19 Using SOM and LVQ for HMM Training

Mikko Kurimo

19.1 New Training Methods for the HMMs

The training of the context-independent phoneme models for a minimal recognition
error rate is difficult, because the variability of the phonemes in different conditions
and contexts is substantial and the output densities of different phonemes do also
overlap. A structure that can automatically adapt to all the complicated density
functions, has a vast number of parameters and for proper estimation, the quality
and quantity of the available training data is crucial. The size of the models and
the training database demand robustness to the initial parameter values in order to
avoid an excessively large number of training epochs and long training times.

The problem in practice with the widely spread training algorithms such as the
segmental K-means (SKM) [8] and the segmental Generalized Probabilistic Descent
(SGPD) [1] is that they sometimes converge slowly to low error rates unless good
initial models are available.

Several common initialization methods have been compared for the mixture density
hidden Markov models (MDHMM). The best results in terms of quickly obtained
low final error rates in the automatic speech recognition (ASR) tests were obtained
by using the Self-Organizing Maps (SOM) [2] to first train phoneme dependent
codebooks and then use the codebook vectors as kernel centroids for the mixture
densities. If the Learning Vector quantization (LVQ) |2] is used in the training after
the SOMs, small improvements in the initialization can be achieved, but the SOM
training can be performed much faster, because each phoneme codebook can be
individually trained as a small SOM.

19.1.1 The Segmental SOM Training

The developed segmental SOM training for the HMMs [5] resembles to the conven-
tional SKM type Viterbi training, but the main difference is that the parameters
of mixtures belonging to the neighborhood of the best-matching component are
also adapted. The motivation for the neighborhood adaptation is the parameter
smoothing, where the level of the smoothing compared to the fitting accuracy to the
training data is controlled by the neighborhood size. A wide neighborhood at the
beginning ensures also that all the available codebook units will be drawn into useful
regions in the input space. Compared to the codebooks trained without smooth-
ing (e.g. by SKM) the accuracy provided by the best-matching Gaussian is usually
worse, but that of the next (K — 1)-best matches will be better, however, providing
generalization for slightly discrepant characteristics of the test data.

The motivation to have ordered density codebooks is to enable accelerated state
pdf estimation. In practice, a set of few best-matching kernels tend to dominate
the density estimates for high-dimensional Gaussian mixtures, and thus the densi-
ties can be well approximated by excluding the other kernels. Since the search for
the K-best matches consumes a significant part of the total computational load,

38



the search speed-ups have a significant effect on the total recognition speed. By
exploiting the similarity of the successive feature vectors and the SOM topology
in the mixtures, the approximate location of the K-best candidates can be deter-
mined accelerating significantly the state pdf estimation [5]. As the radius of the
applied neighborhood function decreases gradually to zero the fine structure of the
topology is lost due to the folding that increases the density estimation accuracy.
However, some coarse structure will still be available to maintain smoothness and
search acceleration capabilities (see Figure 33).

10
15

Figure 33: The responses of the individual mixture density components in the
phoneme /A/ codebook organized into 10x14 grid are plotted for one randomly
selected input vector. The first plot (left) is the situation when the radius is de-
creased to one and the second is after training with zero neighborhood

19.1.2 The Segmental LVQ3 Training and the LVQ2 Based Tuning

The segmental LVQ3 training [4]is in many ways similar to the segmental GPD
improving the HMM parameters iteratively by comparing the best paths through the
HMM states to the path producing the correct phoneme sequence for each training
sample, updating the parameters and computing new paths. One of important
difference is the lack of discrimination for situations, where the models already
behave correctly in order to avoid extensive amount of adjustments to lower the
state likelihoods. An other important difference is that the tuning is not directly
dependent on the exact extent of the derivative of the whole word misclassification
measure [1], but only on the relative difference of the modifiable parameter values
to avoid the risk of improper learning step sizes for misses of variable error degree
in one word.

The learning in the segmental training by both SOM and LVQ is here made in
the batch mode, where each epoch includes the entire training data. The other
possibility is to use a variable learning rate parameter to relate the modifications
due to different training words. A proper definition of the learning rate would be
difficult, however, because the parameter changes affect to the subsequent word
segmentations. One method is, however, developed to train MDHMMSs by LVQ
that follows a pre-specified learning rate schedule between the training words. The
method applies the LVQ2 type learning law to enhance the models by stochastic

89



0.25f correct state rival state B

0.2

0.1

0.05

2 4 6 8 10 12 14 16 18 20 22
observation

Figure 34: Adjusting the mixture densities of the competing states regarding to
one observation (here, value 12). The parameters to be modified are the centroids
of the nearest Gaussian for the correct state and, if a rival HMM state causes a
misrecognition, also its corresponding centroid. The mixture weights of the modified
mixtures are tuned respectively, but taking care of the normalization. The resulting
new pdfs are shown dashed for this simple one-dimensional three-mixture case.

learning steps derived from the detected misrecognitions. This is suitable for a
corrective fine tuning method, if the avoidance of the over-fitting in the training
data can be controlled.

The criteria in the evaluation of the segmental training algorithms (see Part I of the
Table 9) were the obtained average error rate for speakers on the both databases and
that the low error rate level is achieved quickly even with initially inaccurate models.
The suggested training in which the MDHMNMs are first initialized by the SOMs and
then trained by the segmental LVQ performed better than conventional methods
with K-means initialization and SKM or SGPD training. By mixing the segmental
training algorithms so that the models obtained by one is fed as an initialization to
another, combinations can be found that eventually give lower error rates than the
individual methods (Part II of the Table 9), but this requires much more training
effort.

19.2 Increasing the Recognition Speed by Optimizing the
Codebook Structure

When the dimension of the feature vectors and the size of the density codebooks
are increased for better recognition accuracy, the bottle neck in online operation is
the density approximation made by each HMM state for each feature vector in the

90



Initialization | HMM training Error rate%
algorithm algorithms Data 90 Data 95
basic | context80
Part I
KM SKM 6.0 6.2
KM SGPD 7.1 5.8
SOM SLVQ3 0.6 5.3
Part II
KM SKM+SGPD 7.3 5.4
SOM SLVQ3+SGPD 7.3 4.8
KM SKM+LVQ2 5.5 5.6
SOM SLVQ3+LVQ2 5.4 5.2

Table 9: Average test set error rates for alternative training methods after the
initialization by K-means or SOM. The training methods are segmental K-means,
segmental GPD, segmental LVQ3 and the corrective tuning based on LVQ2. In the
Part I, the 5 epochs of HMM training is applied (no significant improvements was
detected between 5 and 10 epochs). In the Part II, the last 5 training epochs were
made with another algorithm (the improvement is significant, except for applying
LVQ2 after the LVQ3) and the final error rates are given.

observation sequence. The topological K-best search was presented in [5]| to give
an example of a way to utilize the topology of an organized codebook for a fast
approximative search algorithm for large codebooks. In addition of the topological
order, this method assumes also that the successive feature vectors of speech usually
resemble each other. Briefly, the search method presented in the Figure 35 begins
by re-ranking the previous K-best matches and continues by checking the neighbors
of the currently best match. If a new best is found, also the new neighbors are
checked. This process continues until no more new best matches are found [6]. A
complete search through the codebook is performed periodically to react for abrupt
feature changes [7].

In the K-best search the fastest search time can be expected, if the candidates
are ordered so that the most likely winners are checked first and the components
of the feature vectors are processed in the order of decreasing significance. These
characteristics are important, because each individual check of one candidate can
be aborted immediately, when it becomes evident that it is not part of the K-best.
With no special knowledge about the rank of the candidates except the continu-
ous character of the signal, a good performance can be expected, if the candidates
are scanned according to the distance in SOM topology from the expected winner.
Similarly with no special knowledge about the rank of the components, it is best to
orgarnize them according to the decreasing variance, in general.

The frequency of the complete search affects to the ability to react to fast changes
in the signal characteristics and is, along with the number of the K-best matches
and the size of the basic search neighborhood, a controllable variable to increase the
accuracy or the speed of the search.

91



n
O nth best match (true)

© K best from the previous search

; The actual search order

Figure 35: The topological search order for SOM codebooks.

The tree-search SOM |3] suits well to the fast approximative search for large code-
books, because the tree structure offers O(log N) search complexity instead of the
normal O(N). The possible loss of accuracy may follow from the sequential branch-
ing decisions by which most of the units are eliminated from the individual inspec-
tion. For K-best search the effect of the branching decisions is softened by expanding
the search into the lower layer search areas associated with the rival best-matches
from the upper layer. For density approximation purpose the Gaussian kernels are
trained only for the lowest SOM layer and the upper layers act only as a search tool.

Figure 36: Two layers of the Tree-search SOM. In this map, each upper layer unit
has a grid of 9 child units.

The results from the experiments indicate that the Tree-search SOM can be used as

92



a slightly worse performing, but a faster substitute to the normal SOM codebook.
In the comparison by a ASR test to the corresponding normal SOM codebook, the
Tree-search SOM, in which the recognition time decreased by 20%, increased the
average number of recognition errors by 14%.

The topological K-best search compared to the unordered complete search offers
a speed-up in the ASR experiments about 30-60% depending on the mixture sizes
and feature vectors, while the increase of the average number of errors is only 4-
10%. Despite the loss of most of the codebook topology, after the segmental LVQ3
training the same topological K-best search provide about 10% less recognition
errors (about the same error rate as by complete search before the LVQ3). Thus,
fortunately, the LV(Q training seems to be more efficient to reduce the errors by
increasing the discrimination than it is to generate them by destroying the topology
required for fast search.

References

[1] W. Chou, B. Juang, and C. Lee. Segmental GPD training of HMM based speech
recognizer. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 1, pages 473-476, San Fran-
cisco,USA, april 1992.

[2] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1995.

[3] P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In Pro-
ceedings of the International Joint Conference on Neural networks (IJCNN),
volume II, pages 279-285, Piscataway, NJ, 1990. IEEE Service Center.

[4] M. Kurimo. Segmental LVQ3 training for phoneme-wise tied mixture density
HMMs. In European Signal Processing Conference, volume 3, pages 1599-1602,
Trieste, Italy, September 1996.

[5] M. Kurimo and P. Somervuo. Using the Self-Organizing Map to speed up
the probability density estimation for speech recognition with mixture density
HMDMs. In Proceedings of the International Conference on Spoken Language
Processing, volume 1, pages 358-361, Philadelphia, PA, USA, October 1996.

[6] J. Lampinen and E. Oja. Fast self-organizing by the probing algorithm. In
Proceedings of the International Joint Conference on Neural networks (IJCNN),
volume II, pages 503-507, Piscataway, NJ, 1989. IEEE Service Center.

[7] E. Lopez-Gonzalo and L. A. Hernandez-Gomez. Fast vector quantization using
neural maps for CELP at 2400 bps. In Proceedings of 3rd European Conference on
Speech Communication and Technology, volume 1, pages 55—58, Berlin, Germany,
September 1993.

[8] L. Rabiner, J. Wilpon, and B. Juang. A segmental K-means training procedure
for connected word recognition. ATET Technical Journal, 64:21-40, 1986.

93



