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Both Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) |2] attempt to find a coordinate transformation of a collection of multivariate
data, by which the new coordinates or feature dimensions have some desirable prop-
erties in terms of data compression and representation. In the case of classical PCA,
the new coordinates are uncorrelated and an optimal linear compression is achieved
in the minimum mean square sense. In the case of ICA, the new coordinates are
statistically independent, which means that a very efficient data representation is
possible.

An especially interesting connection of ICA exists to the problem of Blind Sig-
nal Separation |1,3]. A mathematical definition is the following: an L-dimensional
vector-valued discrete signal x;, = [z4(1),...,74(L)]T at the discrete time k is as-
sumed to be of the form

M
X = Asp+n,= ) si(i)ai) + ng. (84)

i=1
Here s, = [sg(1),...,s,(M)]" is a source vector consisting of M wunknown
source signals (independent components) sg(i) (¢ = 1,...,M) at time k. A =
[a(l),...,a(M)] is a fixed L x M unknown mixing matrix whose columns a(i) are

the basis vectors of ICA, and n; denotes possible corrupting additive noise. The
noise term ny is often omitted from (84), because it is usually impossible to distin-
guish it from the source signals. Instead of time, k£ can also stand for the spatial
location of a pixel, like in the example of Figs. 47, 48.

The problem is to find the mixing matrix A, when only a sample x;, k =1, 2, ... of
the mixtures is available.

The following assumptions are typically made [1]:

1. A is a constant matrix with full column rank. Thus the number of mixtures
L is at least as large as the number of sources M, which is usually assumed
to be known in advance. If M < L, the data vectors x; roughly lie in the
M-dimensional subspace spanned by the basis vectors of ICA.

2. The source signals sg(z) (¢ = 1,..., M) must be mutually statistically inde-
pendent at each time instant k, or as independent as possible. The degree of
independence can be measured using suitable constrast functions.

3. Each source signal s(7) is a stationary zero-mean stochastic process. Only one
of the source signals si(i) is allowed to have a Gaussian marginal distribution.

Note that very little prior information is available for the matrix A. Therefore, the
strong independence assumptions are required to fix the ICA expansion (84). Even
then, only the directions of the ICA basis vectors a(i), i = 1,..., M, are defined.
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To get a more unique solution, one can normalize the variances of the source signals
to unity.
In the techique called blind source (or signal) separation, one tries to extract the

unknown waveforms {s,(7)}, ¥ = 1,..., of the independent source signals in (84)
from the data vectors x; by a linear transformation
Y = Bxka (85)

where B is called a separating matrix. The elements of y; approximate the source
signals sg(¢). Such blind techniques are useful for example in array processing,
speech enhancement, and communications. A typical example is the “cocktail party
effect”: suppose we can record the mixed voices from a party by several microphones.
The blind source separation would give the voices of the individual speakers.

In several blind separation algorithms, the data vectors x; are preprocessed by
whitening (sphering) them, so that their covariance matrix becomes the unit ma-
trix. After whitening, the separating matrix B can be assumed orthogonal. This
auxiliary constraint makes the separating algorithms simpler, and also normalizes
the variances of the estimated sources automatically to unity.

A practical difficulty in designing source separation and ICA algorithms is reliable
verification of the independence condition. It is impossible to do this directly because
the involved probability densities are unknown. Therefore, approximating contrast
functions which are maximized by separating matrices have been introduced [2]. As
an example, for prewhitened input vectors it can be shown that the relatively simple
contrast function based on the fourth-order cumulant or kurtosis

Z|Cum @)1 = Z\E{y =3B {y(5)*} | (86)

is maximized by the separating matrix B in model (85), if the sign of the (unnormal-
ized) kurtosis cum[s(7)*] is the same for all the source signals s;(7), i =1,..., M.
A 3-layer feedforward network was proposed in [4] for ICA and blind source separa-
tion. Each of the 3 layers performs one of the processing tasks required for complete
ICA: 1. whitening; 2. separation; and 3. estimation of the mixing matrix. Any of
these three tasks can be performed either neurally or conventionally.

For whitening, simplified versions of neural PCA learning rules are convenient. For
separation, we can use the nonlinear PCA rule [5]:

Wi = Wi+ e — Wig(ye)lg(yi)- (87)

with py the learning rate, x; the mixture vectors that are now assumed whitened,
and yr = WFx, the output vector from a neural layer whose weights are given by
matrix Wy. The function ¢(.) is a suitable nonlinearity, e.g. the hyperbolic tangent
function. During learning, the weight matrix W, converges to a (transposed) sepa-
rating matrix [5], and the elements of yy, or the outputs from the neural layer, tend
to the source signals.

A connection of nonlinear PCA to some other statistical and information theoretic
criteria, as well as the learning rules, are discussed in another Section of this report.
In 1995, we also developed another so-called bigradient algorithm 6], which is applied
for learning the orthonormal separating matrix B as follows:

Wit = Wi+ uexkg(yr) + 7 Wie(I — W, Wy). (88)
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Here v is another gain parameter. usually about 0.5 or 1 in practice. Again, the
weight matrix W} tends to the separating matrix B.

Since 1996, new algorithmic development into the ICA and BSS problem has con-
centrated on the fixed-point learning rules, implemented in the FastICA software
package (see the section on one-unit and fixed point ICA algorithms). Also sev-
eral extensions have been studied recently, like nonlinear mixing models, robust
algorithms, and relations with complexity criteria - see the separate section on ex-
tensions.

Our ICA / BSS ideas have been applied to a number of artificial and real signals, e.g.
to separate 10 speech signals from their mixtures. As an illustrative example, Fig.
47 shows 9 mixtures of 9 natural images. This means that the 9 original images
(not shown) have been multiplied pixel-wise by randomly chosen coefficients and
added together, to obtain one of the mixtures shown here. Different multiplying
coefficients have been used for the 9 different mixtures. The 9-dimensional mixture
vectors Xy in eq. (84) are obtained by collecting the gray levels of pixels in the 9
mixture images at the same pixel location. Thus £k is a running index for the pixel
location. In this experiment, there was no additive noise in the mixtures. These
mixture vectors where whitened by PCA and input to the nonlinear PCA learning
rule, eq. (87). The outputs after learning, again collected into images, are shown in
Fig. 48. These are quite close to the original images used in forming the mixtures.
Note that no information whatsoever was used on the mixing coeflicients (elements
of matrix A) or the original images in computing these results. The only information
the algorithm had were the mixtures of Fig. 47.

More conrete applications are in biomedical signal analysis, financial time series
analysis, and feature extraction for digital images. All of these are covered in their
separate Sections in this report.
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Figure 47: Mixtures of 9 natural images.
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Figure 48: Separated images found by
and the nonlinear PCA algorithm.
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