9 Speedup of SOM Computation

Teuvo Kohonen

9.1 Addressing Old Winners

If there are M map units (neurons) in the SOM, and for a certain statistical accuracy
one stipulates that the number of updating operations per unit should be some
constant (say, on the order of 100), then the total number of comparison operations
to be performed by exhaustive search of the winners is ~ M?2.

Koikkalainen [1,2] has recently suggested a speedup method in which a search-tree
structure, except its last layer, is replaced by pointers from data items to the next-to-
last layer. A more accurate search is then made among the last branches of the tree.
We will show below, however, that this idea is not restricted to tree structures, but
can readily be added to any SOM software package. The total number of comparison
operations can be made ~ M, provided that the training vectors have been given in
the beginning, i.e., their set is finite and closed.

Assume that we are somewhere in the middle of the training process, whereby the
last winner corresponding to each training vector has been determined; then the
training vectors can be expressed as a linear table, with a pointer to the correspond-
ing tentative winner location stored with each training vector (Fig. 11).

Training
vectors

Pointers

new winner

/\\/

Figure 11: Finding the new winner in the vicinity of the old one, whereby the old
winner is directly located by a pointer. The pointer is then updated

Assume further that the SOM is already smoothly ordered although not yet asymp-
totically stable. This is the situation, e.g., during the lengthy fine-tuning phase
of the SOM, whereby the size of the neighborhood set is also constant and small.
If, after inputting a particular input, updating of a number of map units is made
before the same training input is used again some time later, it may be clear that
the new winner is found at or in the vicinity of the old one. Therefore, in searching

46

for the best match, it will suffice to locate first the map unit corresponding to the
associated pointer, and then to perform a local search for the winner in the neigh-
borhood around the located unit. This will be a significantly faster operation than
an exhaustive winner search over the whole SOM. The search can first be made in
the immediate surround of the said location, and only if the best match is found at
its edge, searching is continued in the surround of the preliminary best match, until
the winner is one of the middle units in the search domain. After the new winner
location has been identified, the associated pointer in the input table is replaced by
the pointer to the new winner location.

For instance, if the array topology of the SOM is hexagonal, the first search might be
made in the 7-neighborhood of the winner. If the tentative winner is one of the edge
units of this neighborhood, the search must be continued in the new 7-neighborhood
centered around the last tentative winner (for the three map units that have not yet
been checked), etc.

This principle can be used with both the usual incremental-learning SOM and its
batch computing version.

A benchmark with two large SOMs relating to our recent practical experiments was
made. The approximate codebook vector values were first computed by the CNAPS
computer, whereafter they were fine-tuned by a general-purpose computer. During
this fine-tuning phase, the radius of the neighborhood set in the hexagonal lattice
decreased linearly from 3 to 1 units equivalent to the smallest lattice spacings, and
the learning-rate factor at the same time decreased linearly from 0.02 to zero. There
were 3645 training vectors for the first map, and 9907 training vectors for the second
map, respectively. The results are reported in Table 4.

Input dimensionality Map size Speedup factor Speedup factor

in winner search in training
270 315 43 14
315 768 93 16

Table 4: Speedup due to shortcut winner search.

The theoretical maximum of speedup in winner search is: 45 for the first map, and
110 for the second map, respectively. The training involves the winner searches,
codebook updating, and overhead times due to the operating system and the SOM
software used. The latter figures may be improved by optimization of computing.

9.2 Estimating Initial Values for a Large SOM

Several suggestions for “growing SOMs” (cf., e.g. [3-5]) have been made. The detailed
idea presented below has been optimized in order to make very large maps, and is
believed to be new. The basic idea is to estimate good initial values for a map that
has plenty of units, on the basis of asymptotic values of a map with a much smaller
number of units.

As the general nature of the SOM process and its asymptotic states is now fairly well
known, we can utilize some “expert knowledge” here. One fact is that the asymp-
totic distribution of codebook vectors is generally smooth, at least for a continuous,

47

smooth probability density function (pdf) of input, and therefore the lattice spacings
can be smoothed, interpolated, and extrapolated locally.

As an introductory example consider, for instance, the one-dimensional SOM and
assume tentatively a uniform probability density function (pdf) of the scalar input
in the range [a,b]. Then we have the theoretical asymptotic codebook values for
different numbers of map units that approximate the same pdf, as shown in Fig. 12.

|
1
a WO WY WO W b

I 1| | | | | | | 1| I
a l'1(110) “(510) p‘(]-:I[.)O) b

Figure 12: Asymptotic values for the p; for different lengths of the array, shown
graphically

Assume now that we want to estimate the locations of the codebook values for an
arbitrary pdf and for a 10-unit SOM on the basis of known codebook values of the
5-unit SOM. A linear local interpolation-extrapolation scheme can then be used.
For instance, to interpolate ugm) on the basis of ,ugf’) and ,ugs), we first need the
interpolation coefficient A5, computed from the two ideal lattices with uniform pdf:

P = X + (1= As)” (73)

from which Ay for ,uglo) can be solved. If then, for an arbitrary pdf, the true values

of ,u’gf’) and o/ ;(35) have already been computed, the estimate of the true /llg,(m) is

i = oy + (1= Xy (74)
Notice that a similar equation can also be used for the ezxtrapolation of, say, ugm) on
the basis of /ng’) and ,ugs).
Application of local interpolation and extrapolation to two-dimensional SOM lat-
tices (rectangular, hexagonal, or other) is straightforward, although the expressions
become a little more complicated. Interpolation and extrapolation of a codebook
vector in a two-dimensional lattice must be made on the basis of vectors defined at
least in three lattice points. As the maps in practice may be very nonlinear, the best
estimation results are usually obtained with three reference vectors.
Consider a pdf that is uniform over a two-dimensional rectangular area, approxi-
mated by two different overlapping “ideal” two-dimensional SOM lattices with the
codebook vectors mgd) € R?, mgs) € N2, mg-s) € %2, and m,(f) € R? its nodes, where
the superscript d refers to a “dense” lattice, and s to a “sparse” lattice, respectively. If

m!” m'” and m” do not lie on the same straight line, then in the two-dimensional

7])
signal plane any mgd) can be expressed as the linear combination

m!? = a,m!® + 5hm§-s) +(1—ap— B)m? | (75)

where «j and (3, are interpolation-extrapolation coefficients. This is a two-
dimensional vector equation from which the two unknowns a4, and 35, can be solved.

48

Consider then a pdf in a space of arbitrary dimensionality and two SOM lattices
with the same topology as in the ideal example. When the true pdf is arbitrary,
we may not assume the lattices of true codebook vectors as planar. Nonetheless we
can perform a local linear estimation of the true codebook vectors m’ 51d) € R" of the
“dense” lattice on the basis of the true codebook vectors m’z(s), m’g-s), and m’ 5:) e R
of the “sparse” lattice.

In practice, in order that the linear estimate be most accurate, we may stipulate
that the respective indices h, 4, 7, and k are such that in the ideal lattice mgs), mg-s),
and mgf) are the three codebook vectors closest to mgd) in the signal space (but not
on the same line). With «;, and), solved from (75) for each node h separately we
obtain the wanted interpolation-extrapolation formula as

fnlh(d) = ahm'gs) =+ ﬂhm'gs) + (1 — Op — ﬂh)m'g) . (76)

Notice that the indices h,i,7, and k refer to topologically identical lattice points
in (75) and (76). The interpolation-extrapolation coefficients for two-dimensional
lattices depend on their topology and the neighborhood function used in the last
phase of learning. For the “sparse” and the “dense” lattice, respectively, we have
to compute first the ideal two-dimensional codebook vector values. As the closed
solutions may be very difficult to obtain, the asymptotic codebook vector values
may be solved by simulation. If the ratio of the horizontal vs. vertical dimensions
of the lattice is H : V, we may draw two-dimensional input vectors at random from
a uniform, rectangular pdf, the width of which in the horizontal direction is H and
the vertical width of which is V.

References

[1] P. Koikkalainen. Progress with the tree-structured self-organizing map. In Proc.
ECAI 94, 11th European Conf. on Artificial Intelligence, A. Cohn (ed.), John
Wiley & Sons, pp. 211-215, 1994.

[2] P. Koikkalainen. Fast determenistic self-organizing maps. In Proc. ICANN, Int.
Conf. on Artificial Neural Networks, Paris, France, vol. 2, pp. 63-68, 1995.

[3] J.S. Rodrigues and L.B. Almeida. Improving the learning speed in topological
maps of patterns. In Proc. INNC"90, Int. Neural Networks Conference. Kluwer,
Dordrecht, Netherlands, pp. 813-816, 1990.

[4] B. Fritzke. Let it grow - self-organizing feature maps with problem dependent cell
structure. In Artificial Neural Networks, T. Kohonen, K. Makisara, O. Simula,
J. Kangas (eds.). North-Holland, Amsterdam, Netherlands, pp. I-403-408, 1991.

[5] J. Blackmore and R. Miikkulainen. Incremental grid growing: Encoding high-
dimensional structure into a two-dimensional feature map. In Proc. ICNN’93,
Int. Conf. on Neural Networks. IEEE, Piscataway, NJ, pp. 1-450-455, 1993.

49

