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In this work, which was our earlier principal research topic in 1994 and before
that, we have developed several different relatively simple nonlinear and robust
generalizations of neural PCA methods.

A common rigorous approach to these developments is to derive new unsupervised
neural learning algorithms by considering generalizations of the optimization criteria
leading to the standard PCA solution. There exist several different optimization
problems which lead to a standard PCA solution. These include:

1. Maximization of linearly transformed variances E{[w(i)Tx]|?} or outputs of
a linear network under orthonormality constraints (WZW = I). Here x is
the input (data) vector, w(i) is the weight vector of i-th neuron, and W =
w(l),...,w(M) is the weight matrix of a PCA network.

2. Minimization of the mean-square representation error E{|| x — % ||?}, when
the input data x are approximated using a lower dimensional linear subspace
x = WW'x.

3. Uncorrelatedness of outputs w(i)?x of different neurons after an orthonormal
transform (WITW = 1).

4. Minimization of representation entropy.

In [2,3], we have derived a number of robust and nonlinear PCA learning algo-
rithms from these generalized criteria for both symmetric and hierarchic network
structures, and shown their relationships to existing neural PCA algorithms. In
particular, generalization of the first variance maximization criterion leads for sym-
metric orthonormality constraint to the so-called Robust PCA rule:

Wi = Wi+ [l — W, W xg(x) Wy,). (81)

Here and later on the nonlinear odd function g(¢) is applied separately to each
component of its argument vector. The index k denotes iteration or sample number,
and p is the learning parameter at iteration k. This rule has been shown to be useful
in clustering, projection pursuit, and robust PCA. It is often useful to preprocess
the data vectors x;, by whitening (sphering) them. After this, the learning rule (81)
responds directly to higher-order statistics in the data.

Similarly, generalization of the second optimization problem, minimization of the
mean-square representation error, leads to so-called Nonlinear PCA rule:

Wi = Wi+ p[xe — Wig(ye)lg(yi ), (82)

where the output vector y, = W7x;. We have shown in several papers, summarized
in [4], that with prewhitening the learning algorithm (82) can be successfully applied
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to blind separation of certain type source signals. The blind separation problem is
discussed in several other sections of this report. The nonlinear PCA rule provides
an especially simple neural solution to this difficult problem. This has been analyzed
rigorously in [4,10].

The learning rules (81) and (82) were proposed on intuitive grounds already in |7].
Later on, their relationship to optimization problems were made rigorous in the
theoretical papers [2,3]. We have also developed a number of other algorithms using
this optimization based approach to nonlinear PCA; see [2,3,6]. In particular, the
so-called bigradient algorithm developed and analyzed in [6] provides a versatile
tool. In various forms, it can be applied both to robust PCA problems, making
the results insensitive to outliers in the data and inpulsive noise, as well as to blind
source separation.

We have also developed fast converging approximative least-squares algorithms [5]
for minimizing so-called nonlinear PCA criterion given by

J(W) = || x - Wg(x"W) |I* (83)

These least-squares algorithms can again be applied to blind separation of sources
after prewhitening of the input data [5]. - The same criterion (83) is used as a
starting point in deriving the Nonlinear PCA rule (82), too.

Recently, we have derived new results on the nonlinear PCA criterion (83) in blind
source separation and related problems [8,9]. The criterion can be expressed for
prewhitened data in a simple form. This allows an easy comparison with other cri-
teria used in blind signal processing and independent component analysis, including
cumulants, Bussgang criteria, and information theoretic contrast functions. The
results show the close connection of the nonlinear PCA learning rule (82) with cer-
tain well-known other algorithms used for blind source separation, and help in the
optimal choice of the nonlinearity [8,9].

Still other theoretical results include stability considerations of these algorithms.
In [1], a rigorous stability condition has been derived for PCA subspace rule, and
the stability of the robust algorithm (81) is shown to be better if the the nonlinear
function ¢(t) grows less than linearly.
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