? of paper each
second, and all that production has to be inspected with a 100 % coverage. The
inspection task is made more difficult by the fact that often the size of the smallest
defects which have to be detected is smaller than a square millimeter.

Historically defect detection of web surfaces has been accomplished by hardware
solutions for thresholding and matched filters. These techniques have made possible
to detect only the most basic defect types. Detection of more complicated but critical
defect types has remained unreliable. In this project more sophisticated methods
have been developed. Use of texture and more complicated classifiers have become
possible due to new sensor technology, increased calculation capability of computers
and specialized hardware. Surface inspection has been studied in the Laboratory of
Computer and Information Science at Helsinki University of Technology since 1995
[1-4]. The main interest has been the detection and classification of defects in a
running paper web.

44.1 Overview of the Method

The proposed system model for web inspection has two phases: a segmentation
phase (defect detection) and a classification phase (defect classification) (Figure
92). In the segmentation phase feature extraction is done and potential defect areas
are marked. In the classification phase features describing the shape and internal
structure of defects are extracted and defects are classified to different defect classes.

SEGMENTATION PHASE o CLASSIFICATION PHASE
FEATURE | FEATURE |
| SEGMENTATION e - ‘
EXTRACTION P EXTRACTION CLASSIFICATION|

Figure 92: The proposed method consists of two phases.

The self-organizing maps (SOMs) are used in both phases. In defect detection a
modified SOM, called the statistical SOM, is used to separate defects from a fault-
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free web. It is taught only with samples taken from a fault-free web. In defect
classification the SOM is used to cluster unknown defects. It thus finds the classes
(clusters) that are inherent to defect samples. These classes are then given an
explanation (or a label) by hand.

44.1.1 Segmentation Phase

Images of many surfaces can be considered as stochastic textures, hence the co-
occurrence matrices are used for the texture description. The co-occurrence matrix
is reduced to a set of features to make calculation time and memory requirements
smaller. The co-occurrence matrices are calculated locally within a small window
that glides across the image.

The statistical self-organizing map is used to estimate the distribution of features
extracted from faulty-free samples. Fault detection is based on the following idea:
an unknown sample is classified to a defect if it differs enough from this estimated
distribution. The segmentation scheme is depicted in Figure 93. An example base
paper image and its segmentation is given in Figure 94.

— |4
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ﬁ Self-Organizing Limit T
Feature Map

Original image  vector Segmented image

Figure 93: The segmentation scheme.

Figure 94: A base paper image and its segmentation. Defects are marked with black
color.

44.1.2 Classification Phase

Due to the 2-dimensional nature of paper, most of its defects can be regarded as
optical surface flaws which are detectable by a human eye. Therefore, classification
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is commonly based on their visual appearance, namely on their shape and internal
structure. Five simple shape descriptors are used to characterize the shape, and a
gray level histogram and some co-occurrence matrix features are used for the internal
structure.

The proposed defect classifier is depicted in Figure 95. There are three stages: a
pre-processing stage, a classification stage, and a combiner stage. The classifier
stage has three branches, one branch for each feature set. Each branch has a feature
extraction unit and a classification unit. The outputs from the classification stage
are combined in a combiner to produce the final classification.

SHAPE -
FEATURES CLASSIFICATION
- GRAY LEVEL . FINAL
DEFECT PREPROCESSING HISTOGRAM CLASSIFICATION COMBINER CLASSIFICATION

TEXTURE
FEATURES }—’{ CLASSIFICATION

Figure 95: The defect classifier.

The codebooks are formed with the self-organizing map (SOM) algorithm. The ad-
vantage of using the SOM in codebook generation lies in the fact that the codebooks
can be formed in an unsupervised way, simply by clustering unclassified training
samples together, and then labeling the SOM units (or clusters) to represent differ-
ent classes. In addition to manually given labels each SOM unit can be assigned a
few representative defects. They act as examples of typical defects that belong to a
SOM unit.

An example defect and its features are depicted in Figure 96(a). In Figure 96(b)-(d)
are the classification results. Each column shows the best-matching codebook defect
when using different features. In the bottom row are the numbers and the weight
vectors of the best-matching SOM units. The first and the second row show one of
the typical defects (with its feature vector) that belongs to the best-matching unit.
The labels of the best-matching units are elongated, smooth shape (SSD), light spot
(GLH), and light spot (TEX). The final classification is then elongated, smooth, light
spot.

44.2 Conclusions

The two-stage approach offers advantages when considering real-time processes.
Speed requirements of real-time defect detection and classification can be satis-
fied by splitting the needed procedure into two stages. The defect detection is a
suitable part to hardware implementation. It is computing intensive. However, the
adaptation is simple and concerns only the codebook vectors. More time can be
spend on classifying found defects, because it can be assumed that defects are rare.
The proposed two-stage classification procedure is a general one and can be used
in different classification problems. Reselection of features may be necessary to
adapt the proposed classifier to work with different types of surfaces and defects.
In defect detection the classifier is taught with examples of fault-free surface while
in defect classification shape and internal structure characteristics of defects are
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Figure 96: (a) A defect and its shape features (SSD), gray level histogram (GLH),
and texture features (TEX). The best matching defects to the defect in (a) with
respect to (b) the shape, (c) the gray level histogram, and (d) the texture features.
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learned from examples. The self-organizing maps (SOMs) are used as classifiers.
The defect classifier allows new, previously unknown, defects to be added to the
codebook gradually during a long period. This is necessary since collecting samples
of all possible defects is a time-consuming task and thus it is not reasonable to do
it before initial training.
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45 Analysis of Irregular and Hierarchical
Visual Objects

Markus Peura

45.1 Introduction

Visual appearance of many natural objects is highly irregular and indefinite. The
objects studied for example in biology, medical sciences, meteorology, and geomor-
phology have been challenges for computer vision. Examples of such objects are
shown in Fig. 97. Dynamical behaviour and complex spatial hierachy are often
additional difficulties in designing automated recognition schemes.

Figure 97: Examples of irregular natural images: precipitative clouds detected by a
weather radar (left) and Northern lights captured by an all-sky camera (right).

45.2 Shape descriptors

A shape descriptor is an index, providing numerical information of a contour of an
object [1]. Some descriptors are shown in Fig. 98. These descriptors were studied
initially within the running paper project (Sec. 44). Convexity is a description
the smoothness of an object, attaching penalty to every concavity (inlet) on its
contour. Elongation is defined as the ratio of principal axes; the principal axes are
the eigenvectors of the covariance matrix of a contour. Compactness is the ratio of
a squared perimeter and an area. Variance and elliptic variance measure the shape
difference from a circe and an ellipse, respectively.

convexity elongation compactnesscircular variance elliptic variance

Figure 98: Shape descriptors.
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45.3 Spatial hierarchy

As far as topology is considered, a natural way to perceive it is to regard intensities
as altitude analogously to terrain elevation on a topographical map (Fig. 99 a and
b). Finally, an attribute tree is obtained by attaching segment information (size,
intensity, shape descriptions, etc.) to the obtained structure [2],[3].

a) b) c)

Figure 99: Original image (a), its topology (b) and attribute tree (c).

45.4 Indexing and matching attribute trees

As to recognizing and classifying obtained attribute trees, graph matching is a rigor-
ous but rather elaborous technique. In this study, new fast techniques for indexing,
matching, and generalizing unordered attribute trees have been developed. The
proposed matching scheme is based on dividing the tree recursively into subtrees.
The subtrees are matched according to indices, which have been calculated in ad-
vance using linear updating rules. In other words, exhaustive matching of subtrees
is replaced by matching points in space. The overall computation time is linear.

The descriptors used in this study are height, node count, centroid, and branching
variance, which have straightforward real-world analogies. The height of a tree is the
length of the longest branch starting from the root. The descendant count can be
thought as the mass of a tree. The centroid is an indicator of the vertical distribution
of the mass. The branching variance measures structural irregularity. When match-
ing attribute trees, these descriptors can be readily generalized to the attributes.
One step of the matching scheme is illustrated in Fig. 100, where height and node
count have been outlined as the height and width of the rectangles, respectively.
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Figure 100: Illustration of the index-based heuristic matching.
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45.5 The self-organizing map of attribute trees

After matching two trees, the resulting tree can be weighted. Weighted instatia-
tions of the matched trees are essentially interpolations and imply direct applica-
bility in learning systems involving prototype generation trough averaging. The
self-organizing map of trees [4] is an extension of the standard self-organizing map
(using vectors); the key issues is the revised definitions for a distance metric and
adjusting. A map trained with 1115 weather radar images is shown in Fig. 101.
The applied attribute vectors have three elements: intensity (red), are (green) and
elongation (blue).
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Figure 101: A self-organizing map of attribute trees.
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46 Texture Classification with Reduced
Multidimensional Histograms

Erkki Oja and Kimmo Valkealahti

Texture refers to visual or tactile surface characteristics which are described by such
terms as smoothness, roughness, regularity, uniformity, and granularity. Texture
plays an important role in the visual perception of objects. Figure 102 shows six sur-
face images, which are more or less immediately perceived as distinct textures. The
luminance distributions of the textures are equalized so that their one-dimensional
gray-level distributions are equal, i.e., the number of times each gray level occurs is
the same in all textures. As in vision, computerized discrimination of texture images
with identical gray-level distributions is based on spatial relationships among pixels.

».'#q ﬁ%‘ ’:"g
A e

P

Figure 102: Textures with identical luminance distributions.

In 1962, vision researcher Bela Julesz proposed his famous conjecture that texture
pairs with identical two-dimensional gray-level distributions, i.e., joint distributions
of values of two pixels with any spatial separation, are not visually discernible [1].
Julesz’s subsequent studies provided counterexamples to this conjecture [2], such as
the three textures in Fig. 103 whose three-dimensional black-and-white distributions
are the same for all combinations of three pixels. A recent study of Purpura et al. [6]
showed that the primary visual cortex, the first stage of cortical processing, extracts
multidimensional contextual dependencies in texture images.

Figure 103: Black-and-white textures with identical three-dimensional distributions.

Julesz’s early conjecture is still frequently cited to support the use of only two-
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dimensional co-occurrence statistics for machine-based discrimination of natural tex-
tures. Observations on vision made us suggest that the analysis of multidimensional
dependencies benefits computerized texture discrimination. The analysis of multi-
dimensional dependencies requires the use of multidimensional histograms, which is
complicated by rapid expansion of histograms with increasing number of pixels and
quantization levels. Histogram expansion, without increase in sample size, leads to
decrease in bin frequency and consequently, to decrease in the reliability of proba-
bility distribution approximations. At small sample sizes typical of texture analysis,
large multidimensional histograms must therefore be reduced by combining adjacent
bins. At present, there are no standard reduction methods for this purpose. Our
study has three main goals: comparison of multidimensional statistics with conven-
tional methods in texture classification, development of methods for reduction of
multidimensional histograms, and selection of multidimensional co-occurrence fea-
tures and parameters of the classifier with respect to their performance in texture
classification.

Our first experiments with both unreduced and reduced multidimensional his-
tograms showed that their performance may exceed that of two-dimensional his-
tograms [4,5]. Effective reduction of multidimensional histograms, leading to de-
crease in the classification error rate, was obtained using vector quantization with
the self-organizing map [3]. In this reduction method, the co-occurrence vectors of
pixel values in a predefined spatial arrangement are quantized using the reference
vectors of a trained two-dimensional self-organizing map. The reference vectors of a
trained map are adapted to the high-density regions in the co-occurrence distribu-
tion of the samples used for the training of the map. A reduced texture histogram
is obtained when the reference vectors of a trained map are used as histogram bins
to collect a two-dimensional map histogram of quantized vectors from a texture
sample. Texture classification is then carried out by matching sample histograms
with precomputed texture model histograms. With this approach we showed, both
for monochrome and color textures, that codebooks trained with the self-organizing
map algorithm provided significantly higher classification accuracy than two- and
multidimensional unreduced histograms.
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Figure 104: Seven-dimensional histograms reduced by the self-organizing map.

The self-organizing map preserves similarity relationships within the data so that
reference vectors near each other resemble each other. Thus, a histogram reduced
with the map is easy to visualize. This is demonstrated by Fig. 104 showing the map
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histograms of upper left and right textures in Fig. 102, sea fan and pebbles. The
reduced histograms represent seven-dimensional distributions of high-pass-filtered
co-occurrence vectors whose components were sampled within 3-by-3-pixel windows.
The local uniformity of the pebble texture is reflected in the high peaks in the
histogram. In the sea fan texture, the edges in different directions are represented
by separate histogram bins which results in a flat histogram.

A method for the selection of co-occurrence features and histogram size was also
developed. To minimize the expected quantization error, vector quantizer algorithms
tend to concentrate reference vectors along the directions with largest variance.
This arrangement of a limited number of reference vectors may not be the best for
classification. Our studies showed that whitening of co-occurrence distribution may
improve classification accuracy. The complexity of a texture classifier is determined
by the number and dimension of the reference vectors. The classification accuracy
decreases if the number of parameters becomes too high or too low. In our study,
the trade-off was found using a genetic algorithm to minimize the classification error
rate. The most recent results of this research appeared in [7], as well as in the D.Sc.
Thesis of Mr. Valkealahti (1998).

In conclusion, our studies suggest that texture classification is improved by increas-
ing dimensionality of co-occurrence features, that the self-organizing map is suitable
for the reduction of multidimensional co-occurrence histograms, and that the clas-
sification accuracies can be substantially improved by optimization of features used
in construction of features vectors and by optimization of classifier parameters.
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47 PicSOM: Self-Organizing Maps for
Content-Based Image Retrieval

Erkki Oja, Jorma Laaksonen, Markus Koskela, and Sami Brandt

Content-based image retrieval from unannotated image databases has been an ob-
ject for ongoing research for a long period. Digital image and video libraries are
becoming more common and growing in size as more visual information is produced
at a rapidly increasing rate. The technologies needed for retrieving and browsing
this accumulating amount of information are still, however, quite immature and in-
adequate for many practical applications. Many projects have been started in recent
years to research and develop systems for content-based image retrieval, of which
best-known being the Query By Image Content (QBIC) [1] developed at the IBM
Almaden Research Center.

We have started to develop methods to utilize the strong self-organizing power of the
Self-Organizing Map (SOM) |2] in unsupervised statistical data analysis to facilitate
content-based retrieval from large image databases [4,5]. Our experimental image
retrieval system is named PicSOM, bearing similarity to the WEBSOM document
browsing and exploration tool. PicSOM uses a World Wide Web browser as the
user interface and a hierarchical version of the SOM algorithm called Tree Structured
Self-Organizing Map (TS-SOM) [3] as the image similarity scoring method. The TS-
SOM is a tree-structured vector quantization algorithm that uses two-dimensional
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Figure 105: WWW-based user interface of PicSOM. The user has previously selected
five aircraft images. The system is displaying the user ten new images to select of.
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SOMs at each of its hierarchical levels. The implementation of PicSOM is based on
a general framework in which the interfaces of co-operating modules are defined.
Figure 105 shows a screenshot of the current web-based PicSOM user interface,
which can be found at http://www.cis.hut.fi/picsom/. A notable feature in PicSOM
is its ability to use multiple reference images, while most other current systems are
based on using a single reference image.

The retrieval approach in PicSOM is based on relevance feedback [6] adopted from
traditional information retrieval techniques. In relevance feedback, implicit infor-
mation of the human-computer interaction during previous queries is used to refine
the response on subsequent rounds. The image queries are thus iteratively refined
during the retrieval process, as the system exposes more images to the user and tries
to adapt to the user’s preferences regarding the similarity of images.

The system may use one or several types of statistical features for image querying.
Separate feature vectors can be formed for describing, for example, the color content,
various textures, and objects of the images. A separate TS-SOM is then constructed
for each feature vector set and these maps are used in parallel to calculate the best-
scoring similarity results. The feature selection is not restricted in any way and new
features can be added to the system later on.

Combining the results from several maps can be done in a number of ways. A
simple method would be to ask the user to enter weights for different maps and then
calculate a weighted average. This, however, requires the user to give information
which she normally does not have, as it is a difficult task to give low-level features
such weights which would coincide with human’s perception of images. Therefore, a
better solution is to apply the relevance feedback approach, in which the results of
multiple maps are combined automatically, using the implicit information from the
user’s responses during the query.

The rationale behind our approach is as follows: If the images selected by the user
map close to each other on a certain T'S-SOM map, it seems that the corresponding
feature performs well on the present query and the relative weight of its opinion
should be increased. This can be implemented by marking the images the user
has seen on the maps. The units are given positive and negative values depending
whether she has selected or rejected the corresponding images. The mutual rela-
tions of positively-marked units residing near each other can then be enhanced by
convolving the maps with a simple low-pass filtering mask. As a result, areas with
many positively marked images spread the positive response to their neighboring
map units. The images associated with these units are then good candidates for
next images to be shown to the user, if they have not been shown already.

Figure 106 shows a set of convolved feature maps during a query. The three images
on the left represent three map levels on the TS-SOM for a RGB color feature,
whereas the convolutions on the right are calculated on a texture map. The sizes of
the SOM layers are 4 x 4, 16 x 16, and 64 x 64, from top to bottom.

The research will continue along several lines: To increase PicSOM’s retrieval per-
formance, we need to add better feature representations. These will include color
histograms, color layout descriptions, shape features, and some more sophisticated
texture models. As the PicSOM architecture is designed to be modular and expand-
able, adding new features is straightforward. We are also developing quantitative
measures to compare the performance of different features and of PicSOM with
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Figure 106: An example of convolved TS-SOMs for color (left) and texture (right)
features. Black corresponds to positive and white to negative convolved values.

that of other content-based image retrieval systems. (Quantitative measures of the
image retrieval performance are, however, problematic due to human subjectivity.
Generally, there exists no definite right answer to an image query as each user has in-
dividual expectations. Furthermore, to study our method’s applicability on a larger
scale we shall need larger image databases. A vast collection of images is available
on the Internet, and we have preliminary plans to use PicSOM as an image search
engine for the World Wide Web.
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48 Learning and Intelligent Image and
Signal Analysis

Erkki Oja

The rapidly developing fields of neurocomputing and fuzzy logic, often combined
under the term “computational intelligence” or “learning and intelligent systems”,
have proved their efficiency in a number of practical, hard real-world problems. Es-
pecially, signal processing, image analysis, pattern recognition, control, and fault
diagnosis are the most central application fields of artificial neural networks and
fuzzy systems in industry. This was one of the applications fields chosen in the na-
tional technology program “Adaptive and intelligent systems applications”, launched
by the Finnish Technology Development Centre (TEKES) in 1994.

The research activities in this field were collected under the multi-partner project
“Learning and Intelligent Image and Signal Analysis” (LIISA), started in 1995 and
ending in February 1998. The LIISA consortium was composed of university and
VTT laboratories, selected for their proven ability in solving real world signal and
image processing problems by neural and fuzzy techniques and in the formalization
of the theoretical aspects in research; and industrial companies, selected for their
experience in application development using the modern methodologies, and also for
their knowledge of up-to-date industrial needs and capacities for offering challenging
practical problems for piloting cases.

The LIISA project group was relatively large, consisting of 12 research laboratories
and 15 Finnish companies in the fields of electronics, instrumentation, telecommu-
nications, pulp and paper, steel manufacturing, and marketing. For this reason, and
also because of the constraints set by the participating companies, it was divided in
four subprojects (the main responsible university shown in brackets):

e Adaptive image analysis (Helsinki U. Tech.)
e Neuro-fuzzy systems (Tampere U. Tech.)
e Intelligent signal analysis and the required component technology (Oulu U.)

e Sensus - intelligent utilization of sensors by neural computing (Lappeenranta
U. Tech.).

The major research partners were Helsinki University of Technology (Laboratory of
Computer and Information Science), Tampere University of Technology, Lappeen-
ranta University of Technology, and Oulu University. The responsible leader of the
project was E. Oja from Helsinki University of Technology.

The project applied neurocomputing and fuzzy logic in the estimation, preprocessing,
detection, and classification of tmages and signals. Typical applications were in
industrial fault diagnosis and classification. In most cases, the measurement data
was obtained from the industrial partners, and depending on the problem, this
data was preprocessed and analyzed using neurocomputing and fuzzy logic tools.
Because image and signal analysis is typically very application-oriented, the specific
pre- and postprocessing algorithms had to be adapted to the problem. The generic
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neural and fuzzy computing tools that were used throughout the project were the
Self-Organizing Map (SOM) and the Learning Vector Quantization (LVQ) classifier,
developed at Helsinki University of Technology by prof. T. Kohonen; the Principal
Component Analysis (PCA) and Partial Least Squares (PLS) preprocessing methods
and the related Averaged Learning Subspace Method (ALSM) classifier; the Multi-
Layer Perceptron (MLP) and the Radial Basis Function (RBF) neural classifiers;
and fuzzy logic including the trainable ANFIS neuro-fuzzy model. In the use and
development of all these neural and fuzzy computing methods, the participating
research groups have a long tradition. Thus also good quality software was already
available in the laboratories, which helped in the fast start-up of the pilot projects.
Some pilot cases concentrated on hardware implementations. It is characteristic of
the applications of real time image and signal processing that the computational
requirements are very high. Some applications will be impossible without dedicated
hardware, either based on VLSI or signal processors. Especially in the subproject
on Neuro-fuzzy systems, there was a special task on developing a neural computer
for industrial purposes, not only for the LIISA project but for the whole TEKES
technology program.

As for the main results, working pilot applications were realized in all the subprojects
to give guidelines to the companies for further development. The research phase
terminated officially in February 1998, and the project has now entered a phase
in which the companies are integrating the results into their own solution methods.
Several product development projects are under way in the participating companies.
Research experience in the field was an important criterion for choosing the uni-
versity partners, and one important output of the project were also the numerous
research papers in journals and conferences. In addition to the research papers,
several internal reports have been written within the project, and Ph. D. and M.Sc.
theses have been completed on the results. In our research group, two doctoral
degrees were attained within this project: Dr. Jorma Laaksonen in 1997 and Dr.
Jukka Iivarinen in 1998. Detailed reports on the substance of this research are given
as separate Sections in this report.

Starting in March 1998, a continuation of this consortium project was launched, the
IMPRESS project (Intelligent Methods for Processing and Exploration of Signals
and Systems). The total budget is about 11 million FIM and there are 17 companies
involved. Our laboratory is involved in this research effort in several tasks, like
on-line character recognition, fault analysis of a running paper web, and process
monitoring and modelling using the SOM. There are reports on all of these activities
in separate Sections.
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49 Neural Methods for Analyzing Financial
Information: How to Find the Enterprises
with High Bankruptcy Risk?

Kimmo Kiviluoto, Erkki Oja and Jyrki Maaranen

Assessing the probability of bankruptcy of an enterprise is one of the key issues in a
credit granting decision. Besides analyzing the strategy, personnel etc. of the firm,
the financiers usually perform an analysis of the financial statements using some
mathematical model. The standard approach has been to use a model based on
Linear Discriminant Analysis, but a wide variety of other statistical techniques have
also been proposed. Recently, models utilizing neural networks have been introduced
and compared with the “traditional” techniques.

The importance of the problem has made it something of a benchmark test for differ-
ent models. Usually, in these tests the problem has been reduced to a classification
of companies into healthy and non-healthy ones. There are two characteristics com-
mon to many of the reported studies: they are based on fairly small data sets, and
the proportion of the bankrupt firms is much higher in the data than in the total
population, from which the sample is selected. This makes the results somewhat
difficult to interpret — with small data sets, especially when the results are not cross-
validated, the differences in classifier performance cannot be clearly distinguished
from statistical noise, and with biased sample, one may also get an over-optimistic
view of the classifier performance on the total population.

Another aspect is trying to analyze and understand the bankruptcy phenomenon:
which factors contribute to an increased bankruptcy risk, or how does an increased
risk of bankruptcy manifest itself?

The present study is conducted in co-operation with Finnvera Ltd., a service com-
pany that specializes in financing and development of small and medium-sized en-
terprises in Finland. The material consists of a certain segment of Finnvera Ltd.’s
customer companies.

The study consists of two parts: qualitative analysis and classification. In the qual-
itative phase, the financial statements are analyzed with the Self-Organizing Map
(SOM), which forms a “non-linear regression” from the input space into a plane.
This makes it possible to visually examine the differences between firms that go
bankrupt and those that do not (see figure 107) |1, 2, 3, 4, 5, 6]. New developments
of the SOM are also discussed here, including three-dimensional SOM’s, and a hier-
archical model to analyze the year-to-year trajectories of an enterprise on the SOM
[7, 8,9, 10].

The classification of companies into healthy and non-healthy ones is done in two
different ways: trying to minimize the total number of misclassifications, and using
the Neyman-Pearson criterion, i.e. fixing the type I error (classifying a bankrupt
company erroneously as a healthy company) to a suitable value, and with this con-
straint minimizing the type II error (classifying a healthy company erroneously as a
bankrupt company). In practice, a classifier that is based on the Neyman-Pearson
criterion would be the preferred one: type I error is much more costly than type II
error, but because the proportion of non-bankrupt companies is higher, a classifier
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that minimizes the total number of misclassifications would pay more attention on
minimizing the type II errors.

The classifiers used in the quantitative study are the following: Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA), k-Nearest-Neighbour
Classifier (kNN), Learning Vector Quantization (LVQ), Self-Organizing Map (SOM),
and SOM-based Radial Basis Function Network (RBF-SOM). The modification of
the LV(Q algorithm to incorporate the Neyman-Pearson criterion is an original con-
tribution of this study; the other methods are used in a fairly standard manner. The
classification results are presented in tables 15 and 16 [1, 2, 6].

The results show that the Self-Organizing Map is a valuable tool in the qualita-
tive analysis of the financial statement data. In classification, the LVQ and kNN
classifiers performed best, when the aim was to minimize the total number of mis-
classifications. With the Neyman-Pearson criterion, the LDA classifier reached the
level of the LVQ and kNN, with the SOM classifiers coming close to these.

In the future, the focus will shift from annually given financial statements to more
frequent time series. A first step into this direction has been to analyze parallel sales
time series with Independent Component Analysis (ICA) [11].
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Table 15: Classification results using Neyman-Pearson criterion with different error I
values (per cent), based on financial statements given 2 ... 0 years before bankruptcy

Classifier error I target | total error st.dev. errorl st.dev. error II st.dev.
LDA 0,20 19,0  (1,6) 21,0 (6,2) 18,8  (2,3)
0,25 15,7 (1,0) 257  (54) 14,6 (1,5)
0,30 14,1 (1,0) 295  (5,1) 12,5 (1,4)
LVQ 0,20 20,5 (2,0) 219  (4,1) 20,3 (2,4
0,25 15,9  (0,8) 257  (5,4) 14,9  (1,6)
0,30 14,3 (1,0) 30,3  (4,5) 12,5 (1,5)
RBF-SOM 0,20 18,3  (1,2) 20,7 (5,6) 18,1 (1,7)
0,25 15,8 (0,8) 26,4 (6,1) 14,7 (1,3)
0,30 13,5  (1,0) 30,5 (6,4) 11,7 (1,6)
SOM 0,20 20,1 (1,9) 19,9  (6,3) 20,1 (2,6)
0,25 16,6  (1,3) 254 (6,7) 15,7 (2,0)
0,30 14,8  (0,4) 30,4 (6,8) 13,2 (0,9)
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Table 16: Classification results when minimizing the total number of misclassifica-

tions (per cent)
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50 Methods for Decision Support in Diabetes Care
Mikko Miakipis

In this project a data-driven approach for the decision support in diabetes care
using artificial neural networks based on data collected by the patient during normal
blood glucose self-monitoring was investigated. The focus was on insulin dependent
diabetes mellitus (IDDM).

Diabetes is a major chronic disease that affects a growing number of people in the
western industrialized countries. Recently, it has been shown that maintaining the
blood glucose level as close to normal as possible has a dramatic effect in reducing
the risk of long-term complications. As a major share of diabetes related health
care costs is directed to the care of complications, improved blood glucose control
would not only lead to improved quality of life for the patients and but potentially
to substantial health care cost savings. Because of the complexity of the treatment
required to maintain such benefical blood glucose levels, information technology
offers a number of possibilities in supporting diabetes care.

As a part of the research a categorization of different approaches in decision support
based on their applicability was proposed. The most potential areas of decision
support where information technology could be applied were identified as first, the
development of patient specific models for prediction of the blood glucose response
for any given treatment and second, the analysis of collected self-monitoring data
for therapy assessment. Neural network methods were futher developed on both
these areas.

To build a model of an individual patient’s glucose metabolism based on the mea-
surement data for blood glucose level prediction a two-level approach was devel-
oped. Missing blood glucose values were estimated using gaussian mixture models
and Expectation-Maximization (EM) algorithm. Multiply completed data sets were
then used to train a committee of feed-forward neural networks. The prediction per-
formance was evaluated using cross-validation. Evaluation results of the approach
using a preliminary model and self-monitoring blood glucose data are promising.
As an application of retrospective data analysis, the Self-Organizing Map (SOM)
was used for the clustering of daily therapy responses to find groups with similar
blood glucose profiles, constituting a novel approach in diabetes data analysis. The
SOM was found to be a particularly suitable method for forming the clustering
as it is reliable, it can deal with missing values and produces ordered results. The
method was again demonstrated on real patient data. In the tests, the formed groups
showed clear and clinically interesting differences in all patients. Further, it seems
that factors affecting the BG response, such as day-of-the-week and exercise, can
be linked to the formed groups. The method could be applied to facilitate therapy
analysis and discussion between patient and physician.

References

[1] Mékipaa, M. Neurocomputing methods in diabetes decision support. Master’s
Thesis, Helsinki University of Technology, Finland. December 1996.

193



51 Self-Organizing Map for Data Mining in
MATLAB: the SOM Toolbox

Juha Vesanto, Esa Alhoniemi, Johan Himberg,
Kimmo Kiviluoto, and Jukka Parviainen

The SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox) is a free func-
tion library for MATLAB 5 implementing the Self-Organizing Map (SOM) algorithm
which is a neural network algorithm based on unsupervised learning [1]. Basically it
performs a vector quantization and simultaneously organizes the quantized vectors
on a regular low-dimensional grid. The SOM has proven to be a valuable tool in
data mining because it is readily explainable, simple and easy to visualize. It has
been successfully applied in various engineering applications in pattern recognition,
image analysis, process monitoring and fault diagnosis |2, 3].

Thus far, the most useful implementation of the SOM and related tools has been the
SOM_PAK (http://www.cis.hut.fi/nnrc/nnrc-programs.html). It is a public
domain software package developed in the Neural Networks Research Centre of the
Helsinki University of Technology, written in C language for UNIX and PC en-
vironments. However, the Mathwork Inc.’s MATLAB has been steadily gaining
popularity as the "language of scientific computing". Moreover, MATLAB is much
better-suited for fast prototyping and customizing than the C language used in
SOM_PAK, as MATLAB employs a high-level programming language with strong
support for graphics and visualization. All of these properties are extremely impor-
tant in data mining. SOM Toolbox is an attempt to take full advantage of these
strengths and provide an efficient, customizable and easy-to-use implementation of
the SOM.

While closely related to SOM _PAK, SOM Toolbox is, however, a new set of pro-
grams. Both program packages have their relative strengths and weaknesses. The
advantages of SOM PAK are that it is written in ANSI C and thus runs in virtually
any environment. It is an order of magnitude faster than SOM Toolbox in training.
The advantages of SOM Toolbox are mainly in user friendliness and visualization
capabilities. If desired, the SOM _PAK files can be accessed with the Toolbox: it is
possible to first train the SOM with the SOM _PAK and then use the Toolbox for
visualization.

SOM Toolbox utilizes MATLAB structures and the functions are constructed in
a modular manner, which makes it convenient to tailor the code for each users’
specific needs. The use of structs allows the Toolbox to keep track of many kinds of
information that greatly facilitate the data mining process: labels associated with
individual data vectors, variable names, data normalization information and training
log.

The basic usage of the SOM Toolbox consists of three steps: SOM initialization,
training and visualization. To make things easier to the user, the high-level func-
tions require minimum number of parameters. For example, SOM size and training
parameters are, unless specified, determined automatically based on the training
data.
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» sM=som_init(data); %initialization
» sM=som_train(sM,data); %training
» som_show(sM); %visualization, see Figure 108

U-matrix (all components) blks/s

Map: SOM 14-Apr-1998, Data: system.data, Size: 25 12

Figure 108: U-matrix and three components planes visualized by the SOM Toolbox.
Hits from a small data set has been added on top of the U-matrix.

All this can also done through a graphical user interface. Around these three basic
steps, SOM Toolbox has a large number of functions that can be used for prepro-
cessing of the data and post-processing/analyzing the SOM.

We have found that the SOM Toolbox has greatly facilitated our research work.
Implementation in MATLAB allows fast prototyping and powerful visualization.
Building application specific tools on top of the Toolbox has proven to be easy.
Currently we are working on version 2 of the Toolbox. The major differences to
the old version will be in visualization, which will utilize the newest research results
in the field [4]. In addition, the package will include a larger set of supplementary
algorithms and tools. Version 2 should be available during 1999.
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