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3.1 Introduction

In the classical vector quantization (VQ) the objective is usually to approximate n-
dimensional real signal vectors x € R" using a finite number of quantized vectorial

values m; € R*,s = 1,..., N called the codebook vectors. One may want, e.g., to
minimize the functional called the distortion measure:
Eyq = [ Ix—mdp(x)dx, (23)

where r is some real-valued exponent, the integral is taken over the complete metric
X space, m, is the m; closest to x, i.e.,

¢ = argmin{[x — m,||} (24)

the norm is usually assumed Euclidean, p(x) is the probability density function
of x, and dx is a shorthand notation for the n-dimensional volume differential of
the integration space. All the values of x that have the same m, as their nearest
neighbor are said to constitute the Voronoi set associated with m.. Under rather
general conditions one can determine the point density ¢(x) of the m; as in the
following expression |2, 8|:

¢(x) = const. [p(x)nLJrr] . (25)

A related problem occurs with the self-organizing map (SOM), which resembles VQ,
but in which the m; are ordered in R" according to their similarity. The SOM carries
out a vector quantization, too, but the placement of the m; in the signal space is
restricted by the neighborhood relations.

A long-standing problem has been whether the SOM model vectors could be deter-
mined by the minimization of some objective function. For instance, Kohonen, 1991
[3] discussed the distortion measure

= [ Y halx—mil?pode =3 [ 3 hyllx —my[*p(x)ix . (26)

where V; is the Voronoi set around m;. The gradient of E consists of two terms :

oF
ij

= G+H, (27)

where G is obtained if the integration borders are kept fixed and the differentiation
with respect to m; is carried out in the integrand only, whereas in the computation
of H, the integrand is held constant and the integration borders are let to vary when
the m; differential is taken.

In order to avoid the evaluation of the above integrals, one may try to resort to the
classical method called the stochastic approzimation [7]. If the inputs x are obtained
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as a sequence of samples {x(¢)}, one can compute at every time ¢ the best tentative
estimate of m; so far, called m;(¢). The expression

Eq(t) = 3 heillx(t) — mi(#)]|* (28)

is taken as the sample of function F at time ¢. Following Robbins and Monro, at
time t we approximate the gradient of E with respect to m; by the gradient of F(¢)
with respect to m;(¢). Then

mi(t+1) =m0~ (3) gggg (29)

with ¢ a small number. However, it is not yet clear how good an approximation
the Robbins-Monro process is in this case. We have now shown that the point
density derived from the SOM algorithm and the point density derived from the
SOM distortion measure are different already in the one-dimensional case.

3.2 Point Densities in a Simple One-Dimensional SOM

3.2.1 Asymptotic State of the One-Dimensional Finite-Grid SOM Algo-
rithm

Consider a series of samples of the input z(¢t) € R, t = 0,1,2,... and a set of k
model (codebook) values m;(t) € R, t =0,1,2,..., whereupon ¢ is the model index
(¢=1,...,k). For convenience assume 0 < z(t) < 1.

The original one-dimensional self-organizing map (SOM) algorithm with at most
one neighbor on each side of the best-matching m,; reads (Kohonen, 1997):

mi(t+1) = my(t) +e(t)[z(t) — my(t)] for i € N,,
mi(t+1) = my(t) for i ¢ N, ,
¢ = argmin{|z(t) —m,(?)[} , and
N. = {max(l,c¢—1),¢,min(k,c+ 1)}, (30)
where N, is the neighborhood set around node ¢, and £(t) is a small scalar value

called the learning-rate factor. In order to analyze the asymptotic values of the m;,
let us assume that the m; are already ordered. The Voronoi set V; around m; is

forl<i<k, V; =

b

[mi—l +m; m; +mi
2 ’ 2
v, = [0’ my ;—m2] V= mk12+ my,

f0r1<i<k, U, = V;,lUV;UV;H,UlelLJVQ, U,=Ve_1UV, . (31)

,1] , and denote

One can write the condition for stationary equilibrium of the m; for a constant ¢ as:

Vi, E{z —m;lz € U;} =0. (32)
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For 2 <7 < k — 1 we have for the limits of the U;:

1 1
A= é(mi72 +mi1) ,Bi= i(mi+1 + mito) - (33)
For + = 1 and 7+ = 2 we must take B; as above, but A; = 0; and for ¢ = £k — 1 and

1 = k we have A; as above and B; = 1.
Numerical example. Let p(z) = 2z for 0 < z <1 and p(x) = 0 otherwise.
The stationary values of the m; are defined by the set of nonlinear equations

2(B} — A}
Vi, m; = E{z|z € U;} = 3( : ;) (34)

(Bf — A7)

and the solution of (34) is sought by the so-called contractive mapping. Let us de-
note z = [my, my, ... ,my]". Then the equation to be solved is of the form z = f(z).
Starting with the first approximation for z denoted z(®), each improved approxima-
tion for the root is obtained recursively:

20 = f(21) . (35)

In the present case one may select for the first approximation of the m;, e.g., equidis-
tant values.

It may now be expedient to define the point density ¢; around m; as the inverse of
the length of the Voronoi set, or ¢; = [(m;11 — mi_1)/2]7"

The problem expressed in a number of previous works, e.g., Ritter and Schulten
(1986), Ritter (1991), and Dersch and Tavan (1995), is to find out whether ¢; could
be approximated by the functional form const.[p(m;)]*. Previously this was only
shown for the continuum limit, i.e. for an infinite number of grid points. The present
numerical analysis allows us to derive results for finite-length grids, too. Assuming
tentatively that the power law holds for the models m; through m; (leaving aside
models near to the ends of the grid), we shall then have

o= log(miy1 —mi_1) — log(mjy1 —m;_1)
log[p(m;)] — log[p(m)]

(36)

In Table 1, using 7 = 4 and j = k — 3, between which the border effects may be
assumed as negligible, the exponent « has been estimated for 10, 25, 50, and 100
grid points, respectively.

3.2.2 Optimum of the One-Dimensional SOM Distortion Measure with
Finite Grid
In the previous example, (26) becomes
D;
E = 2> ) / (x — m;)’zdx
i jen;’Ci
4 1
= 2> m?(D?—CiZ)—gmj(Df—C§)+§(D?—Cf) (37)

i JEN;
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where the neighborhood set of indices N; was defined in (30), and the borders C;
and D; of the Voronoi set V; are C1 =0, Dy =1,

c,-:m“fw for 2<i<k,and Dy = "L p  <i<k—1.
(38)
The optimal values of the m; are determined by the gradient method:

where A(t) is a suitable small scalar factor. With A(¢) > .01 (even with A(¢) = 10)
and starting with very different initial values for the m;, the process has converged
robustly to a unique global minimum. After computation of the optimal values
{m;}, the exponent « of the tentative power law was computed from (36) of the
previous section and presented in Table 1 for different lengths of the grid. Clearly
the cases discussed in Secs. 2.1 and 2.2 are qualitatively different.

Table 1: Exponent « derived from the SOM algorithm and the SOM distortion
measure, respectively
Grid points SOM algorithm SOM distortion measure

10 0.5831 0.3281
25 0.5976 0.3331
50 0.5987 0.3333
100 0.5991 0.3331

3.3 Derivation of the VQ Point Density by the Calculus of
Variations

The technique that will be used to approximate point densities for higher-
dimensional SOMs will first be applied to the simpler VQ problem. If p(x) is smooth
and the placement of the m; in the signal space is reasonably regular, one may try
to approximate the Voronoi sets, which are polytopes in the n-dimensional space,
by n-dimensional hyperspheres centered at the m;. This, of course, is a rough ap-
proximation, but it was in fact used already in the classical VQ papers |2, 8|, and
no better treatments exist for the time being.

Denoting the radius of the hypersphere by R, its hypervolume has the expression
kR™, where k is a numerical factor. If p(x) is approximately constant over the poly-
tope, the elementary integral of the distortion ||x — my||™ = p" over the hypersphere
is

R T n—1 nk n-4r
D:nk/o p(x)-p - p"rdp= —— - p(x) - R"*"; (40)

notice that if v(p) is the volume of the n-dimensional hypersphere with radius p,
then dv(p)/dp = nkp™ ! is the “hypersurface area” of the hypersphere.
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The point density ¢(x) is defined as 1/kR"™. What we aim at first is the approximate
“distortion density” that we denote by I[x, ¢(x)], where ¢(x) is the point density of
the m; at the value x:

= D = P g (a1)

n+r ' n+r
In the continuum limit, the total distortion measure is the integral of the “distortion
density” over the complete signal space:

I[x, q(x)]

[ 1 aalax = [P pg)-£ax. (42)

This integral is minimized under the restrictive condition that the sum of all quan-
tization vectors shall always equal /N; in the continuum limit the condition reads

/q(x)dx =N. (43)

In the classical calculus of variations one often has to optimize a functional which
in the one-dimensional case with one independent variable x and one dependent
variable y = y(z) reads

[ 1y (44)

here y, = dy/dz, and a and b are fixed integration limits. If a restrictive condition

b
/ I (z,y, ys)dx = const. (45)

has to hold, the generally known Euler variational equation reads, using the La-
grange multiplier A and denoting K = I — \[;,

0K d 0K

oy dx Oy,

(46)

In the present case z is vectorial, denoted by x, y = ¢(x), and I and I; do not
depend on 0g/0x. In order to introduce fixed, finite integration limits one may
assume that p(x) = 0 outside some finite support. Now we can write

_r
nk™n

I= p(x) - lgx)] 7, hi=q(x), K =1~ (47)

8(?1@) B _Z;k—jl p(x) - [g()] 7 = A=0. (48)

At every location x there then holds
g(x) = C - [p(x)]7 , (49)

where the constant C' can be solved by substitution of ¢(x) into (43). Clearly (49)
is identical with (25). We have now obtained the same result that earlier ensued
from very intricate signal and error-theoretic probabilistic considerations.
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3.4 The SOM Point Density Derived from the Distortion
Measure for Equal Vector and Grid Dimensionalities

It is possible to carry out the following analysis with a rather general symmetric h;;,
but for simplicity, without much loss of generality, we may assume, like in the basic
SOM theory, h;; = 1 within a certain radius, relating to the distances measured
along the grid from the node j; outside this radius h;; = 0. This is called the
neighborhood around grid point mj.

In the signal space this then means that if p(x) and the point density of the m; are
changing slowly, in the first approximation we can take h;; = 1 up to a distance aR?
from m;, where R is the radius of the hypersphere that approximates the Voronoi
set V;, and a is a numerical constant; in other words, the neighborhood shall contain
a constant number of grid points everywhere over the SOM (except at the borders
of the SOM).

For the elementary integral of the distortion over the neighborhood up to radius aR,
with the exponent r = 2, we then obtain according to (40):

nk

— bl - (@R)™ (50)

and relating the “distortion density” to the “volume” of V},

_ D _nan+2
kR n+2

I[x, ¢(x)] p(x) - [kg(x)] % . (51)

We then directly obtain in analogy with equations (41) through (48) and taking
7 = 2 the result

4(x) = C'p(x)]"+ (52)

with another constant C’ computed from the normalization condition.
Notice that (52), however, does not yet tell anything about the exponent if the SOM
algorithm is used to determine the m,.
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