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The starting point of this research project on Independent Component Analysis is
the development of neural learning rules for a single unit [9,11,12]. Using these learn-
ing rules, a neural unit learns to separate from a multi-dimensional input signal one
of the independent components, or a direction that has certain information-theoretic
properties. This research can be considered a direct logical continuation of the orig-
inal work by Oja on one-unit PCA [15], and shows clearly the connection between
ICA and PCA. These one-unit learning rules are especially useful in exploratory
data analysis, where they can be used to find single directions in the data space
that show the most interesting and independent components in the data space.

For example, assuming that the observed signal x(t) is whitened, or sphered, we
have obtained the following very simple learning rule for separating a sub-Gaussian
independent component (i.e., an independent component of negative kurtosis):

Aw(t) o x(t)g(w(t) x(t) — w(t) (89)

where the function g is a simple polynomial: g(u) = au — bu® with a > 1 and b > 0,
w is the weight vector a neuron, and x is its input. This a very simple example of
learning rules that are called Hebbian (or Hebbian-like), and which constitute one
of the main paradigms in neural computing. In addition to learning rule (89), which
separates sub-Gaussian independent components, one needs also a learning rule for
separating super-Gaussian independent components (i.e., independent components
of positive kurtosis). To achieve this, we have derived another learning rule:

Aw(t) oc bx(t)(w(t)"x(t))* — allw(t)[|"w(t). (90)

where ¢ > 0 and b > 0 are constants. This is also a Hebbian learning rule.

We have also developed a fast numerical method to implement the one-unit learning
rules, the FastICA algorithm [10]. This method is based on a fixed-point iteration
that usually speeds up the computations needed in ICA by a factor of 10 to 100.
The FastICA algorithm is in a way a combination of the two preceding learning
rules; the weight vector w is updated as follows:

w*(t) = BE{x(w(t — 1)"x)*} — 3w(t — 1) (91)
w(t) = w(@)/[[w* (1)l (92)

where the expectation is, in practice, estimated using a large sample of x vectors.
The difference from the preceding learning rules is basically that instead of using
the inputs one-by-one, the FastICA algorithm first collects a batch of input data,
and then uses all those data in the same learning step, in the computation of the
average. The fast convergence of this fixed-point algorithm is illustrated in Figure
1, in which four images were recovered from four mixtures using altogether only 30
iterations. Another convenient property of this algorithm is that the same algorithm
separates both super-Gaussian and sub-Gaussian independent components.
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Figure 49: Three photographs of natural scenes and a noise image were linearly
mixed to illustrate our algorithms. The mixtures are depicted on the left. On the
right, the images recovered by the FastICA algorithm are shown. Only 7 iterations
of the FastICA algorithm were required, on the average, for separating each image.

To separate several independent components, one can construct a network of several
neurons, each of which learns according to the learning rules given above, and then
add a feedback term to each of those learning rules.

The above learning rules, which are based on finding the extrema of kurtosis, have
also been generalized for a large class of criteria of non-Gaussianity [12,2,5,9]. This
means that the cubic non-linearity in the learning rules can be replaced by almost
any other non-linearity. (Of course, some other changes are then also necessary.)
Thus one obtains algorithms that often perform the ICA decomposition in a much
more reliable and accurate way, according to such statistical criteria as asymptotic
variance and robustness [3,9]. Also, the FastICA algorithm can be modified so that
it works even when the data is corrupted by Gaussian noise [7].

The development of the FastICA algorithm has enabled us to apply ICA on data
sets that are of a very high dimension. One example is image processing [1,8|, where
the FastICA algorithm has been used with success. Taking small windows of ordi-
nary, real-life photographs, we decomposed the images into small components whose
occurence is as independent from each other as possible. Some image components
are depicted in Figure 2. Such a decomposition is likely to have interesting applica-
tions in image data compression, pattern recognition, and other domains of image
processing. There are two reasons for this. First, such a decomposition resembles
closely a so-called sparse coding. In sparse coding, one finds a coding method for
the data that has certain interesting statistical properties, and fits with some neu-
rophysiological measurements on the neural processing of sensory data. Second,
the components found are reminiscent of so-called wavelets, which are used in some
highly efficient techniques for image compression.

Based on the features given by ICA, we have developed a new method for image
denoising [13,4] . This is based on modeling the noisy data by a noisy version of the
ICA data model, and then estimating the original image by maximum likelihood
estimation of the model. This results in the application of a (soft) thresholding
operator on the features described above. Figure 3 shows an example of the appli-
cation of this method, called sparse code shrinkage. The advantage of this method
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Figure 50: Image feature extraction by ICA. The FastICA algorithm was applied
on image data, this time using small sub-windows of images as the data. Thus
images were decomposed into hypothetical components whose occurrences are rather
independent from each other. This figure shows some such components. One can see
that the components define certain features that are often quite local, and resemble
bar or edge detectors.

Figure 51: Image denoising by sparse code shrinkage. Using the theory of noisy ICA,
one we have developed an image denoising method. This leads to a thresholding of
the coefficients of the wavelet-like features shown in Figure 2.

over wavelet methods is that it is completely adaptive: both the features and the
involved thresholding (shrinkage) functions are adapted to the statistical properties
of the data.

We have also applied these methods on analysis of financial time series [14]. We
used data that represented the simultaneous cash flow at several stores belonging
to the same retail chain. ICA detected factors that affect the cash flow of all the
stores. When the effect of these “fundamental factors” is removed, the impact of the
actions of the management became more visible.
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