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In the practical SOM algorithms, selection of the winner by arithmetic computation
is no problem. However, as the biological neural networks must implement this
computation by dynamical components and networks with simple structures, special
solutions compatible with the real neurophysiology must then be sought.

The winner index ¢ in the biologically motivated SOM was defined by

¢ = argmax{m; x} . (59)

In modeling, the dot products m; x correspond to the total postsynaptic activations
I; of the neurons. They are formed directly at the inputs of the neurons. Therefore,
it will remain necessary to study under what conditions a physiologically plausible
simple network structure can select the largest of its scalar inputs (activations), i.e.,
implement the winner selection. Such a circuit is called the “winner-take-all” (WTA)
network. For an early approach to this problem, cf. [1,2].

Our analysis is potentially applicable to any network in which the connections com-
ing to each neuron can be grouped into external input, self-feedback, and feedback
from the other neurons within the network (Figure 4). We used a neuron model
introduced earlier [5|, which describes changes in the activity, averaged spiking fre-
quency 7, of a cell as a function of the external inputs to the cell, I, and a nonlinear
convez loss function +:

dn/dt =1—(n) . (60)

The nonlinear loss function represents the resultant of all losses and the effect of
the refractory time of the cell. (To be exact, equation 60 holds only when 1 > 0 or
when the right-hand side is positive, since spiking activity must always be positive.)
In the simplest network that we analyze, the input to neuron ¢ consists of the
external input coming from outside of the network, I7, self-feedback from the neuron
to itself, g*o(n;), and the feedback from the other cells, g~ >, o(n;). Here g* and
g~ are coefficients that determine the strength of the connections, and o models
the combined effects of the transfer functions of the possible interneurons and any
saturating nonlinearities on the signals. The dynamical system formed of the neural
network can be described with the following set of differential equations:

dni/dt = I + g% o(n) + 9~ > o(m) —v(m) , (61)

1=1,...,N, where N is the number of neurons in the network.

This simple network type had already been analyzed previously [6], but now it
turned out that the analysis could be generalized [4] to networks with several types
of even nonidentical feedback connections (interneurons). To make the analysis
most general the system of differential equations generalized from (61) was dressed
mathematically into the form of a certain class of dynamical systems,

dy;/dt = A(y)[ai(yi) + b(y)] , (62)

37



input signal

I
sjeFoNe

\ Q - —

O

activity

—>  excitatory
—»  inhibitory

Figure 4: A schematic winner-take-all network. The neurons compete through the
negative (inhibitory) feedback connections. The neuron receiving the largest input
will be the only neuron that remains active after the initial transient activity. Only
the connections coming to neuron ¢ are shown.

where A, a;, and b are certain functions, and ¥ is a vector formed of all the state
variables y;. Convergence properties of these types of systems had already been
analyzed in [3].

It was then possible to prove that if certain restrictions are placed on the functions
A, a;, and b, only one of the state variables y; remains above a threshold, whereas
the rest of them remain below a lower threshold. The lower threshold is zero for the
neuron models. This is the essence of any WTA function.

When this more general analysis [4] was applied to the more general neural network
models, conditions under which the networks have the WTA property were obtained.
The most important conditions concern the external input: one of the neurons must
receive the largest input, and all the other inputs must lie within a sensible range
that does not depend on the largest input; otherwise also some other neurons may
become active. In the beginning of the competition the winner must also be at least
as active as the other neurons, which is the case, e.g., in the more complete network
model described later in this section. The other, very mild conditions concern the
form and steepness of the loss-function v and the conductance function o, and the
strengths of the feedback connections g* and g~.

The essential novelty in our analyses was their generality. Nevertheless, the models
incorporated the common assumption that “sigmoidal”-type nonlinear transfer func-
tions (function o in 61) are adequate for modeling the effects of interneurons. It was
possible, however, to further generalize the analyses by modeling the interneurons
explicitly; the system of differential equations (61) then includes one extra equa-
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Figure 5: a Auxiliary slower inhibitory interneurons (marked with (; in the schematic

network) inactivate the active neuron after a brief interval, whereafter the compe-
tition may start again. If the inputs have changed meanwhile the previous winner

was active, the new winner will be the one receiving the largest input. Otherwise
the “runner-up”, the neuron receiving the second-largest input will win. b A sample

period of the activities of the neurons in a 20-neuron network.
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tion for each interneuron. It is not possible, however, to guarantee in general that
such models converge, but we were able to give general conditions under which the
convergent models are WTA networks.

The WTA networks in which the winner remains active after it has become active are
of course not sufficient models of the activity in physical neural networks. We coined
such networks weak WTA circuits. In practice a network must be able to follow the
changing activity it receives — we called networks in which a new unit becomes
active when the inputs change strong WTA networks. We have demonstrated that
the networks we studied are strong WTA networks if there are certain auxiliary
slower interneurons in the network. These neurons provide negative feedback that
in effect resets the activity of the winning neuron after a certain period of time
(Figure 5).

We may summarize our analyses by concluding that the network structure of the
type schematized in Figure 4 has been shown to be very robust in implementing the
competition that is a necessary precursor of the Self-Organizing Map, or in fact any
competitive learning application.
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