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A central problem in statistics is fitting a model which is linear in the parameters to
a set of observation points. Examples are regression, curve fitting, time series mod-
elling, digital filtering, system theory, and automatic control. The usual approaches
are least squares (LS) or total least squares (TLS) regression. The difference between
these approaches is shown in Fig. 52 in a simple line fitting example.

The TLS criterion is mathematically equivalent to finding the minor component of
the input points, based on the eigenvector of the input covariance matrix corre-
sponding to the smallest eigenvalue. In impulsive and colored noise environments,
or in the presence of outliers, these methods are not optimal, however. Then robust
fitting, based on a non-quadratic criterion, may give better results than the usual
TLS.

The main objection to the use of robust fitting in practice has been a computational
one: while the TLS criterion can be solved in closed form and the minor eigenvector
can be computed with standard numerical techniques like the singular value de-
composition (SVD), this is no longer true for more complicated criterion functions.
An iterative gradient descent algorithm is necessary. Neural networks can be an
advantage here [1,2,3].

Figure 52: To fit a set of data points by a line, LS minimizes the sum of the squared
lengths of the vertical distances e;, whereas TLS minimizes the sum of the squared
lengths of the distances d; perpendicular to the estimated line.

Referring to Fig. 52, it holds d; = |wTx;|/||w||. Instead of using the TLS criterion,
one may use an alternative criterion by minimizing the sum of certain functions of
variable d; instead of squares:

Trw) = 1/N'Y f(ds). (93)

Generally, function f(d;) would be a monotonically increasing function of its non-
negative argument d;. A meaningful choice is an even function, increasing slower
than d?. This will decrease the effect of strong outliers on the solution.

Replacing the finite sum in eq. (93) by the theoretical expectation of f(w?x) and
using a Lagrange multiplier for the constraint ww = 1 gives the following cost
function:

Jo(w,\) = B{f(w'x)} +1/2\(1 — w"w) (94)
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whose solution by an on-line gradient descent algorithm gives the following neural
learning rule:

Wit = Wi — arlg(ye)xk — (9(ur)ye + 1 — Wi W) wy] (95)

where y;, = Wi Xy, g(y) is the derivative of f(y), and a4 is a positive learning rate.
An especially suitable function for robust TLS fitting is f(y) = %lncosh(ﬂy), giving
the usual sigmoid g(yx) = tanh(Byx) as the neural network learning function. We
call this the Nonlinear Minor Component Analysis (NMCA) algorithm.
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Figure 53: An experiment of surface fitting. Left: Gaussian noise. Right: outliers.

In an experiment of surface fitting 2], a data set D, was used
D, = {(zs,yi,2i),1 =1,...,993)}
coming from an ellipsoid
0.04z% + 0.0625y% + 0.11112% = 1.

Gaussian noise or six strong outliers were added to the sample points, as shown
in Fig. 53. Like in line fitting, the problem is now to fit a parameterized model
w12? +woy? +wsz? = 1 to the point set D, by estimating the parameters w1, wy, ws.
The results indicate that the error in the estimated parameters using the Nonlinear
MCA algorithm (95) was about one third of the error obtained with conventional LS
estimation in the Gaussian noise case and about 6 per cent in the case of outliers.
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